xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision ddbad076)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84 
85 static struct resource data_resource = {
86 	.name	= "Kernel data",
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
88 };
89 
90 static struct resource code_resource = {
91 	.name	= "Kernel code",
92 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
93 };
94 extern char _text[], _end[], _etext[];
95 
96 unsigned long ia64_max_cacheline_size;
97 
98 int dma_get_cache_alignment(void)
99 {
100         return ia64_max_cacheline_size;
101 }
102 EXPORT_SYMBOL(dma_get_cache_alignment);
103 
104 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
105 EXPORT_SYMBOL(ia64_iobase);
106 struct io_space io_space[MAX_IO_SPACES];
107 EXPORT_SYMBOL(io_space);
108 unsigned int num_io_spaces;
109 
110 /*
111  * "flush_icache_range()" needs to know what processor dependent stride size to use
112  * when it makes i-cache(s) coherent with d-caches.
113  */
114 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
115 unsigned long ia64_i_cache_stride_shift = ~0;
116 
117 /*
118  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
119  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
120  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
121  * address of the second buffer must be aligned to (merge_mask+1) in order to be
122  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
123  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
124  * page-size of 2^64.
125  */
126 unsigned long ia64_max_iommu_merge_mask = ~0UL;
127 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
128 
129 /*
130  * We use a special marker for the end of memory and it uses the extra (+1) slot
131  */
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
133 int num_rsvd_regions __initdata;
134 
135 
136 /*
137  * Filter incoming memory segments based on the primitive map created from the boot
138  * parameters. Segments contained in the map are removed from the memory ranges. A
139  * caller-specified function is called with the memory ranges that remain after filtering.
140  * This routine does not assume the incoming segments are sorted.
141  */
142 int __init
143 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
144 {
145 	unsigned long range_start, range_end, prev_start;
146 	void (*func)(unsigned long, unsigned long, int);
147 	int i;
148 
149 #if IGNORE_PFN0
150 	if (start == PAGE_OFFSET) {
151 		printk(KERN_WARNING "warning: skipping physical page 0\n");
152 		start += PAGE_SIZE;
153 		if (start >= end) return 0;
154 	}
155 #endif
156 	/*
157 	 * lowest possible address(walker uses virtual)
158 	 */
159 	prev_start = PAGE_OFFSET;
160 	func = arg;
161 
162 	for (i = 0; i < num_rsvd_regions; ++i) {
163 		range_start = max(start, prev_start);
164 		range_end   = min(end, rsvd_region[i].start);
165 
166 		if (range_start < range_end)
167 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
168 
169 		/* nothing more available in this segment */
170 		if (range_end == end) return 0;
171 
172 		prev_start = rsvd_region[i].end;
173 	}
174 	/* end of memory marker allows full processing inside loop body */
175 	return 0;
176 }
177 
178 static void __init
179 sort_regions (struct rsvd_region *rsvd_region, int max)
180 {
181 	int j;
182 
183 	/* simple bubble sorting */
184 	while (max--) {
185 		for (j = 0; j < max; ++j) {
186 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
187 				struct rsvd_region tmp;
188 				tmp = rsvd_region[j];
189 				rsvd_region[j] = rsvd_region[j + 1];
190 				rsvd_region[j + 1] = tmp;
191 			}
192 		}
193 	}
194 }
195 
196 /*
197  * Request address space for all standard resources
198  */
199 static int __init register_memory(void)
200 {
201 	code_resource.start = ia64_tpa(_text);
202 	code_resource.end   = ia64_tpa(_etext) - 1;
203 	data_resource.start = ia64_tpa(_etext);
204 	data_resource.end   = ia64_tpa(_end) - 1;
205 	efi_initialize_iomem_resources(&code_resource, &data_resource);
206 
207 	return 0;
208 }
209 
210 __initcall(register_memory);
211 
212 /**
213  * reserve_memory - setup reserved memory areas
214  *
215  * Setup the reserved memory areas set aside for the boot parameters,
216  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
217  * see include/asm-ia64/meminit.h if you need to define more.
