xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision d5a7430d)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern char _text[], _end[], _etext[];
94 
95 unsigned long ia64_max_cacheline_size;
96 
97 int dma_get_cache_alignment(void)
98 {
99         return ia64_max_cacheline_size;
100 }
101 EXPORT_SYMBOL(dma_get_cache_alignment);
102 
103 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
104 EXPORT_SYMBOL(ia64_iobase);
105 struct io_space io_space[MAX_IO_SPACES];
106 EXPORT_SYMBOL(io_space);
107 unsigned int num_io_spaces;
108 
109 /*
110  * "flush_icache_range()" needs to know what processor dependent stride size to use
111  * when it makes i-cache(s) coherent with d-caches.
112  */
113 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
114 unsigned long ia64_i_cache_stride_shift = ~0;
115 
116 /*
117  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
118  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120  * address of the second buffer must be aligned to (merge_mask+1) in order to be
121  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
122  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123  * page-size of 2^64.
124  */
125 unsigned long ia64_max_iommu_merge_mask = ~0UL;
126 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
127 
128 /*
129  * We use a special marker for the end of memory and it uses the extra (+1) slot
130  */
131 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132 int num_rsvd_regions __initdata;
133 
134 
135 /*
136  * Filter incoming memory segments based on the primitive map created from the boot
137  * parameters. Segments contained in the map are removed from the memory ranges. A
138  * caller-specified function is called with the memory ranges that remain after filtering.
139  * This routine does not assume the incoming segments are sorted.
140  */
141 int __init
142 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
143 {
144 	unsigned long range_start, range_end, prev_start;
145 	void (*func)(unsigned long, unsigned long, int);
146 	int i;
147 
148 #if IGNORE_PFN0
149 	if (start == PAGE_OFFSET) {
150 		printk(KERN_WARNING "warning: skipping physical page 0\n");
151 		start += PAGE_SIZE;
152 		if (start >= end) return 0;
153 	}
154 #endif
155 	/*
156 	 * lowest possible address(walker uses virtual)
157 	 */
158 	prev_start = PAGE_OFFSET;
159 	func = arg;
160 
161 	for (i = 0; i < num_rsvd_regions; ++i) {
162 		range_start = max(start, prev_start);
163 		range_end   = min(end, rsvd_region[i].start);
164 
165 		if (range_start < range_end)
166 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
167 
168 		/* nothing more available in this segment */
169 		if (range_end == end) return 0;
170 
171 		prev_start = rsvd_region[i].end;
172 	}
173 	/* end of memory marker allows full processing inside loop body */
174 	return 0;
175 }
176 
177 static void __init
178 sort_regions (struct rsvd_region *rsvd_region, int max)
179 {
180 	int j;
181 
182 	/* simple bubble sorting */
183 	while (max--) {
184 		for (j = 0; j < max; ++j) {
185 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
186 				struct rsvd_region tmp;
187 				tmp = rsvd_region[j];
188 				rsvd_region[j] = rsvd_region[j + 1];
189 				rsvd_region[j + 1] = tmp;
190 			}
191 		}
192 	}
193 }
194 
195 /*
196  * Request address space for all standard resources
197  */
198 static int __init register_memory(void)
199 {
200 	code_resource.start = ia64_tpa(_text);
201 	code_resource.end   = ia64_tpa(_etext) - 1;
202 	data_resource.start = ia64_tpa(_etext);
203 	data_resource.end   = ia64_tpa(_end) - 1;
204 	efi_initialize_iomem_resources(&code_resource, &data_resource);
205 
206 	return 0;
207 }
208 
209 __initcall(register_memory);
210 
211 /**
212  * reserve_memory - setup reserved memory areas
213  *
214  * Setup the reserved memory areas set aside for the boot parameters,
215  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
216  * see include/asm-ia64/meminit.h if you need to define more.
