xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision fc5bad03)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 2000, 2004 Intel Corp
9  * 	Rohit Seth <rohit.seth@intel.com>
10  * 	Suresh Siddha <suresh.b.siddha@intel.com>
11  * 	Gordon Jin <gordon.jin@intel.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  *
15  * 12/26/04 S.Siddha, G.Jin, R.Seth
16  *			Add multi-threading and multi-core detection
17  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
20  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
21  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
22  * 01/07/99 S.Eranian	added the support for command line argument
23  * 06/24/99 W.Drummond	added boot_cpu_data.
24  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
25  */
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/cpu.h>
33 #include <linux/kernel.h>
34 #include <linux/memblock.h>
35 #include <linux/reboot.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/clock.h>
38 #include <linux/sched/task_stack.h>
39 #include <linux/seq_file.h>
40 #include <linux/string.h>
41 #include <linux/threads.h>
42 #include <linux/screen_info.h>
43 #include <linux/dmi.h>
44 #include <linux/serial.h>
45 #include <linux/serial_core.h>
46 #include <linux/efi.h>
47 #include <linux/initrd.h>
48 #include <linux/pm.h>
49 #include <linux/cpufreq.h>
50 #include <linux/kexec.h>
51 #include <linux/crash_dump.h>
52 
53 #include <asm/machvec.h>
54 #include <asm/mca.h>
55 #include <asm/meminit.h>
56 #include <asm/page.h>
57 #include <asm/patch.h>
58 #include <asm/pgtable.h>
59 #include <asm/processor.h>
60 #include <asm/sal.h>
61 #include <asm/sections.h>
62 #include <asm/setup.h>
63 #include <asm/smp.h>
64 #include <asm/tlbflush.h>
65 #include <asm/unistd.h>
66 
67 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
68 # error "struct cpuinfo_ia64 too big!"
69 #endif
70 
71 #ifdef CONFIG_SMP
72 unsigned long __per_cpu_offset[NR_CPUS];
73 EXPORT_SYMBOL(__per_cpu_offset);
74 #endif
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
77 EXPORT_SYMBOL(ia64_cpu_info);
78 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
79 #ifdef CONFIG_SMP
80 EXPORT_SYMBOL(local_per_cpu_offset);
81 #endif
82 unsigned long ia64_cycles_per_usec;
83 struct ia64_boot_param *ia64_boot_param;
84 struct screen_info screen_info;
85 unsigned long vga_console_iobase;
86 unsigned long vga_console_membase;
87 
88 static struct resource data_resource = {
89 	.name	= "Kernel data",
90 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91 };
92 
93 static struct resource code_resource = {
94 	.name	= "Kernel code",
95 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
96 };
97 
98 static struct resource bss_resource = {
99 	.name	= "Kernel bss",
100 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
101 };
102 
103 unsigned long ia64_max_cacheline_size;
104 
105 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110 
111 /*
112  * "flush_icache_range()" needs to know what processor dependent stride size to use
113  * when it makes i-cache(s) coherent with d-caches.
114  */
115 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117 /*
118  * "clflush_cache_range()" needs to know what processor dependent stride size to
119  * use when it flushes cache lines including both d-cache and i-cache.
120  */
121 /* Safest way to go: 32 bytes by 32 bytes */
122 #define	CACHE_STRIDE_SHIFT	5
123 unsigned long ia64_cache_stride_shift = ~0;
124 
125 /*
126  * We use a special marker for the end of memory and it uses the extra (+1) slot
127  */
128 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
129 int num_rsvd_regions __initdata;
130 
131 
132 /*
133  * Filter incoming memory segments based on the primitive map created from the boot
134  * parameters. Segments contained in the map are removed from the memory ranges. A
135  * caller-specified function is called with the memory ranges that remain after filtering.
136  * This routine does not assume the incoming segments are sorted.