218  */
219 void __init
220 reserve_memory (void)
221 {
222 	int n = 0;
223 
224 	/*
225 	 * none of the entries in this table overlap
226 	 */
227 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
228 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
229 	n++;
230 
231 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
232 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
233 	n++;
234 
235 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
236 	rsvd_region[n].end   = (rsvd_region[n].start
237 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
238 	n++;
239 
240 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
241 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
242 	n++;
243 
244 #ifdef CONFIG_BLK_DEV_INITRD
245 	if (ia64_boot_param->initrd_start) {
246 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
247 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
248 		n++;
249 	}
250 #endif
251 
252 #ifdef CONFIG_PROC_VMCORE
253 	if (reserve_elfcorehdr(&rsvd_region[n].start,
254 			       &rsvd_region[n].end) == 0)
255 		n++;
256 #endif
257 
258 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
259 	n++;
260 
261 #ifdef CONFIG_KEXEC
262 	/* crashkernel=size@offset specifies the size to reserve for a crash
263 	 * kernel. If offset is 0, then it is determined automatically.
264 	 * By reserving this memory we guarantee that linux never set's it
265 	 * up as a DMA target.Useful for holding code to do something
266 	 * appropriate after a kernel panic.
267 	 */
268 	{
269 		char *from = strstr(boot_command_line, "crashkernel=");
270 		unsigned long base, size;
271 		if (from) {
272 			size = memparse(from + 12, &from);
273 			if (*from == '@')
274 				base = memparse(from+1, &from);
275 			else
276 				base = 0;
277 			if (size) {
278 				if (!base) {
279 					sort_regions(rsvd_region, n);
280 					base = kdump_find_rsvd_region(size,
281 							      	rsvd_region, n);
282 					}
283 				if (base != ~0UL) {
284 					rsvd_region[n].start =
285 						(unsigned long)__va(base);
286 					rsvd_region[n].end =
287 						(unsigned long)__va(base + size);
288 					n++;
289 					crashk_res.start = base;
290 					crashk_res.end = base + size - 1;
291 				}
292 			}
293 		}
294 		efi_memmap_res.start = ia64_boot_param->efi_memmap;
295                 efi_memmap_res.end = efi_memmap_res.start +
296                         ia64_boot_param->efi_memmap_size;
297                 boot_param_res.start = __pa(ia64_boot_param);
298                 boot_param_res.end = boot_param_res.start +
299                         sizeof(*ia64_boot_param);
300 	}
301 #endif
302 	/* end of memory marker */
303 	rsvd_region[n].start = ~0UL;
304 	rsvd_region[n].end   = ~0UL;
305 	n++;
306 
307 	num_rsvd_regions = n;
308 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
309 
310 	sort_regions(rsvd_region, num_rsvd_regions);
311 }
312 
313 
314 /**
315  * find_initrd - get initrd parameters from the boot parameter structure
316  *
317  * Grab the initrd start and end from the boot parameter struct given us by
318  * the boot loader.
319  */
320 void __init
321 find_initrd (void)
322 {
323 #ifdef CONFIG_BLK_DEV_INITRD
324 	if (ia64_boot_param->initrd_start) {
325 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
326 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
327 
328 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
329 		       initrd_start, ia64_boot_param->initrd_size);
330 	}
331 #endif
332 }
333 
334 static void __init
335 io_port_init (void)
336 {
337 	unsigned long phys_iobase;
338 
339 	/*
340 	 * Set `iobase' based on the EFI memory map or, failing that, the
341 	 * value firmware left in ar.k0.
342 	 *
343 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
344 	 * the port's virtual address, so ia32_load_state() loads it with a
345 	 * user virtual address.  But in ia64 mode, glibc uses the
346 	 * *physical* address in ar.k0 to mmap the appropriate area from
347 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
348 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
349 	 *
350 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
351 	 * any of the I/O port spaces and are done via MMIO using the
352 	 * virtual mmio_base from the appropriate io_space[].