217  */
218 void __init
219 reserve_memory (void)
220 {
221 	int n = 0;
222 
223 	/*
224 	 * none of the entries in this table overlap
225 	 */
226 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
227 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
228 	n++;
229 
230 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232 	n++;
233 
234 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235 	rsvd_region[n].end   = (rsvd_region[n].start
236 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
237 	n++;
238 
239 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
241 	n++;
242 
243 #ifdef CONFIG_BLK_DEV_INITRD
244 	if (ia64_boot_param->initrd_start) {
245 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
247 		n++;
248 	}
249 #endif
250 
251 #ifdef CONFIG_PROC_VMCORE
252 	if (reserve_elfcorehdr(&rsvd_region[n].start,
253 			       &rsvd_region[n].end) == 0)
254 		n++;
255 #endif
256 
257 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258 	n++;
259 
260 #ifdef CONFIG_KEXEC
261 	/* crashkernel=size@offset specifies the size to reserve for a crash
262 	 * kernel. If offset is 0, then it is determined automatically.
263 	 * By reserving this memory we guarantee that linux never set's it
264 	 * up as a DMA target.Useful for holding code to do something
265 	 * appropriate after a kernel panic.
266 	 */
267 	{
268 		char *from = strstr(boot_command_line, "crashkernel=");
269 		unsigned long base, size;
270 		if (from) {
271 			size = memparse(from + 12, &from);
272 			if (*from == '@')
273 				base = memparse(from+1, &from);
274 			else
275 				base = 0;
276 			if (size) {
277 				if (!base) {
278 					sort_regions(rsvd_region, n);
279 					base = kdump_find_rsvd_region(size,
280 							      	rsvd_region, n);
281 					}
282 				if (base != ~0UL) {
283 					rsvd_region[n].start =
284 						(unsigned long)__va(base);
285 					rsvd_region[n].end =
286 						(unsigned long)__va(base + size);
287 					n++;
288 					crashk_res.start = base;
289 					crashk_res.end = base + size - 1;
290 				}
291 			}
292 		}
293 		efi_memmap_res.start = ia64_boot_param->efi_memmap;
294                 efi_memmap_res.end = efi_memmap_res.start +
295                         ia64_boot_param->efi_memmap_size;
296                 boot_param_res.start = __pa(ia64_boot_param);
297                 boot_param_res.end = boot_param_res.start +
298                         sizeof(*ia64_boot_param);
299 	}
300 #endif
301 	/* end of memory marker */
302 	rsvd_region[n].start = ~0UL;
303 	rsvd_region[n].end   = ~0UL;
304 	n++;
305 
306 	num_rsvd_regions = n;
307 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
308 
309 	sort_regions(rsvd_region, num_rsvd_regions);
310 }
311 
312 
313 /**
314  * find_initrd - get initrd parameters from the boot parameter structure
315  *
316  * Grab the initrd start and end from the boot parameter struct given us by
317  * the boot loader.
318  */
319 void __init
320 find_initrd (void)
321 {
322 #ifdef CONFIG_BLK_DEV_INITRD
323 	if (ia64_boot_param->initrd_start) {
324 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
326 
327 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328 		       initrd_start, ia64_boot_param->initrd_size);
329 	}
330 #endif
331 }
332 
333 static void __init
334 io_port_init (void)
335 {
336 	unsigned long phys_iobase;
337 
338 	/*
339 	 * Set `iobase' based on the EFI memory map or, failing that, the
340 	 * value firmware left in ar.k0.
341 	 *
342 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343 	 * the port's virtual address, so ia32_load_state() loads it with a
344 	 * user virtual address.  But in ia64 mode, glibc uses the
345 	 * *physical* address in ar.k0 to mmap the appropriate area from
346 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
347 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
348 	 *
349 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
350 	 * any of the I/O port spaces and are done via MMIO using the
351 	 * virtual mmio_base from the appropriate io_space[].
