1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Architecture-specific setup. 4 * 5 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Stephane Eranian <eranian@hpl.hp.com> 8 * Copyright (C) 2000, 2004 Intel Corp 9 * Rohit Seth <rohit.seth@intel.com> 10 * Suresh Siddha <suresh.b.siddha@intel.com> 11 * Gordon Jin <gordon.jin@intel.com> 12 * Copyright (C) 1999 VA Linux Systems 13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 14 * 15 * 12/26/04 S.Siddha, G.Jin, R.Seth 16 * Add multi-threading and multi-core detection 17 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). 18 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map 19 * 03/31/00 R.Seth cpu_initialized and current->processor fixes 20 * 02/04/00 D.Mosberger some more get_cpuinfo fixes... 21 * 02/01/00 R.Seth fixed get_cpuinfo for SMP 22 * 01/07/99 S.Eranian added the support for command line argument 23 * 06/24/99 W.Drummond added boot_cpu_data. 24 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()" 25 */ 26 #include <linux/module.h> 27 #include <linux/init.h> 28 29 #include <linux/acpi.h> 30 #include <linux/console.h> 31 #include <linux/delay.h> 32 #include <linux/cpu.h> 33 #include <linux/kdev_t.h> 34 #include <linux/kernel.h> 35 #include <linux/memblock.h> 36 #include <linux/reboot.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/clock.h> 39 #include <linux/sched/task_stack.h> 40 #include <linux/seq_file.h> 41 #include <linux/string.h> 42 #include <linux/threads.h> 43 #include <linux/screen_info.h> 44 #include <linux/dmi.h> 45 #include <linux/root_dev.h> 46 #include <linux/serial.h> 47 #include <linux/serial_core.h> 48 #include <linux/efi.h> 49 #include <linux/initrd.h> 50 #include <linux/pm.h> 51 #include <linux/cpufreq.h> 52 #include <linux/kexec.h> 53 #include <linux/crash_dump.h> 54 55 #include <asm/mca.h> 56 #include <asm/meminit.h> 57 #include <asm/page.h> 58 #include <asm/patch.h> 59 #include <asm/pgtable.h> 60 #include <asm/processor.h> 61 #include <asm/sal.h> 62 #include <asm/sections.h> 63 #include <asm/setup.h> 64 #include <asm/smp.h> 65 #include <asm/tlbflush.h> 66 #include <asm/unistd.h> 67 #include <asm/uv/uv.h> 68 69 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) 70 # error "struct cpuinfo_ia64 too big!" 71 #endif 72 73 char ia64_platform_name[64]; 74 75 #ifdef CONFIG_SMP 76 unsigned long __per_cpu_offset[NR_CPUS]; 77 EXPORT_SYMBOL(__per_cpu_offset); 78 #endif 79 80 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 81 EXPORT_SYMBOL(ia64_cpu_info); 82 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); 83 #ifdef CONFIG_SMP 84 EXPORT_SYMBOL(local_per_cpu_offset); 85 #endif 86 unsigned long ia64_cycles_per_usec; 87 struct ia64_boot_param *ia64_boot_param; 88 struct screen_info screen_info; 89 unsigned long vga_console_iobase; 90 unsigned long vga_console_membase; 91 92 static struct resource data_resource = { 93 .name = "Kernel data", 94 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 95 }; 96 97 static struct resource code_resource = { 98 .name = "Kernel code", 99 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 100 }; 101 102 static struct resource bss_resource = { 103 .name = "Kernel bss", 104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM 105 }; 106 107 unsigned long ia64_max_cacheline_size; 108 109 unsigned long ia64_iobase; /* virtual address for I/O accesses */ 110 EXPORT_SYMBOL(ia64_iobase); 111 struct io_space io_space[MAX_IO_SPACES]; 112 EXPORT_SYMBOL(io_space); 113 unsigned int num_io_spaces; 114 115 /* 116 * "flush_icache_range()" needs to know what processor dependent stride size to use 117 * when it makes i-cache(s) coherent with d-caches. 