353 	 */
354 	phys_iobase = efi_get_iobase();
355 	if (!phys_iobase) {
356 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
357 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
358 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
359 	}
360 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
361 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
362 
363 	/* setup legacy IO port space */
364 	io_space[0].mmio_base = ia64_iobase;
365 	io_space[0].sparse = 1;
366 	num_io_spaces = 1;
367 }
368 
369 /**
370  * early_console_setup - setup debugging console
371  *
372  * Consoles started here require little enough setup that we can start using
373  * them very early in the boot process, either right after the machine
374  * vector initialization, or even before if the drivers can detect their hw.
375  *
376  * Returns non-zero if a console couldn't be setup.
377  */
378 static inline int __init
379 early_console_setup (char *cmdline)
380 {
381 	int earlycons = 0;
382 
383 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
384 	{
385 		extern int sn_serial_console_early_setup(void);
386 		if (!sn_serial_console_early_setup())
387 			earlycons++;
388 	}
389 #endif
390 #ifdef CONFIG_EFI_PCDP
391 	if (!efi_setup_pcdp_console(cmdline))
392 		earlycons++;
393 #endif
394 #ifdef CONFIG_SERIAL_8250_CONSOLE
395 	if (!early_serial_console_init(cmdline))
396 		earlycons++;
397 #endif
398 
399 	return (earlycons) ? 0 : -1;
400 }
401 
402 static inline void
403 mark_bsp_online (void)
404 {
405 #ifdef CONFIG_SMP
406 	/* If we register an early console, allow CPU 0 to printk */
407 	cpu_set(smp_processor_id(), cpu_online_map);
408 #endif
409 }
410 
411 #ifdef CONFIG_SMP
412 static void __init
413 check_for_logical_procs (void)
414 {
415 	pal_logical_to_physical_t info;
416 	s64 status;
417 
418 	status = ia64_pal_logical_to_phys(0, &info);
419 	if (status == -1) {
420 		printk(KERN_INFO "No logical to physical processor mapping "
421 		       "available\n");
422 		return;
423 	}
424 	if (status) {
425 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
426 		       status);
427 		return;
428 	}
429 	/*
430 	 * Total number of siblings that BSP has.  Though not all of them
431 	 * may have booted successfully. The correct number of siblings
432 	 * booted is in info.overview_num_log.
433 	 */
434 	smp_num_siblings = info.overview_tpc;
435 	smp_num_cpucores = info.overview_cpp;
436 }
437 #endif
438 
439 static __initdata int nomca;
440 static __init int setup_nomca(char *s)
441 {
442 	nomca = 1;
443 	return 0;
444 }
445 early_param("nomca", setup_nomca);
446 
447 #ifdef CONFIG_PROC_VMCORE
448 /* elfcorehdr= specifies the location of elf core header
449  * stored by the crashed kernel.
450  */
451 static int __init parse_elfcorehdr(char *arg)
452 {
453 	if (!arg)
454 		return -EINVAL;
455 
456         elfcorehdr_addr = memparse(arg, &arg);
457 	return 0;
458 }
459 early_param("elfcorehdr", parse_elfcorehdr);
460 
461 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
462 {
463 	unsigned long length;
464 
465 	/* We get the address using the kernel command line,
466 	 * but the size is extracted from the EFI tables.
467 	 * Both address and size are required for reservation
468 	 * to work properly.