137  */
138 int __init
139 filter_rsvd_memory (u64 start, u64 end, void *arg)
140 {
141 	u64 range_start, range_end, prev_start;
142 	void (*func)(unsigned long, unsigned long, int);
143 	int i;
144 
145 #if IGNORE_PFN0
146 	if (start == PAGE_OFFSET) {
147 		printk(KERN_WARNING "warning: skipping physical page 0\n");
148 		start += PAGE_SIZE;
149 		if (start >= end) return 0;
150 	}
151 #endif
152 	/*
153 	 * lowest possible address(walker uses virtual)
154 	 */
155 	prev_start = PAGE_OFFSET;
156 	func = arg;
157 
158 	for (i = 0; i < num_rsvd_regions; ++i) {
159 		range_start = max(start, prev_start);
160 		range_end   = min(end, rsvd_region[i].start);
161 
162 		if (range_start < range_end)
163 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
164 
165 		/* nothing more available in this segment */
166 		if (range_end == end) return 0;
167 
168 		prev_start = rsvd_region[i].end;
169 	}
170 	/* end of memory marker allows full processing inside loop body */
171 	return 0;
172 }
173 
174 /*
175  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
176  * are not filtered out.
177  */
178 int __init
179 filter_memory(u64 start, u64 end, void *arg)
180 {
181 	void (*func)(unsigned long, unsigned long, int);
182 
183 #if IGNORE_PFN0
184 	if (start == PAGE_OFFSET) {
185 		printk(KERN_WARNING "warning: skipping physical page 0\n");
186 		start += PAGE_SIZE;
187 		if (start >= end)
188 			return 0;
189 	}
190 #endif
191 	func = arg;
192 	if (start < end)
193 		call_pernode_memory(__pa(start), end - start, func);
194 	return 0;
195 }
196 
197 static void __init
198 sort_regions (struct rsvd_region *rsvd_region, int max)
199 {
200 	int j;
201 
202 	/* simple bubble sorting */
203 	while (max--) {
204 		for (j = 0; j < max; ++j) {
205 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
206 				struct rsvd_region tmp;
207 				tmp = rsvd_region[j];
208 				rsvd_region[j] = rsvd_region[j + 1];
209 				rsvd_region[j + 1] = tmp;
210 			}
211 		}
212 	}
213 }
214 
215 /* merge overlaps */
216 static int __init
217 merge_regions (struct rsvd_region *rsvd_region, int max)
218 {
219 	int i;
220 	for (i = 1; i < max; ++i) {
221 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
222 			continue;
223 		if (rsvd_region[i].end > rsvd_region[i-1].end)
224 			rsvd_region[i-1].end = rsvd_region[i].end;
225 		--max;
226 		memmove(&rsvd_region[i], &rsvd_region[i+1],
227 			(max - i) * sizeof(struct rsvd_region));
228 	}
229 	return max;
230 }
231 
232 /*
233  * Request address space for all standard resources
234  */
235 static int __init register_memory(void)
236 {
237 	code_resource.start = ia64_tpa(_text);
238 	code_resource.end   = ia64_tpa(_etext) - 1;
239 	data_resource.start = ia64_tpa(_etext);
240 	data_resource.end   = ia64_tpa(_edata) - 1;
241 	bss_resource.start  = ia64_tpa(__bss_start);
242 	bss_resource.end    = ia64_tpa(_end) - 1;
243 	efi_initialize_iomem_resources(&code_resource, &data_resource,
244 			&bss_resource);
245 
246 	return 0;
247 }
248 
249 __initcall(register_memory);
250 
251 
252 #ifdef CONFIG_KEXEC
253 
254 /*
255  * This function checks if the reserved crashkernel is allowed on the specific
256  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
257  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
258  * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
259  * in kdump case. See the comment in sba_init() in sba_iommu.c.
260  *
261  * So, the only machvec that really supports loading the kdump kernel
262  * over 4 GB is "uv".