352 	 */
353 	phys_iobase = efi_get_iobase();
354 	if (!phys_iobase) {
355 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
357 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
358 	}
359 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
361 
362 	/* setup legacy IO port space */
363 	io_space[0].mmio_base = ia64_iobase;
364 	io_space[0].sparse = 1;
365 	num_io_spaces = 1;
366 }
367 
368 /**
369  * early_console_setup - setup debugging console
370  *
371  * Consoles started here require little enough setup that we can start using
372  * them very early in the boot process, either right after the machine
373  * vector initialization, or even before if the drivers can detect their hw.
374  *
375  * Returns non-zero if a console couldn't be setup.
376  */
377 static inline int __init
378 early_console_setup (char *cmdline)
379 {
380 	int earlycons = 0;
381 
382 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
383 	{
384 		extern int sn_serial_console_early_setup(void);
385 		if (!sn_serial_console_early_setup())
386 			earlycons++;
387 	}
388 #endif
389 #ifdef CONFIG_EFI_PCDP
390 	if (!efi_setup_pcdp_console(cmdline))
391 		earlycons++;
392 #endif
393 	if (!simcons_register())
394 		earlycons++;
395 
396 	return (earlycons) ? 0 : -1;
397 }
398 
399 static inline void
400 mark_bsp_online (void)
401 {
402 #ifdef CONFIG_SMP
403 	/* If we register an early console, allow CPU 0 to printk */
404 	cpu_set(smp_processor_id(), cpu_online_map);
405 #endif
406 }
407 
408 #ifdef CONFIG_SMP
409 static void __init
410 check_for_logical_procs (void)
411 {
412 	pal_logical_to_physical_t info;
413 	s64 status;
414 
415 	status = ia64_pal_logical_to_phys(0, &info);
416 	if (status == -1) {
417 		printk(KERN_INFO "No logical to physical processor mapping "
418 		       "available\n");
419 		return;
420 	}
421 	if (status) {
422 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
423 		       status);
424 		return;
425 	}
426 	/*
427 	 * Total number of siblings that BSP has.  Though not all of them
428 	 * may have booted successfully. The correct number of siblings
429 	 * booted is in info.overview_num_log.
430 	 */
431 	smp_num_siblings = info.overview_tpc;
432 	smp_num_cpucores = info.overview_cpp;
433 }
434 #endif
435 
436 static __initdata int nomca;
437 static __init int setup_nomca(char *s)
438 {
439 	nomca = 1;
440 	return 0;
441 }
442 early_param("nomca", setup_nomca);
443 
444 #ifdef CONFIG_PROC_VMCORE
445 /* elfcorehdr= specifies the location of elf core header
446  * stored by the crashed kernel.
447  */
448 static int __init parse_elfcorehdr(char *arg)
449 {
450 	if (!arg)
451 		return -EINVAL;
452 
453         elfcorehdr_addr = memparse(arg, &arg);
454 	return 0;
455 }
456 early_param("elfcorehdr", parse_elfcorehdr);
457 
458 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
459 {
460 	unsigned long length;
461 
462 	/* We get the address using the kernel command line,
463 	 * but the size is extracted from the EFI tables.
464 	 * Both address and size are required for reservation
465 	 * to work properly.