469 	 */
470 
471 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
472 		return -EINVAL;
473 
474 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
475 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
476 		return -EINVAL;
477 	}
478 
479 	*start = (unsigned long)__va(elfcorehdr_addr);
480 	*end = *start + length;
481 	return 0;
482 }
483 
484 #endif /* CONFIG_PROC_VMCORE */
485 
486 void __init
487 setup_arch (char **cmdline_p)
488 {
489 	unw_init();
490 
491 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
492 
493 	*cmdline_p = __va(ia64_boot_param->command_line);
494 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
495 
496 	efi_init();
497 	io_port_init();
498 
499 	parse_early_param();
500 
501 #ifdef CONFIG_IA64_GENERIC
502 	machvec_init(NULL);
503 #endif
504 
505 	if (early_console_setup(*cmdline_p) == 0)
506 		mark_bsp_online();
507 
508 #ifdef CONFIG_ACPI
509 	/* Initialize the ACPI boot-time table parser */
510 	acpi_table_init();
511 # ifdef CONFIG_ACPI_NUMA
512 	acpi_numa_init();
513 # endif
514 #else
515 # ifdef CONFIG_SMP
516 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
517 # endif
518 #endif /* CONFIG_APCI_BOOT */
519 
520 	find_memory();
521 
522 	/* process SAL system table: */
523 	ia64_sal_init(__va(efi.sal_systab));
524 
525 	ia64_setup_printk_clock();
526 
527 #ifdef CONFIG_SMP
528 	cpu_physical_id(0) = hard_smp_processor_id();
529 
530 	cpu_set(0, cpu_sibling_map[0]);
531 	cpu_set(0, cpu_core_map[0]);
532 
533 	check_for_logical_procs();
534 	if (smp_num_cpucores > 1)
535 		printk(KERN_INFO
536 		       "cpu package is Multi-Core capable: number of cores=%d\n",
537 		       smp_num_cpucores);
538 	if (smp_num_siblings > 1)
539 		printk(KERN_INFO
540 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
541 		       smp_num_siblings);
542 #endif
543 
544 	cpu_init();	/* initialize the bootstrap CPU */
545 	mmu_context_init();	/* initialize context_id bitmap */
546 
547 	check_sal_cache_flush();
548 
549 #ifdef CONFIG_ACPI
550 	acpi_boot_init();
551 #endif
552 
553 #ifdef CONFIG_VT
554 	if (!conswitchp) {
555 # if defined(CONFIG_DUMMY_CONSOLE)
556 		conswitchp = &dummy_con;
557 # endif
558 # if defined(CONFIG_VGA_CONSOLE)
559 		/*
560 		 * Non-legacy systems may route legacy VGA MMIO range to system
561 		 * memory.  vga_con probes the MMIO hole, so memory looks like
562 		 * a VGA device to it.  The EFI memory map can tell us if it's
563 		 * memory so we can avoid this problem.
564 		 */
565 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
566 			conswitchp = &vga_con;
567 # endif
568 	}
569 #endif
570 
571 	/* enable IA-64 Machine Check Abort Handling unless disabled */
572 	if (!nomca)
573 		ia64_mca_init();
574 
575 	platform_setup(cmdline_p);
576 	paging_init();
577 }
578 
579 /*
580  * Display cpu info for all cpu's.