263  */
264 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
265 {
266 	if (ia64_platform_is("uv"))
267 		return 1;
268 	else
269 		return pbase < (1UL << 32);
270 }
271 
272 static void __init setup_crashkernel(unsigned long total, int *n)
273 {
274 	unsigned long long base = 0, size = 0;
275 	int ret;
276 
277 	ret = parse_crashkernel(boot_command_line, total,
278 			&size, &base);
279 	if (ret == 0 && size > 0) {
280 		if (!base) {
281 			sort_regions(rsvd_region, *n);
282 			*n = merge_regions(rsvd_region, *n);
283 			base = kdump_find_rsvd_region(size,
284 					rsvd_region, *n);
285 		}
286 
287 		if (!check_crashkernel_memory(base, size)) {
288 			pr_warning("crashkernel: There would be kdump memory "
289 				"at %ld GB but this is unusable because it "
290 				"must\nbe below 4 GB. Change the memory "
291 				"configuration of the machine.\n",
292 				(unsigned long)(base >> 30));
293 			return;
294 		}
295 
296 		if (base != ~0UL) {
297 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
298 					"for crashkernel (System RAM: %ldMB)\n",
299 					(unsigned long)(size >> 20),
300 					(unsigned long)(base >> 20),
301 					(unsigned long)(total >> 20));
302 			rsvd_region[*n].start =
303 				(unsigned long)__va(base);
304 			rsvd_region[*n].end =
305 				(unsigned long)__va(base + size);
306 			(*n)++;
307 			crashk_res.start = base;
308 			crashk_res.end = base + size - 1;
309 		}
310 	}
311 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
312 	efi_memmap_res.end = efi_memmap_res.start +
313 		ia64_boot_param->efi_memmap_size;
314 	boot_param_res.start = __pa(ia64_boot_param);
315 	boot_param_res.end = boot_param_res.start +
316 		sizeof(*ia64_boot_param);
317 }
318 #else
319 static inline void __init setup_crashkernel(unsigned long total, int *n)
320 {}
321 #endif
322 
323 /**
324  * reserve_memory - setup reserved memory areas
325  *
326  * Setup the reserved memory areas set aside for the boot parameters,
327  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
328  * see arch/ia64/include/asm/meminit.h if you need to define more.
329  */
330 void __init
331 reserve_memory (void)
332 {
333 	int n = 0;
334 	unsigned long total_memory;
335 
336 	/*
337 	 * none of the entries in this table overlap
338 	 */
339 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
340 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
341 	n++;
342 
343 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
344 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
345 	n++;
346 
347 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
348 	rsvd_region[n].end   = (rsvd_region[n].start
349 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
350 	n++;
351 
352 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
353 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
354 	n++;
355 
356 #ifdef CONFIG_BLK_DEV_INITRD
357 	if (ia64_boot_param->initrd_start) {
358 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
359 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
360 		n++;
361 	}
362 #endif
363 
364 #ifdef CONFIG_CRASH_DUMP
365 	if (reserve_elfcorehdr(&rsvd_region[n].start,
366 			       &rsvd_region[n].end) == 0)
367 		n++;
368 #endif
369 
370 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
371 	n++;
372 
373 	setup_crashkernel(total_memory, &n);
374 
375 	/* end of memory marker */
376 	rsvd_region[n].start = ~0UL;
377 	rsvd_region[n].end   = ~0UL;
378 	n++;
379 
380 	num_rsvd_regions = n;
381 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
382 
383 	sort_regions(rsvd_region, num_rsvd_regions);
384 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
385 
386 	/* reserve all regions except the end of memory marker with memblock */
387 	for (n = 0; n < num_rsvd_regions - 1; n++) {
388 		struct rsvd_region *region = &rsvd_region[n];
389 		phys_addr_t addr = __pa(region->start);
390 		phys_addr_t size = region->end - region->start;
391 
392 		memblock_reserve(addr, size);
393 	}
394 }
395 
396 /**
397  * find_initrd - get initrd parameters from the boot parameter structure
398  *
399  * Grab the initrd start and end from the boot parameter struct given us by
400  * the boot loader.