466 	 */
467 
468 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
469 		return -EINVAL;
470 
471 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
472 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
473 		return -EINVAL;
474 	}
475 
476 	*start = (unsigned long)__va(elfcorehdr_addr);
477 	*end = *start + length;
478 	return 0;
479 }
480 
481 #endif /* CONFIG_PROC_VMCORE */
482 
483 void __init
484 setup_arch (char **cmdline_p)
485 {
486 	unw_init();
487 
488 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
489 
490 	*cmdline_p = __va(ia64_boot_param->command_line);
491 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
492 
493 	efi_init();
494 	io_port_init();
495 
496 #ifdef CONFIG_IA64_GENERIC
497 	/* machvec needs to be parsed from the command line
498 	 * before parse_early_param() is called to ensure
499 	 * that ia64_mv is initialised before any command line
500 	 * settings may cause console setup to occur
501 	 */
502 	machvec_init_from_cmdline(*cmdline_p);
503 #endif
504 
505 	parse_early_param();
506 
507 	if (early_console_setup(*cmdline_p) == 0)
508 		mark_bsp_online();
509 
510 #ifdef CONFIG_ACPI
511 	/* Initialize the ACPI boot-time table parser */
512 	acpi_table_init();
513 # ifdef CONFIG_ACPI_NUMA
514 	acpi_numa_init();
515 # endif
516 #else
517 # ifdef CONFIG_SMP
518 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
519 # endif
520 #endif /* CONFIG_APCI_BOOT */
521 
522 	find_memory();
523 
524 	/* process SAL system table: */
525 	ia64_sal_init(__va(efi.sal_systab));
526 
527 	ia64_setup_printk_clock();
528 
529 #ifdef CONFIG_SMP
530 	cpu_physical_id(0) = hard_smp_processor_id();
531 	check_for_logical_procs();
532 	if (smp_num_cpucores > 1)
533 		printk(KERN_INFO
534 		       "cpu package is Multi-Core capable: number of cores=%d\n",
535 		       smp_num_cpucores);
536 	if (smp_num_siblings > 1)
537 		printk(KERN_INFO
538 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
539 		       smp_num_siblings);
540 #endif
541 
542 	cpu_init();	/* initialize the bootstrap CPU */
543 	mmu_context_init();	/* initialize context_id bitmap */
544 
545 	check_sal_cache_flush();
546 
547 #ifdef CONFIG_ACPI
548 	acpi_boot_init();
549 #endif
550 
551 #ifdef CONFIG_VT
552 	if (!conswitchp) {
553 # if defined(CONFIG_DUMMY_CONSOLE)
554 		conswitchp = &dummy_con;
555 # endif
556 # if defined(CONFIG_VGA_CONSOLE)
557 		/*
558 		 * Non-legacy systems may route legacy VGA MMIO range to system
559 		 * memory.  vga_con probes the MMIO hole, so memory looks like
560 		 * a VGA device to it.  The EFI memory map can tell us if it's
561 		 * memory so we can avoid this problem.
562 		 */
563 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
564 			conswitchp = &vga_con;
565 # endif
566 	}
567 #endif
568 
569 	/* enable IA-64 Machine Check Abort Handling unless disabled */
570 	if (!nomca)
571 		ia64_mca_init();
572 
573 	platform_setup(cmdline_p);
574 	paging_init();
575 }
576 
577 /*
578  * Display cpu info for all CPUs.
579  */
580 static int
581 show_cpuinfo (struct seq_file *m, void *v)
582 {
583 #ifdef CONFIG_SMP
584 #	define lpj	c->loops_per_jiffy
585 #	define cpunum	c->cpu
586 #else
587 #	define lpj	loops_per_jiffy
588 #	define cpunum	0
589 #endif
590 	static struct {
591 		unsigned long mask;
592 		const char *feature_name;
593 	} feature_bits[] = {
594 		{ 1UL << 0, "branchlong" },
595 		{ 1UL << 1, "spontaneous deferral"},
596 		{ 1UL << 2, "16-byte atomic ops" }
597 	};
598 	char features[128], *cp, *sep;
599 	struct cpuinfo_ia64 *c = v;
600 	unsigned long mask;
601 	unsigned long proc_freq;
602 	int i, size;
603 
604 	mask = c->features;
605 
606 	/* build the feature string: */
607 	memcpy(features, "standard", 9);