581  */
582 static int
583 show_cpuinfo (struct seq_file *m, void *v)
584 {
585 #ifdef CONFIG_SMP
586 #	define lpj	c->loops_per_jiffy
587 #	define cpunum	c->cpu
588 #else
589 #	define lpj	loops_per_jiffy
590 #	define cpunum	0
591 #endif
592 	static struct {
593 		unsigned long mask;
594 		const char *feature_name;
595 	} feature_bits[] = {
596 		{ 1UL << 0, "branchlong" },
597 		{ 1UL << 1, "spontaneous deferral"},
598 		{ 1UL << 2, "16-byte atomic ops" }
599 	};
600 	char features[128], *cp, *sep;
601 	struct cpuinfo_ia64 *c = v;
602 	unsigned long mask;
603 	unsigned long proc_freq;
604 	int i, size;
605 
606 	mask = c->features;
607 
608 	/* build the feature string: */
609 	memcpy(features, "standard", 9);
610 	cp = features;
611 	size = sizeof(features);
612 	sep = "";
613 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
614 		if (mask & feature_bits[i].mask) {
615 			cp += snprintf(cp, size, "%s%s", sep,
616 				       feature_bits[i].feature_name),
617 			sep = ", ";
618 			mask &= ~feature_bits[i].mask;
619 			size = sizeof(features) - (cp - features);
620 		}
621 	}
622 	if (mask && size > 1) {
623 		/* print unknown features as a hex value */
624 		snprintf(cp, size, "%s0x%lx", sep, mask);
625 	}
626 
627 	proc_freq = cpufreq_quick_get(cpunum);
628 	if (!proc_freq)
629 		proc_freq = c->proc_freq / 1000;
630 
631 	seq_printf(m,
632 		   "processor  : %d\n"
633 		   "vendor     : %s\n"
634 		   "arch       : IA-64\n"
635 		   "family     : %u\n"
636 		   "model      : %u\n"
637 		   "model name : %s\n"
638 		   "revision   : %u\n"
639 		   "archrev    : %u\n"
640 		   "features   : %s\n"
641 		   "cpu number : %lu\n"
642 		   "cpu regs   : %u\n"
643 		   "cpu MHz    : %lu.%06lu\n"
644 		   "itc MHz    : %lu.%06lu\n"
645 		   "BogoMIPS   : %lu.%02lu\n",
646 		   cpunum, c->vendor, c->family, c->model,
647 		   c->model_name, c->revision, c->archrev,
648 		   features, c->ppn, c->number,
649 		   proc_freq / 1000, proc_freq % 1000,
650 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
651 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
652 #ifdef CONFIG_SMP
653 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
654 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
655 		seq_printf(m,
656 		   	   "physical id: %u\n"
657 		   	   "core id    : %u\n"
658 		   	   "thread id  : %u\n",
659 		   	   c->socket_id, c->core_id, c->thread_id);
660 #endif
661 	seq_printf(m,"\n");
662 
663 	return 0;
664 }
665 
666 static void *
667 c_start (struct seq_file *m, loff_t *pos)
668 {
669 #ifdef CONFIG_SMP
670 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
671 		++*pos;
672 #endif
673 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
674 }
675 
676 static void *
677 c_next (struct seq_file *m, void *v, loff_t *pos)
678 {
679 	++*pos;
680 	return c_start(m, pos);
681 }
682 
683 static void
684 c_stop (struct seq_file *m, void *v)
685 {
686 }
687 
688 struct seq_operations cpuinfo_op = {
689 	.start =	c_start,
690 	.next =		c_next,
691 	.stop =		c_stop,
692 	.show =		show_cpuinfo
693 };
694 
695 static char brandname[128];
696 
697 static char * __cpuinit
698 get_model_name(__u8 family, __u8 model)
699 {
700 	char brand[128];
701 
702 	memcpy(brand, "Unknown", 8);
703 	if (ia64_pal_get_brand_info(brand)) {
704 		if (family == 0x7)
705 			memcpy(brand, "Merced", 7);
706 		else if (family == 0x1f) switch (model) {
707 			case 0: memcpy(brand, "McKinley", 9); break;
708 			case 1: memcpy(brand, "Madison", 8); break;
709 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
710 		}
711 	}
712 	if (brandname[0] == '\0')
713 		return strcpy(brandname, brand);
714 	else if (strcmp(brandname, brand) == 0)
715 		return brandname;
716 	else
717 		return kstrdup(brand, GFP_KERNEL);
718 }
719 
720 static void __cpuinit
721 identify_cpu (struct cpuinfo_ia64 *c)
722 {
723 	union {
724 		unsigned long bits[5];
725 		struct {
726 			/* id 0 & 1: */
727 			char vendor[16];
728 
729 			/* id 2 */
730 			u64 ppn;		/* processor serial number */
731 