401  */
402 void __init
403 find_initrd (void)
404 {
405 #ifdef CONFIG_BLK_DEV_INITRD
406 	if (ia64_boot_param->initrd_start) {
407 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
408 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
409 
410 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
411 		       initrd_start, ia64_boot_param->initrd_size);
412 	}
413 #endif
414 }
415 
416 static void __init
417 io_port_init (void)
418 {
419 	unsigned long phys_iobase;
420 
421 	/*
422 	 * Set `iobase' based on the EFI memory map or, failing that, the
423 	 * value firmware left in ar.k0.
424 	 *
425 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
426 	 * the port's virtual address, so ia32_load_state() loads it with a
427 	 * user virtual address.  But in ia64 mode, glibc uses the
428 	 * *physical* address in ar.k0 to mmap the appropriate area from
429 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
430 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
431 	 *
432 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
433 	 * any of the I/O port spaces and are done via MMIO using the
434 	 * virtual mmio_base from the appropriate io_space[].
435 	 */
436 	phys_iobase = efi_get_iobase();
437 	if (!phys_iobase) {
438 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
439 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
440 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
441 	}
442 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
443 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
444 
445 	/* setup legacy IO port space */
446 	io_space[0].mmio_base = ia64_iobase;
447 	io_space[0].sparse = 1;
448 	num_io_spaces = 1;
449 }
450 
451 /**
452  * early_console_setup - setup debugging console
453  *
454  * Consoles started here require little enough setup that we can start using
455  * them very early in the boot process, either right after the machine
456  * vector initialization, or even before if the drivers can detect their hw.
457  *
458  * Returns non-zero if a console couldn't be setup.
459  */
460 static inline int __init
461 early_console_setup (char *cmdline)
462 {
463 #ifdef CONFIG_EFI_PCDP
464 	if (!efi_setup_pcdp_console(cmdline))
465 		return 0;
466 #endif
467 	return -1;
468 }
469 
470 static inline void
471 mark_bsp_online (void)
472 {
473 #ifdef CONFIG_SMP
474 	/* If we register an early console, allow CPU 0 to printk */
475 	set_cpu_online(smp_processor_id(), true);
476 #endif
477 }
478 
479 static __initdata int nomca;
480 static __init int setup_nomca(char *s)
481 {
482 	nomca = 1;
483 	return 0;
484 }
485 early_param("nomca", setup_nomca);
486 
487 #ifdef CONFIG_CRASH_DUMP
488 int __init reserve_elfcorehdr(u64 *start, u64 *end)
489 {
490 	u64 length;
491 
492 	/* We get the address using the kernel command line,
493 	 * but the size is extracted from the EFI tables.
494 	 * Both address and size are required for reservation
495 	 * to work properly.
496 	 */
497 
498 	if (!is_vmcore_usable())
499 		return -EINVAL;
500 
501 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
502 		vmcore_unusable();
503 		return -EINVAL;
504 	}
505 
506 	*start = (unsigned long)__va(elfcorehdr_addr);
507 	*end = *start + length;
508 	return 0;
509 }
510 
511 #endif /* CONFIG_PROC_VMCORE */
512 
513 void __init
514 setup_arch (char **cmdline_p)
515 {
516 	unw_init();
517 
518 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
519 
520 	*cmdline_p = __va(ia64_boot_param->command_line);
521 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
522 
523 	efi_init();
524 	io_port_init();
525 
526 #ifdef CONFIG_IA64_GENERIC
527 	/* machvec needs to be parsed from the command line
528 	 * before parse_early_param() is called to ensure
529 	 * that ia64_mv is initialised before any command line
530 	 * settings may cause console setup to occur
531 	 */
532 	machvec_init_from_cmdline(*cmdline_p);
533 #endif
534 
535 	parse_early_param();
536 
537 	if (early_console_setup(*cmdline_p) == 0)
538 		mark_bsp_online();
539 
540 #ifdef CONFIG_ACPI
541 	/* Initialize the ACPI boot-time table parser */
542 	acpi_table_init();
543 	early_acpi_boot_init();
544 # ifdef CONFIG_ACPI_NUMA
545 	acpi_numa_init();
546 	acpi_numa_fixup();
547 #  ifdef CONFIG_ACPI_HOTPLUG_CPU
548 	prefill_possible_map();
549 #  endif
550 	per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ?