118 */ 119 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */ 120 unsigned long ia64_i_cache_stride_shift = ~0; 121 /* 122 * "clflush_cache_range()" needs to know what processor dependent stride size to 123 * use when it flushes cache lines including both d-cache and i-cache. 124 */ 125 /* Safest way to go: 32 bytes by 32 bytes */ 126 #define CACHE_STRIDE_SHIFT 5 127 unsigned long ia64_cache_stride_shift = ~0; 128 129 /* 130 * We use a special marker for the end of memory and it uses the extra (+1) slot 131 */ 132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; 133 int num_rsvd_regions __initdata; 134 135 136 /* 137 * Filter incoming memory segments based on the primitive map created from the boot 138 * parameters. Segments contained in the map are removed from the memory ranges. A 139 * caller-specified function is called with the memory ranges that remain after filtering. 140 * This routine does not assume the incoming segments are sorted. 141 */ 142 int __init 143 filter_rsvd_memory (u64 start, u64 end, void *arg) 144 { 145 u64 range_start, range_end, prev_start; 146 void (*func)(unsigned long, unsigned long, int); 147 int i; 148 149 #if IGNORE_PFN0 150 if (start == PAGE_OFFSET) { 151 printk(KERN_WARNING "warning: skipping physical page 0\n"); 152 start += PAGE_SIZE; 153 if (start >= end) return 0; 154 } 155 #endif 156 /* 157 * lowest possible address(walker uses virtual) 158 */ 159 prev_start = PAGE_OFFSET; 160 func = arg; 161 162 for (i = 0; i < num_rsvd_regions; ++i) { 163 range_start = max(start, prev_start); 164 range_end = min(end, rsvd_region[i].start); 165 166 if (range_start < range_end) 167 call_pernode_memory(__pa(range_start), range_end - range_start, func); 168 169 /* nothing more available in this segment */ 170 if (range_end == end) return 0; 171 172 prev_start = rsvd_region[i].end; 173 } 174 /* end of memory marker allows full processing inside loop body */ 175 return 0; 176 } 177 178 /* 179 * Similar to "filter_rsvd_memory()", but the reserved memory ranges 180 * are not filtered out. 181 */ 182 int __init 183 filter_memory(u64 start, u64 end, void *arg) 184 { 185 void (*func)(unsigned long, unsigned long, int); 186 187 #if IGNORE_PFN0 188 if (start == PAGE_OFFSET) { 189 printk(KERN_WARNING "warning: skipping physical page 0\n"); 190 start += PAGE_SIZE; 191 if (start >= end) 192 return 0; 193 } 194 #endif 195 func = arg; 196 if (start < end) 197 call_pernode_memory(__pa(start), end - start, func); 198 return 0; 199 } 200 201 static void __init 202 sort_regions (struct rsvd_region *rsvd_region, int max) 203 { 204 int j; 205 206 /* simple bubble sorting */ 207 while (max--) { 208 for (j = 0; j < max; ++j) { 209 if (rsvd_region[j].start > rsvd_region[j+1].start) { 210 struct rsvd_region tmp; 211 tmp = rsvd_region[j]; 212 rsvd_region[j] = rsvd_region[j + 1]; 213 rsvd_region[j + 1] = tmp; 214 } 215 } 216 } 217 } 218 219 /* merge overlaps */ 220 static int __init 221 merge_regions (struct rsvd_region *rsvd_region, int max) 222 { 223 int i; 224 for (i = 1; i < max; ++i) { 225 if (rsvd_region[i].start >= rsvd_region[i-1].end) 226 continue; 227 if (rsvd_region[i].end > rsvd_region[i-1].end) 228 rsvd_region[i-1].end = rsvd_region[i].end; 229 --max; 230 