732 			/* id 3: */
733 			unsigned number		:  8;
734 			unsigned revision	:  8;
735 			unsigned model		:  8;
736 			unsigned family		:  8;
737 			unsigned archrev	:  8;
738 			unsigned reserved	: 24;
739 
740 			/* id 4: */
741 			u64 features;
742 		} field;
743 	} cpuid;
744 	pal_vm_info_1_u_t vm1;
745 	pal_vm_info_2_u_t vm2;
746 	pal_status_t status;
747 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
748 	int i;
749 	for (i = 0; i < 5; ++i)
750 		cpuid.bits[i] = ia64_get_cpuid(i);
751 
752 	memcpy(c->vendor, cpuid.field.vendor, 16);
753 #ifdef CONFIG_SMP
754 	c->cpu = smp_processor_id();
755 
756 	/* below default values will be overwritten  by identify_siblings()
757 	 * for Multi-Threading/Multi-Core capable cpu's
758 	 */
759 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
760 	c->socket_id = -1;
761 
762 	identify_siblings(c);
763 #endif
764 	c->ppn = cpuid.field.ppn;
765 	c->number = cpuid.field.number;
766 	c->revision = cpuid.field.revision;
767 	c->model = cpuid.field.model;
768 	c->family = cpuid.field.family;
769 	c->archrev = cpuid.field.archrev;
770 	c->features = cpuid.field.features;
771 	c->model_name = get_model_name(c->family, c->model);
772 
773 	status = ia64_pal_vm_summary(&vm1, &vm2);
774 	if (status == PAL_STATUS_SUCCESS) {
775 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
776 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
777 	}
778 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
779 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
780 }
781 
782 void
783 setup_per_cpu_areas (void)
784 {
785 	/* start_kernel() requires this... */
786 #ifdef CONFIG_ACPI_HOTPLUG_CPU
787 	prefill_possible_map();
788 #endif
789 }
790 
791 /*
792  * Calculate the max. cache line size.
793  *
794  * In addition, the minimum of the i-cache stride sizes is calculated for
795  * "flush_icache_range()".
796  */
797 static void __cpuinit
798 get_max_cacheline_size (void)
799 {
800 	unsigned long line_size, max = 1;
801 	unsigned int cache_size = 0;
802 	u64 l, levels, unique_caches;
803         pal_cache_config_info_t cci;
804         s64 status;
805 
806         status = ia64_pal_cache_summary(&levels, &unique_caches);
807         if (status != 0) {
808                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
809                        __FUNCTION__, status);
810                 max = SMP_CACHE_BYTES;
811 		/* Safest setup for "flush_icache_range()" */
812 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
813 		goto out;
814         }
815 
816 	for (l = 0; l < levels; ++l) {
817 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
818 						    &cci);
819 		if (status != 0) {
820 			printk(KERN_ERR
821 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
822 			       __FUNCTION__, l, status);
823 			max = SMP_CACHE_BYTES;
824 			/* The safest setup for "flush_icache_range()" */
825 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
826 			cci.pcci_unified = 1;
827 		}
828 		line_size = 1 << cci.pcci_line_size;
829 		if (line_size > max)
830 			max = line_size;
831 		if (cache_size < cci.pcci_cache_size)
832 			cache_size = cci.pcci_cache_size;
833 		if (!cci.pcci_unified) {
834 			status = ia64_pal_cache_config_info(l,
835 						    /* cache_type (instruction)= */ 1,
836 						    &cci);
837 			if (status != 0) {
838 				printk(KERN_ERR
839 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
840 					__FUNCTION__, l, status);
841 				/* The safest setup for "flush_icache_range()" */
842 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
843 			}
844 		}
845 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
846 			ia64_i_cache_stride_shift = cci.pcci_stride;
847 	}
848   out:
849 #ifdef CONFIG_SMP
850 	max_cache_size = max(max_cache_size, cache_size);
851 #endif
852 	if (max > ia64_max_cacheline_size)
853 		ia64_max_cacheline_size = max;
854 }
855 
856 /*
857  * cpu_init() initializes state that is per-CPU.  This function acts
858  * as a 'CPU state barrier', nothing should get across.