551 		32 : cpumask_weight(&early_cpu_possible_map)),
552 		additional_cpus > 0 ? additional_cpus : 0);
553 # endif
554 #endif /* CONFIG_APCI_BOOT */
555 
556 #ifdef CONFIG_SMP
557 	smp_build_cpu_map();
558 #endif
559 	find_memory();
560 
561 	/* process SAL system table: */
562 	ia64_sal_init(__va(efi.sal_systab));
563 
564 #ifdef CONFIG_ITANIUM
565 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
566 #else
567 	{
568 		unsigned long num_phys_stacked;
569 
570 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
571 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
572 	}
573 #endif
574 
575 #ifdef CONFIG_SMP
576 	cpu_physical_id(0) = hard_smp_processor_id();
577 #endif
578 
579 	cpu_init();	/* initialize the bootstrap CPU */
580 	mmu_context_init();	/* initialize context_id bitmap */
581 
582 #ifdef CONFIG_VT
583 	if (!conswitchp) {
584 # if defined(CONFIG_DUMMY_CONSOLE)
585 		conswitchp = &dummy_con;
586 # endif
587 # if defined(CONFIG_VGA_CONSOLE)
588 		/*
589 		 * Non-legacy systems may route legacy VGA MMIO range to system
590 		 * memory.  vga_con probes the MMIO hole, so memory looks like
591 		 * a VGA device to it.  The EFI memory map can tell us if it's
592 		 * memory so we can avoid this problem.
593 		 */
594 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
595 			conswitchp = &vga_con;
596 # endif
597 	}
598 #endif
599 
600 	/* enable IA-64 Machine Check Abort Handling unless disabled */
601 	if (!nomca)
602 		ia64_mca_init();
603 
604 	platform_setup(cmdline_p);
605 	paging_init();
606 
607 	clear_sched_clock_stable();
608 }
609 
610 /*
611  * Display cpu info for all CPUs.
612  */
613 static int
614 show_cpuinfo (struct seq_file *m, void *v)
615 {
616 #ifdef CONFIG_SMP
617 #	define lpj	c->loops_per_jiffy
618 #	define cpunum	c->cpu
619 #else
620 #	define lpj	loops_per_jiffy
621 #	define cpunum	0
622 #endif
623 	static struct {
624 		unsigned long mask;
625 		const char *feature_name;
626 	} feature_bits[] = {
627 		{ 1UL << 0, "branchlong" },
628 		{ 1UL << 1, "spontaneous deferral"},
629 		{ 1UL << 2, "16-byte atomic ops" }
630 	};
631 	char features[128], *cp, *sep;
632 	struct cpuinfo_ia64 *c = v;
633 	unsigned long mask;
634 	unsigned long proc_freq;
635 	int i, size;
636 
637 	mask = c->features;
638 
639 	/* build the feature string: */
640 	memcpy(features, "standard", 9);
641 	cp = features;
642 	size = sizeof(features);
643 	sep = "";
644 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
645 		if (mask & feature_bits[i].mask) {
646 			cp += snprintf(cp, size, "%s%s", sep,
647 				       feature_bits[i].feature_name),
648 			sep = ", ";
649 			mask &= ~feature_bits[i].mask;
650 			size = sizeof(features) - (cp - features);
651 		}
652 	}
653 	if (mask && size > 1) {
654 		/* print unknown features as a hex value */
655 		snprintf(cp, size, "%s0x%lx", sep, mask);
656 	}
657 
658 	proc_freq = cpufreq_quick_get(cpunum);
659 	if (!proc_freq)
660 		proc_freq = c->proc_freq / 1000;
661 
662 	seq_printf(m,
663 		   "processor  : %d\n"
664 		   "vendor     : %s\n"
665 		   "arch       : IA-64\n"
666 		   "family     : %u\n"
667 		   "model      : %u\n"
668 		   "model name : %s\n"
669 		   "revision   : %u\n"
670 		   "archrev    : %u\n"
671 		   "features   : %s\n"
672 		   "cpu number : %lu\n"
673 		   "cpu regs   : %u\n"
674 		   "cpu MHz    : %lu.%03lu\n"
675 		   "itc MHz    : %lu.%06lu\n"