memmove(&rsvd_region[i], &rsvd_region[i+1], 231 (max - i) * sizeof(struct rsvd_region)); 232 } 233 return max; 234 } 235 236 /* 237 * Request address space for all standard resources 238 */ 239 static int __init register_memory(void) 240 { 241 code_resource.start = ia64_tpa(_text); 242 code_resource.end = ia64_tpa(_etext) - 1; 243 data_resource.start = ia64_tpa(_etext); 244 data_resource.end = ia64_tpa(_edata) - 1; 245 bss_resource.start = ia64_tpa(__bss_start); 246 bss_resource.end = ia64_tpa(_end) - 1; 247 efi_initialize_iomem_resources(&code_resource, &data_resource, 248 &bss_resource); 249 250 return 0; 251 } 252 253 __initcall(register_memory); 254 255 256 #ifdef CONFIG_KEXEC 257 258 /* 259 * This function checks if the reserved crashkernel is allowed on the specific 260 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require 261 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of 262 * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that 263 * in kdump case. See the comment in sba_init() in sba_iommu.c. 264 * 265 * So, the only machvec that really supports loading the kdump kernel 266 * over 4 GB is "uv". 267 */ 268 static int __init check_crashkernel_memory(unsigned long pbase, size_t size) 269 { 270 if (is_uv_system()) 271 return 1; 272 else 273 return pbase < (1UL << 32); 274 } 275 276 static void __init setup_crashkernel(unsigned long total, int *n) 277 { 278 unsigned long long base = 0, size = 0; 279 int ret; 280 281 ret = parse_crashkernel(boot_command_line, total, 282 &size, &base); 283 if (ret == 0 && size > 0) { 284 if (!base) { 285 sort_regions(rsvd_region, *n); 286 *n = merge_regions(rsvd_region, *n); 287 base = kdump_find_rsvd_region(size, 288 rsvd_region, *n); 289 } 290 291 if (!check_crashkernel_memory(base, size)) { 292 pr_warn("crashkernel: There would be kdump memory " 293 "at %ld GB but this is unusable because it " 294 "must\nbe below 4 GB. Change the memory " 295 "configuration of the machine.\n", 296 (unsigned long)(base >> 30)); 297 return; 298 } 299 300 if (base != ~0UL) { 301 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 302 "for crashkernel (System RAM: %ldMB)\n", 303 (unsigned long)(size >> 20), 304 (unsigned long)(base >> 20), 305 (unsigned long)(total >> 20)); 306 rsvd_region[*n].start = 307 (unsigned long)__va(base); 308 rsvd_region[*n].end = 309 (unsigned long)__va(base + size); 310 (*n)++; 311 crashk_res.start = base; 312 crashk_res.end = base + size - 1; 313 } 314 } 315 efi_memmap_res.start = ia64_boot_param->efi_memmap; 316 efi_memmap_res.end = efi_memmap_res.start + 317 ia64_boot_param->efi_memmap_size; 318 boot_param_res.start = __pa(ia64_boot_param); 319 boot_param_res.end = boot_param_res.start + 320 sizeof(*ia64_boot_param); 321 } 322 #else 323 static inline void __init setup_crashkernel(unsigned long total, int *n) 324 {} 325 #endif 326 327 /** 328 * reserve_memory - setup reserved memory areas 329 * 330 * Setup the reserved memory areas set aside for the boot parameters, 331 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined, 332 * see arch/ia64/include/asm/meminit.h if you need to define more. 333 */ 334 void __init 335 reserve_memory (void) 336 { 337 int n = 0; 338 unsigned long total_memory; 339 340 /* 341 * none of the entries in this table overlap 342 */ 343 rsvd_region[n].start = (unsigned long) ia64_boot_param; 344 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param); 345 n++; 346 347 