608 	cp = features;
609 	size = sizeof(features);
610 	sep = "";
611 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
612 		if (mask & feature_bits[i].mask) {
613 			cp += snprintf(cp, size, "%s%s", sep,
614 				       feature_bits[i].feature_name),
615 			sep = ", ";
616 			mask &= ~feature_bits[i].mask;
617 			size = sizeof(features) - (cp - features);
618 		}
619 	}
620 	if (mask && size > 1) {
621 		/* print unknown features as a hex value */
622 		snprintf(cp, size, "%s0x%lx", sep, mask);
623 	}
624 
625 	proc_freq = cpufreq_quick_get(cpunum);
626 	if (!proc_freq)
627 		proc_freq = c->proc_freq / 1000;
628 
629 	seq_printf(m,
630 		   "processor  : %d\n"
631 		   "vendor     : %s\n"
632 		   "arch       : IA-64\n"
633 		   "family     : %u\n"
634 		   "model      : %u\n"
635 		   "model name : %s\n"
636 		   "revision   : %u\n"
637 		   "archrev    : %u\n"
638 		   "features   : %s\n"
639 		   "cpu number : %lu\n"
640 		   "cpu regs   : %u\n"
641 		   "cpu MHz    : %lu.%03lu\n"
642 		   "itc MHz    : %lu.%06lu\n"
643 		   "BogoMIPS   : %lu.%02lu\n",
644 		   cpunum, c->vendor, c->family, c->model,
645 		   c->model_name, c->revision, c->archrev,
646 		   features, c->ppn, c->number,
647 		   proc_freq / 1000, proc_freq % 1000,
648 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
649 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
650 #ifdef CONFIG_SMP
651 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
652 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
653 		seq_printf(m,
654 		   	   "physical id: %u\n"
655 		   	   "core id    : %u\n"
656 		   	   "thread id  : %u\n",
657 		   	   c->socket_id, c->core_id, c->thread_id);
658 #endif
659 	seq_printf(m,"\n");
660 
661 	return 0;
662 }
663 
664 static void *
665 c_start (struct seq_file *m, loff_t *pos)
666 {
667 #ifdef CONFIG_SMP
668 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
669 		++*pos;
670 #endif
671 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
672 }
673 
674 static void *
675 c_next (struct seq_file *m, void *v, loff_t *pos)
676 {
677 	++*pos;
678 	return c_start(m, pos);
679 }
680 
681 static void
682 c_stop (struct seq_file *m, void *v)
683 {
684 }
685 
686 struct seq_operations cpuinfo_op = {
687 	.start =	c_start,
688 	.next =		c_next,
689 	.stop =		c_stop,
690 	.show =		show_cpuinfo
691 };
692 
693 #define MAX_BRANDS	8
694 static char brandname[MAX_BRANDS][128];
695 
696 static char * __cpuinit
697 get_model_name(__u8 family, __u8 model)
698 {
699 	static int overflow;
700 	char brand[128];
701 	int i;
702 
703 	memcpy(brand, "Unknown", 8);
704 	if (ia64_pal_get_brand_info(brand)) {
705 		if (family == 0x7)
706 			memcpy(brand, "Merced", 7);
707 		else if (family == 0x1f) switch (model) {
708 			case 0: memcpy(brand, "McKinley", 9); break;
709 			case 1: memcpy(brand, "Madison", 8); break;
710 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
711 		}
712 	}
713 	for (i = 0; i < MAX_BRANDS; i++)
714 		if (strcmp(brandname[i], brand) == 0)
715 			return brandname[i];
716 	for (i = 0; i < MAX_BRANDS; i++)
717 		if (brandname[i][0] == '\0')
718 			return strcpy(brandname[i], brand);
719 	if (overflow++ == 0)
720 		printk(KERN_ERR
721 		       "%s: Table overflow. Some processor model information will be missing\n",
722 		       __FUNCTION__);
723 	return "Unknown";
724 }
725 
726 static void __cpuinit
727 identify_cpu (struct cpuinfo_ia64 *c)
728 {
729 	union {
730 		unsigned long bits[5];
731 		struct {
732 			/* id 0 & 1: */
733 			char vendor[16];
734 
735 			/* id 2 */
736 			u64 ppn;		/* processor serial number */
737 
738 			/* id 3: */
739 			unsigned number		:  8;
740 			unsigned revision	:  8;
741 			unsigned model		:  8;