676 		   "BogoMIPS   : %lu.%02lu\n",
677 		   cpunum, c->vendor, c->family, c->model,
678 		   c->model_name, c->revision, c->archrev,
679 		   features, c->ppn, c->number,
680 		   proc_freq / 1000, proc_freq % 1000,
681 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
682 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
683 #ifdef CONFIG_SMP
684 	seq_printf(m, "siblings   : %u\n",
685 		   cpumask_weight(&cpu_core_map[cpunum]));
686 	if (c->socket_id != -1)
687 		seq_printf(m, "physical id: %u\n", c->socket_id);
688 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
689 		seq_printf(m,
690 			   "core id    : %u\n"
691 			   "thread id  : %u\n",
692 			   c->core_id, c->thread_id);
693 #endif
694 	seq_printf(m,"\n");
695 
696 	return 0;
697 }
698 
699 static void *
700 c_start (struct seq_file *m, loff_t *pos)
701 {
702 #ifdef CONFIG_SMP
703 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
704 		++*pos;
705 #endif
706 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
707 }
708 
709 static void *
710 c_next (struct seq_file *m, void *v, loff_t *pos)
711 {
712 	++*pos;
713 	return c_start(m, pos);
714 }
715 
716 static void
717 c_stop (struct seq_file *m, void *v)
718 {
719 }
720 
721 const struct seq_operations cpuinfo_op = {
722 	.start =	c_start,
723 	.next =		c_next,
724 	.stop =		c_stop,
725 	.show =		show_cpuinfo
726 };
727 
728 #define MAX_BRANDS	8
729 static char brandname[MAX_BRANDS][128];
730 
731 static char *
732 get_model_name(__u8 family, __u8 model)
733 {
734 	static int overflow;
735 	char brand[128];
736 	int i;
737 
738 	memcpy(brand, "Unknown", 8);
739 	if (ia64_pal_get_brand_info(brand)) {
740 		if (family == 0x7)
741 			memcpy(brand, "Merced", 7);
742 		else if (family == 0x1f) switch (model) {
743 			case 0: memcpy(brand, "McKinley", 9); break;
744 			case 1: memcpy(brand, "Madison", 8); break;
745 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
746 		}
747 	}
748 	for (i = 0; i < MAX_BRANDS; i++)
749 		if (strcmp(brandname[i], brand) == 0)
750 			return brandname[i];
751 	for (i = 0; i < MAX_BRANDS; i++)
752 		if (brandname[i][0] == '\0')
753 			return strcpy(brandname[i], brand);
754 	if (overflow++ == 0)
755 		printk(KERN_ERR
756 		       "%s: Table overflow. Some processor model information will be missing\n",
757 		       __func__);
758 	return "Unknown";
759 }
760 
761 static void
762 identify_cpu (struct cpuinfo_ia64 *c)
763 {
764 	union {
765 		unsigned long bits[5];
766 		struct {
767 			/* id 0 & 1: */
768 			char vendor[16];
769 
770 			/* id 2 */
771 			u64 ppn;		/* processor serial number */
772 
773 			/* id 3: */
774 			unsigned number		:  8;
775 			unsigned revision	:  8;
776 			unsigned model		:  8;
777 			unsigned family		:  8;
778 			unsigned archrev	:  8;
779 			unsigned reserved	: 24;
780 
781 			/* id 4: */
782 			u64 features;
783 		} field;
784 	} cpuid;
785 	pal_vm_info_1_u_t vm1;
786 	pal_vm_info_2_u_t vm2;
787 	pal_status_t status;
788 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
789 	int i;
790 	for (i = 0; i < 5; ++i)
791 		cpuid.bits[i] = ia64_get_cpuid(i);
792 
793 	memcpy(c->vendor, cpuid.field.vendor, 16);
794 #ifdef CONFIG_SMP
795 	c->cpu = smp_processor_id();
796 
797 	/* below default values will be overwritten  by identify_siblings()
798 	 * for Multi-Threading/Multi-Core capable CPUs
799 	 */