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); 348 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; 349 n++; 350 351 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); 352 rsvd_region[n].end = (rsvd_region[n].start 353 + strlen(__va(ia64_boot_param->command_line)) + 1); 354 n++; 355 356 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); 357 rsvd_region[n].end = (unsigned long) ia64_imva(_end); 358 n++; 359 360 #ifdef CONFIG_BLK_DEV_INITRD 361 if (ia64_boot_param->initrd_start) { 362 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); 363 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size; 364 n++; 365 } 366 #endif 367 368 #ifdef CONFIG_CRASH_DUMP 369 if (reserve_elfcorehdr(&rsvd_region[n].start, 370 &rsvd_region[n].end) == 0) 371 n++; 372 #endif 373 374 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); 375 n++; 376 377 setup_crashkernel(total_memory, &n); 378 379 /* end of memory marker */ 380 rsvd_region[n].start = ~0UL; 381 rsvd_region[n].end = ~0UL; 382 n++; 383 384 num_rsvd_regions = n; 385 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); 386 387 sort_regions(rsvd_region, num_rsvd_regions); 388 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions); 389 390 /* reserve all regions except the end of memory marker with memblock */ 391 for (n = 0; n < num_rsvd_regions - 1; n++) { 392 struct rsvd_region *region = &rsvd_region[n]; 393 phys_addr_t addr = __pa(region->start); 394 phys_addr_t size = region->end - region->start; 395 396 memblock_reserve(addr, size); 397 } 398 } 399 400 /** 401 * find_initrd - get initrd parameters from the boot parameter structure 402 * 403 * Grab the initrd start and end from the boot parameter struct given us by 404 * the boot loader. 405 */ 406 void __init 407 find_initrd (void) 408 { 409 #ifdef CONFIG_BLK_DEV_INITRD 410 if (ia64_boot_param->initrd_start) { 411 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); 412 initrd_end = initrd_start+ia64_boot_param->initrd_size; 413 414 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n", 415 initrd_start, ia64_boot_param->initrd_size); 416 } 417 #endif 418 } 419 420 static void __init 421 io_port_init (void) 422 { 423 unsigned long phys_iobase; 424 425 /* 426 * Set `iobase' based on the EFI memory map or, failing that, the 427 * value firmware left in ar.k0. 428 * 429 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute 430 * the port's virtual address, so ia32_load_state() loads it with a 431 * user virtual address. But in ia64 mode, glibc uses the 432 * *physical* address in ar.k0 to mmap the appropriate area from 433 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both 434 * cases, user-mode can only use the legacy 0-64K I/O port space. 435 * 436 * ar.k0 is not involved in kernel I/O port accesses, which can use 437 * any of the I/O port spaces and are done via MMIO using the 438 * virtual mmio_base from the appropriate io_space[]. 439 */ 440 phys_iobase = efi_get_iobase(); 441 if (!phys_iobase) { 442 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); 443 printk(KERN_INFO "No I/O port range found in EFI memory map, " 444 "falling back to AR.KR0 (0x%lx)\n", phys_iobase); 445 } 446 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); 447 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); 448 449 /* setup legacy IO port space */ 450 io_space[0].mmio_base = ia64_iobase; 451 io_space[0].sparse = 1; 452 num_io_spaces = 1; 453 } 454 455 /** 456 * early_console_setup - setup debugging console 457 * 458 * Consoles started here require little enough setup that we can start using 459 * them very early in the boot process, either right after the machine 460 * vector initialization, or even before if the drivers can detect their hw. 461 * 462 * Returns non-zero if a console couldn't be setup. 