742 			unsigned family		:  8;
743 			unsigned archrev	:  8;
744 			unsigned reserved	: 24;
745 
746 			/* id 4: */
747 			u64 features;
748 		} field;
749 	} cpuid;
750 	pal_vm_info_1_u_t vm1;
751 	pal_vm_info_2_u_t vm2;
752 	pal_status_t status;
753 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
754 	int i;
755 	for (i = 0; i < 5; ++i)
756 		cpuid.bits[i] = ia64_get_cpuid(i);
757 
758 	memcpy(c->vendor, cpuid.field.vendor, 16);
759 #ifdef CONFIG_SMP
760 	c->cpu = smp_processor_id();
761 
762 	/* below default values will be overwritten  by identify_siblings()
763 	 * for Multi-Threading/Multi-Core capable CPUs
764 	 */
765 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
766 	c->socket_id = -1;
767 
768 	identify_siblings(c);
769 #endif
770 	c->ppn = cpuid.field.ppn;
771 	c->number = cpuid.field.number;
772 	c->revision = cpuid.field.revision;
773 	c->model = cpuid.field.model;
774 	c->family = cpuid.field.family;
775 	c->archrev = cpuid.field.archrev;
776 	c->features = cpuid.field.features;
777 	c->model_name = get_model_name(c->family, c->model);
778 
779 	status = ia64_pal_vm_summary(&vm1, &vm2);
780 	if (status == PAL_STATUS_SUCCESS) {
781 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
782 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
783 	}
784 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
785 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
786 }
787 
788 void __init
789 setup_per_cpu_areas (void)
790 {
791 	/* start_kernel() requires this... */
792 #ifdef CONFIG_ACPI_HOTPLUG_CPU
793 	prefill_possible_map();
794 #endif
795 }
796 
797 /*
798  * Calculate the max. cache line size.
799  *
800  * In addition, the minimum of the i-cache stride sizes is calculated for
801  * "flush_icache_range()".
802  */
803 static void __cpuinit
804 get_max_cacheline_size (void)
805 {
806 	unsigned long line_size, max = 1;
807 	u64 l, levels, unique_caches;
808         pal_cache_config_info_t cci;
809         s64 status;
810 
811         status = ia64_pal_cache_summary(&levels, &unique_caches);
812         if (status != 0) {
813                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
814                        __FUNCTION__, status);
815                 max = SMP_CACHE_BYTES;
816 		/* Safest setup for "flush_icache_range()" */
817 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
818 		goto out;
819         }
820 
821 	for (l = 0; l < levels; ++l) {
822 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
823 						    &cci);
824 		if (status != 0) {
825 			printk(KERN_ERR
826 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
827 			       __FUNCTION__, l, status);
828 			max = SMP_CACHE_BYTES;
829 			/* The safest setup for "flush_icache_range()" */
830 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
831 			cci.pcci_unified = 1;
832 		}
833 		line_size = 1 << cci.pcci_line_size;
834 		if (line_size > max)
835 			max = line_size;
836 		if (!cci.pcci_unified) {
837 			status = ia64_pal_cache_config_info(l,
838 						    /* cache_type (instruction)= */ 1,
839 						    &cci);
840 			if (status != 0) {
841 				printk(KERN_ERR
842 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
843 					__FUNCTION__, l, status);
844 				/* The safest setup for "flush_icache_range()" */
845 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
846 			}
847 		}
848 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
849 			ia64_i_cache_stride_shift = cci.pcci_stride;
850 	}
851   out:
852 	if (max > ia64_max_cacheline_size)
853 		ia64_max_cacheline_size = max;
854 }
855 
856 /*
857  * cpu_init() initializes state that is per-CPU.  This function acts
858  * as a 'CPU state barrier', nothing should get across.