800 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
801 	c->socket_id = -1;
802 
803 	identify_siblings(c);
804 
805 	if (c->threads_per_core > smp_num_siblings)
806 		smp_num_siblings = c->threads_per_core;
807 #endif
808 	c->ppn = cpuid.field.ppn;
809 	c->number = cpuid.field.number;
810 	c->revision = cpuid.field.revision;
811 	c->model = cpuid.field.model;
812 	c->family = cpuid.field.family;
813 	c->archrev = cpuid.field.archrev;
814 	c->features = cpuid.field.features;
815 	c->model_name = get_model_name(c->family, c->model);
816 
817 	status = ia64_pal_vm_summary(&vm1, &vm2);
818 	if (status == PAL_STATUS_SUCCESS) {
819 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
820 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
821 	}
822 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
823 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
824 }
825 
826 /*
827  * Do the following calculations:
828  *
829  * 1. the max. cache line size.
830  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
831  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
832  */
833 static void
834 get_cache_info(void)
835 {
836 	unsigned long line_size, max = 1;
837 	unsigned long l, levels, unique_caches;
838 	pal_cache_config_info_t cci;
839 	long status;
840 
841         status = ia64_pal_cache_summary(&levels, &unique_caches);
842         if (status != 0) {
843                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
844                        __func__, status);
845                 max = SMP_CACHE_BYTES;
846 		/* Safest setup for "flush_icache_range()" */
847 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
848 		/* Safest setup for "clflush_cache_range()" */
849 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
850 		goto out;
851         }
852 
853 	for (l = 0; l < levels; ++l) {
854 		/* cache_type (data_or_unified)=2 */
855 		status = ia64_pal_cache_config_info(l, 2, &cci);
856 		if (status != 0) {
857 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
858 				"(l=%lu, 2) failed (status=%ld)\n",
859 				__func__, l, status);
860 			max = SMP_CACHE_BYTES;
861 			/* The safest setup for "flush_icache_range()" */
862 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
863 			/* The safest setup for "clflush_cache_range()" */
864 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
865 			cci.pcci_unified = 1;
866 		} else {
867 			if (cci.pcci_stride < ia64_cache_stride_shift)
868 				ia64_cache_stride_shift = cci.pcci_stride;
869 
870 			line_size = 1 << cci.pcci_line_size;
871 			if (line_size > max)
872 				max = line_size;
873 		}
874 
875 		if (!cci.pcci_unified) {
876 			/* cache_type (instruction)=1*/
877 			status = ia64_pal_cache_config_info(l, 1, &cci);
878 			if (status != 0) {
879 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
880 					"(l=%lu, 1) failed (status=%ld)\n",
881 					__func__, l, status);
882 				/* The safest setup for flush_icache_range() */
883 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
884 			}
885 		}
886 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
887 			ia64_i_cache_stride_shift = cci.pcci_stride;
888 	}
889   out:
890 	if (max > ia64_max_cacheline_size)
891 		ia64_max_cacheline_size = max;
892 }
893 
894 /*
895  * cpu_init() initializes state that is per-CPU.  This function acts
896  * as a 'CPU state barrier', nothing should get across.