463 */ 464 static inline int __init 465 early_console_setup (char *cmdline) 466 { 467 #ifdef CONFIG_EFI_PCDP 468 if (!efi_setup_pcdp_console(cmdline)) 469 return 0; 470 #endif 471 return -1; 472 } 473 474 static void __init 475 screen_info_setup(void) 476 { 477 unsigned int orig_x, orig_y, num_cols, num_rows, font_height; 478 479 memset(&screen_info, 0, sizeof(screen_info)); 480 481 if (!ia64_boot_param->console_info.num_rows || 482 !ia64_boot_param->console_info.num_cols) { 483 printk(KERN_WARNING "invalid screen-info, guessing 80x25\n"); 484 orig_x = 0; 485 orig_y = 0; 486 num_cols = 80; 487 num_rows = 25; 488 font_height = 16; 489 } else { 490 orig_x = ia64_boot_param->console_info.orig_x; 491 orig_y = ia64_boot_param->console_info.orig_y; 492 num_cols = ia64_boot_param->console_info.num_cols; 493 num_rows = ia64_boot_param->console_info.num_rows; 494 font_height = 400 / num_rows; 495 } 496 497 screen_info.orig_x = orig_x; 498 screen_info.orig_y = orig_y; 499 screen_info.orig_video_cols = num_cols; 500 screen_info.orig_video_lines = num_rows; 501 screen_info.orig_video_points = font_height; 502 screen_info.orig_video_mode = 3; /* XXX fake */ 503 screen_info.orig_video_isVGA = 1; /* XXX fake */ 504 screen_info.orig_video_ega_bx = 3; /* XXX fake */ 505 } 506 507 static inline void 508 mark_bsp_online (void) 509 { 510 #ifdef CONFIG_SMP 511 /* If we register an early console, allow CPU 0 to printk */ 512 set_cpu_online(smp_processor_id(), true); 513 #endif 514 } 515 516 static __initdata int nomca; 517 static __init int setup_nomca(char *s) 518 { 519 nomca = 1; 520 return 0; 521 } 522 early_param("nomca", setup_nomca); 523 524 #ifdef CONFIG_CRASH_DUMP 525 int __init reserve_elfcorehdr(u64 *start, u64 *end) 526 { 527 u64 length; 528 529 /* We get the address using the kernel command line, 530 * but the size is extracted from the EFI tables. 531 * Both address and size are required for reservation 532 * to work properly. 533 */ 534 535 if (!is_vmcore_usable()) 536 return -EINVAL; 537 538 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) { 539 vmcore_unusable(); 540 return -EINVAL; 541 } 542 543 *start = (unsigned long)__va(elfcorehdr_addr); 544 *end = *start + length; 545 return 0; 546 } 547 548 #endif /* CONFIG_PROC_VMCORE */ 549 550 void __init 551 setup_arch (char **cmdline_p) 552 { 553 unw_init(); 554 555 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); 556 557 *cmdline_p = __va(ia64_boot_param->command_line); 558 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); 559 560 efi_init(); 561 io_port_init(); 562 563 uv_probe_system_type(); 564 parse_early_param(); 565 566 if (early_console_setup(*cmdline_p) == 0) 567 mark_bsp_online(); 568 569 /* Initialize the ACPI boot-time table parser */ 570 acpi_table_init(); 571 early_acpi_boot_init(); 572 #ifdef CONFIG_ACPI_NUMA 573 acpi_numa_init(); 574 acpi_numa_fixup(); 575 #ifdef CONFIG_ACPI_HOTPLUG_CPU 576 prefill_possible_map(); 577 #endif 578 per_cpu_scan_finalize((cpumask_weight(&early_cpu_possible_map) == 0 ? 