859  */
860 void __cpuinit
861 cpu_init (void)
862 {
863 	extern void __cpuinit ia64_mmu_init (void *);
864 	unsigned long num_phys_stacked;
865 	pal_vm_info_2_u_t vmi;
866 	unsigned int max_ctx;
867 	struct cpuinfo_ia64 *cpu_info;
868 	void *cpu_data;
869 
870 	cpu_data = per_cpu_init();
871 
872 	/*
873 	 * We set ar.k3 so that assembly code in MCA handler can compute
874 	 * physical addresses of per cpu variables with a simple:
875 	 *   phys = ar.k3 + &per_cpu_var
876 	 */
877 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
878 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
879 
880 	get_max_cacheline_size();
881 
882 	/*
883 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
884 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
885 	 * depends on the data returned by identify_cpu().  We break the dependency by
886 	 * accessing cpu_data() through the canonical per-CPU address.
887 	 */
888 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
889 	identify_cpu(cpu_info);
890 
891 #ifdef CONFIG_MCKINLEY
892 	{
893 #		define FEATURE_SET 16
894 		struct ia64_pal_retval iprv;
895 
896 		if (cpu_info->family == 0x1f) {
897 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
898 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
899 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
900 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
901 		}
902 	}
903 #endif
904 
905 	/* Clear the stack memory reserved for pt_regs: */
906 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
907 
908 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
909 
910 	/*
911 	 * Initialize the page-table base register to a global
912 	 * directory with all zeroes.  This ensure that we can handle
913 	 * TLB-misses to user address-space even before we created the
914 	 * first user address-space.  This may happen, e.g., due to
915 	 * aggressive use of lfetch.fault.
916 	 */
917 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
918 
919 	/*
920 	 * Initialize default control register to defer speculative faults except
921 	 * for those arising from TLB misses, which are not deferred.  The
922 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
923 	 * the kernel must have recovery code for all speculative accesses).  Turn on
924 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
925 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
926 	 * be fine).
927 	 */
928 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
929 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
930 	atomic_inc(&init_mm.mm_count);
931 	current->active_mm = &init_mm;
932 	if (current->mm)
933 		BUG();
934 
935 	ia64_mmu_init(ia64_imva(cpu_data));
936 	ia64_mca_cpu_init(ia64_imva(cpu_data));
937 
938 #ifdef CONFIG_IA32_SUPPORT
939 	ia32_cpu_init();
940 #endif
941 
942 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
943 	ia64_set_itc(0);
944 
945 	/* disable all local interrupt sources: */
946 	ia64_set_itv(1 << 16);
947 	ia64_set_lrr0(1 << 16);
948 	ia64_set_lrr1(1 << 16);
949 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
950 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
951 
952 	/* clear TPR & XTP to enable all interrupt classes: */
953 	ia64_setreg(_IA64_REG_CR_TPR, 0);
954 #ifdef CONFIG_SMP
955 	normal_xtp();
956 #endif
957 
958 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
959 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
960 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
961 	else {
962 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
963 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
964 	}
965 	while (max_ctx < ia64_ctx.max_ctx) {
966 		unsigned int old = ia64_ctx.max_ctx;
967 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
968 			break;
969 	}
970 
971 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
972 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
973 		       "stacked regs\n");
974 		num_phys_stacked = 96;
975 	}
976 	/* size of physical stacked register partition plus 8 bytes: */
977 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
978 	platform_cpu_init();
979 	pm_idle = default_idle;
980 }
981 
982 /*
983  * On SMP systems, when the scheduler does migration-cost autodetection,
984  * it needs a way to flush as much of the CPU's caches as possible.
985  */
986 void sched_cacheflush(void)
987 {
988 	ia64_sal_cache_flush(3);
989 }
990 
991 void __init
992 check_bugs (void)
993 {
994 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
995 			       (unsigned long) __end___mckinley_e9_bundles);
996 }
997 
998 static int __init run_dmi_scan(void)
999 {
1000 	dmi_scan_machine();
1001 	return 0;
1002 }
1003 core_initcall(run_dmi_scan);
1004