897  */
898 void
899 cpu_init (void)
900 {
901 	extern void ia64_mmu_init(void *);
902 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
903 	unsigned long num_phys_stacked;
904 	pal_vm_info_2_u_t vmi;
905 	unsigned int max_ctx;
906 	struct cpuinfo_ia64 *cpu_info;
907 	void *cpu_data;
908 
909 	cpu_data = per_cpu_init();
910 #ifdef CONFIG_SMP
911 	/*
912 	 * insert boot cpu into sibling and core mapes
913 	 * (must be done after per_cpu area is setup)
914 	 */
915 	if (smp_processor_id() == 0) {
916 		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
917 		cpumask_set_cpu(0, &cpu_core_map[0]);
918 	} else {
919 		/*
920 		 * Set ar.k3 so that assembly code in MCA handler can compute
921 		 * physical addresses of per cpu variables with a simple:
922 		 *   phys = ar.k3 + &per_cpu_var
923 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
924 		 * the TLB when needed. head.S already did this for cpu0.
925 		 */
926 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
927 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
928 	}
929 #endif
930 
931 	get_cache_info();
932 
933 	/*
934 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
935 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
936 	 * depends on the data returned by identify_cpu().  We break the dependency by
937 	 * accessing cpu_data() through the canonical per-CPU address.
938 	 */
939 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
940 	identify_cpu(cpu_info);
941 
942 #ifdef CONFIG_MCKINLEY
943 	{
944 #		define FEATURE_SET 16
945 		struct ia64_pal_retval iprv;
946 
947 		if (cpu_info->family == 0x1f) {
948 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
949 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
950 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
951 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
952 		}
953 	}
954 #endif
955 
956 	/* Clear the stack memory reserved for pt_regs: */
957 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
958 
959 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
960 
961 	/*
962 	 * Initialize the page-table base register to a global
963 	 * directory with all zeroes.  This ensure that we can handle
964 	 * TLB-misses to user address-space even before we created the
965 	 * first user address-space.  This may happen, e.g., due to
966 	 * aggressive use of lfetch.fault.
967 	 */
968 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
969 
970 	/*
971 	 * Initialize default control register to defer speculative faults except
972 	 * for those arising from TLB misses, which are not deferred.  The
973 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
974 	 * the kernel must have recovery code for all speculative accesses).  Turn on
975 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
976 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
977 	 * be fine).
978 	 */
979 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
980 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
981 	mmgrab(&init_mm);
982 	current->active_mm = &init_mm;
983 	BUG_ON(current->mm);
984 
985 	ia64_mmu_init(ia64_imva(cpu_data));
986 	ia64_mca_cpu_init(ia64_imva(cpu_data));
987 
988 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
989 	ia64_set_itc(0);
990 
991 	/* disable all local interrupt sources: */
992 	ia64_set_itv(1 << 16);
993 	ia64_set_lrr0(1 << 16);
994 	ia64_set_lrr1(1 << 16);
995 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
996 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
997 
998 	/* clear TPR & XTP to enable all interrupt classes: */
999 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1000 
1001 	/* Clear any pending interrupts left by SAL/EFI */
1002 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1003 		ia64_eoi();
1004 
1005 #ifdef CONFIG_SMP
1006 	normal_xtp();
1007 #endif
1008 
1009 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1010 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1011 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1012 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1013 	} else {
1014 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1015 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1016 	}
1017 	while (max_ctx < ia64_ctx.max_ctx) {
1018 		unsigned int old = ia64_ctx.max_ctx;
1019 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1020 			break;
1021 	}
1022 
1023 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1024 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1025 		       "stacked regs\n");
1026 		num_phys_stacked = 96;
1027 	}
1028 	/* size of physical stacked register partition plus 8 bytes: */
1029 	if (num_phys_stacked > max_num_phys_stacked) {
1030 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1031 		max_num_phys_stacked = num_phys_stacked;
1032 	}
1033 }
1034 
1035 void __init
1036 check_bugs (void)
1037 {
1038 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1039 			       (unsigned long) __end___mckinley_e9_bundles);
1040 }
1041 
1042 static int __init run_dmi_scan(void)
1043 {
1044 	dmi_setup();
1045 	return 0;
1046 }
1047 core_initcall(run_dmi_scan);
1048