579 32 : cpumask_weight(&early_cpu_possible_map)), 580 additional_cpus > 0 ? additional_cpus : 0); 581 #endif /* CONFIG_ACPI_NUMA */ 582 583 #ifdef CONFIG_SMP 584 smp_build_cpu_map(); 585 #endif 586 find_memory(); 587 588 /* process SAL system table: */ 589 ia64_sal_init(__va(sal_systab_phys)); 590 591 #ifdef CONFIG_ITANIUM 592 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); 593 #else 594 { 595 unsigned long num_phys_stacked; 596 597 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96) 598 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); 599 } 600 #endif 601 602 #ifdef CONFIG_SMP 603 cpu_physical_id(0) = hard_smp_processor_id(); 604 #endif 605 606 cpu_init(); /* initialize the bootstrap CPU */ 607 mmu_context_init(); /* initialize context_id bitmap */ 608 609 #ifdef CONFIG_VT 610 if (!conswitchp) { 611 # if defined(CONFIG_DUMMY_CONSOLE) 612 conswitchp = &dummy_con; 613 # endif 614 # if defined(CONFIG_VGA_CONSOLE) 615 /* 616 * Non-legacy systems may route legacy VGA MMIO range to system 617 * memory. vga_con probes the MMIO hole, so memory looks like 618 * a VGA device to it. The EFI memory map can tell us if it's 619 * memory so we can avoid this problem. 620 */ 621 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) 622 conswitchp = &vga_con; 623 # endif 624 } 625 #endif 626 627 /* enable IA-64 Machine Check Abort Handling unless disabled */ 628 if (!nomca) 629 ia64_mca_init(); 630 631 /* 632 * Default to /dev/sda2. This assumes that the EFI partition 633 * is physical disk 1 partition 1 and the Linux root disk is 634 * physical disk 1 partition 2. 635 */ 636 ROOT_DEV = Root_SDA2; /* default to second partition on first drive */ 637 638 if (is_uv_system()) 639 uv_setup(cmdline_p); 640 #ifdef CONFIG_SMP 641 else 642 init_smp_config(); 643 #endif 644 645 screen_info_setup(); 646 paging_init(); 647 648 clear_sched_clock_stable(); 649 } 650 651 /* 652 * Display cpu info for all CPUs. 653 */ 654 static int 655 show_cpuinfo (struct seq_file *m, void *v) 656 { 657 #ifdef CONFIG_SMP 658 # define lpj c->loops_per_jiffy 659 # define cpunum c->cpu 660 #else 661 # define lpj loops_per_jiffy 662 # define cpunum 0 663 #endif 664 static struct { 665 unsigned long mask; 666 const char *feature_name; 667 } feature_bits[] = { 668 { 1UL << 0, "branchlong" }, 669 { 1UL << 1, "spontaneous deferral"}, 670 { 1UL << 2, "16-byte atomic ops" } 671 }; 672 char features[128], *cp, *sep; 673 struct cpuinfo_ia64 *c = v; 674 unsigned long mask; 675 unsigned long proc_freq; 676 int i, size; 677 678 mask = c->features; 679 680 /* build the feature string: */ 681 memcpy(features, "standard", 9); 682 cp = features; 683 size = sizeof(features); 684 sep = ""; 685 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { 686 if (mask & feature_bits[i].mask) { 687 cp += snprintf(cp, size, "%s%s", sep, 688 feature_bits[i].feature_name), 689 sep = ", "; 690 mask &= ~feature_bits[i].mask; 691 size = sizeof(features) - (cp - features); 692 } 693 } 694 if (mask && size > 1) { 695 /* print unknown features as a hex value */ 696 snprintf(cp, size, "%s0x%lx", sep, mask); 697 } 698 699 proc_freq = cpufreq_quick_get(cpunum); 700 if (!proc_freq) 701 proc_freq = c->proc_freq / 1000; 702 703 seq_printf(m, 704 "processor : %d\n" 705 "vendor : %s\n" 706 "arch : IA-64\n" 707 "family : %u\n" 708 "model : %u\n" 709 "model name : %s\n" 710 "revision : %u\n" 711 "archrev : %u\n" 712 "features : %s\n" 713 "cpu number : %lu\n" 714 "cpu regs : %u\n" 715 "cpu MHz : %lu.%03lu\n" 716 "itc MHz : %lu.%06lu\n" 717 "BogoMIPS : %lu.