859  */
860 void __cpuinit
861 cpu_init (void)
862 {
863 	extern void __cpuinit ia64_mmu_init (void *);
864 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
865 	unsigned long num_phys_stacked;
866 	pal_vm_info_2_u_t vmi;
867 	unsigned int max_ctx;
868 	struct cpuinfo_ia64 *cpu_info;
869 	void *cpu_data;
870 
871 	cpu_data = per_cpu_init();
872 	/*
873 	 * insert boot cpu into sibling and core mapes
874 	 * (must be done after per_cpu area is setup)
875 	 */
876 	if (smp_processor_id() == 0) {
877 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
878 		cpu_set(0, cpu_core_map[0]);
879 	}
880 
881 	/*
882 	 * We set ar.k3 so that assembly code in MCA handler can compute
883 	 * physical addresses of per cpu variables with a simple:
884 	 *   phys = ar.k3 + &per_cpu_var
885 	 */
886 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
887 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
888 
889 	get_max_cacheline_size();
890 
891 	/*
892 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
893 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
894 	 * depends on the data returned by identify_cpu().  We break the dependency by
895 	 * accessing cpu_data() through the canonical per-CPU address.
896 	 */
897 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
898 	identify_cpu(cpu_info);
899 
900 #ifdef CONFIG_MCKINLEY
901 	{
902 #		define FEATURE_SET 16
903 		struct ia64_pal_retval iprv;
904 
905 		if (cpu_info->family == 0x1f) {
906 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
907 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
908 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
909 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
910 		}
911 	}
912 #endif
913 
914 	/* Clear the stack memory reserved for pt_regs: */
915 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
916 
917 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
918 
919 	/*
920 	 * Initialize the page-table base register to a global
921 	 * directory with all zeroes.  This ensure that we can handle
922 	 * TLB-misses to user address-space even before we created the
923 	 * first user address-space.  This may happen, e.g., due to
924 	 * aggressive use of lfetch.fault.
925 	 */
926 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
927 
928 	/*
929 	 * Initialize default control register to defer speculative faults except
930 	 * for those arising from TLB misses, which are not deferred.  The
931 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
932 	 * the kernel must have recovery code for all speculative accesses).  Turn on
933 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
934 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
935 	 * be fine).
936 	 */
937 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
938 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
939 	atomic_inc(&init_mm.mm_count);
940 	current->active_mm = &init_mm;
941 	if (current->mm)
942 		BUG();
943 
944 	ia64_mmu_init(ia64_imva(cpu_data));
945 	ia64_mca_cpu_init(ia64_imva(cpu_data));
946 
947 #ifdef CONFIG_IA32_SUPPORT
948 	ia32_cpu_init();
949 #endif
950 
951 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
952 	ia64_set_itc(0);
953 
954 	/* disable all local interrupt sources: */
955 	ia64_set_itv(1 << 16);
956 	ia64_set_lrr0(1 << 16);
957 	ia64_set_lrr1(1 << 16);
958 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
959 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
960 
961 	/* clear TPR & XTP to enable all interrupt classes: */
962 	ia64_setreg(_IA64_REG_CR_TPR, 0);
963 
964 	/* Clear any pending interrupts left by SAL/EFI */
965 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
966 		ia64_eoi();
967 
968 #ifdef CONFIG_SMP
969 	normal_xtp();
970 #endif
971 
972 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
973 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
974 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
975 	else {
976 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
977 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
978 	}
979 	while (max_ctx < ia64_ctx.max_ctx) {
980 		unsigned int old = ia64_ctx.max_ctx;
981 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
982 			break;
983 	}
984 
985 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
986 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
987 		       "stacked regs\n");
988 		num_phys_stacked = 96;
989 	}
990 	/* size of physical stacked register partition plus 8 bytes: */
991 	if (num_phys_stacked > max_num_phys_stacked) {
992 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
993 		max_num_phys_stacked = num_phys_stacked;
994 	}
995 	platform_cpu_init();
996 	pm_idle = default_idle;
997 }
998 
999 void __init
1000 check_bugs (void)
1001 {
1002 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1003 			       (unsigned long) __end___mckinley_e9_bundles);
1004 }
1005 
1006 static int __init run_dmi_scan(void)
1007 {
1008 	dmi_scan_machine();
1009 	return 0;
1010 }
1011 core_initcall(run_dmi_scan);
1012