%02lu\n", 718 cpunum, c->vendor, c->family, c->model, 719 c->model_name, c->revision, c->archrev, 720 features, c->ppn, c->number, 721 proc_freq / 1000, proc_freq % 1000, 722 c->itc_freq / 1000000, c->itc_freq % 1000000, 723 lpj*HZ/500000, (lpj*HZ/5000) % 100); 724 #ifdef CONFIG_SMP 725 seq_printf(m, "siblings : %u\n", 726 cpumask_weight(&cpu_core_map[cpunum])); 727 if (c->socket_id != -1) 728 seq_printf(m, "physical id: %u\n", c->socket_id); 729 if (c->threads_per_core > 1 || c->cores_per_socket > 1) 730 seq_printf(m, 731 "core id : %u\n" 732 "thread id : %u\n", 733 c->core_id, c->thread_id); 734 #endif 735 seq_printf(m,"\n"); 736 737 return 0; 738 } 739 740 static void * 741 c_start (struct seq_file *m, loff_t *pos) 742 { 743 #ifdef CONFIG_SMP 744 while (*pos < nr_cpu_ids && !cpu_online(*pos)) 745 ++*pos; 746 #endif 747 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL; 748 } 749 750 static void * 751 c_next (struct seq_file *m, void *v, loff_t *pos) 752 { 753 ++*pos; 754 return c_start(m, pos); 755 } 756 757 static void 758 c_stop (struct seq_file *m, void *v) 759 { 760 } 761 762 const struct seq_operations cpuinfo_op = { 763 .start = c_start, 764 .next = c_next, 765 .stop = c_stop, 766 .show = show_cpuinfo 767 }; 768 769 #define MAX_BRANDS 8 770 static char brandname[MAX_BRANDS][128]; 771 772 static char * 773 get_model_name(__u8 family, __u8 model) 774 { 775 static int overflow; 776 char brand[128]; 777 int i; 778 779 memcpy(brand, "Unknown", 8); 780 if (ia64_pal_get_brand_info(brand)) { 781 if (family == 0x7) 782 memcpy(brand, "Merced", 7); 783 else if (family == 0x1f) switch (model) { 784 case 0: memcpy(brand, "McKinley", 9); break; 785 case 1: memcpy(brand, "Madison", 8); break; 786 case 2: memcpy(brand, "Madison up to 9M cache", 23); break; 787 } 788 } 789 for (i = 0; i < MAX_BRANDS; i++) 790 if (strcmp(brandname[i], brand) == 0) 791 return brandname[i]; 792 for (i = 0; i < MAX_BRANDS; i++) 793 if (brandname[i][0] == '\0') 794 return strcpy(brandname[i], brand); 795 if (overflow++ == 0) 796 printk(KERN_ERR 797 "%s: Table overflow. Some processor model information will be missing\n", 798 __func__); 799 return "Unknown"; 800 } 801 802 static void 803 identify_cpu (struct cpuinfo_ia64 *c) 804 { 805 union { 806 unsigned long bits[5]; 807 struct { 808 /* id 0 & 1: */ 809 char vendor[16]; 810 811 /* id 2 */ 812 u64 ppn; /* processor serial number */ 813 814 /* id 3: */ 815 unsigned number : 8; 816 unsigned revision : 8; 817 unsigned model : 8; 818 unsigned family : 8; 819 unsigned archrev : 8; 820 unsigned reserved : 24; 821 822 /* id 4: */ 823 u64 features; 824 } field; 825 } cpuid; 826 pal_vm_info_1_u_t vm1; 827 pal_vm_info_2_u_t vm2; 828 pal_status_t status; 829 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ 830 int i; 831 for (i = 0; i < 5; ++i) 832 cpuid.bits[i] = ia64_get_cpuid(i); 833 834 memcpy(c->vendor, cpuid.field.vendor, 16); 835 #ifdef CONFIG_SMP 836 c->cpu = smp_processor_id(); 837 838 /* below default values will be overwritten by identify_siblings() 839 * for Multi-Threading/Multi-Core capable CPUs 840 */ 841 c->threads_per_core = c->cores_per_socket = c->num_log = 1; 842 c->socket_id = -1; 843 844 identify_siblings(c); 845 846 if (c->threads_per_core > smp_num_siblings) 847 smp_num_siblings = c->threads_per_core; 848 #endif 849 c->ppn = cpuid.field.ppn; 850 c->number = cpuid.field.number; 851 c->revision = cpuid.field.revision; 852 c->model = cpuid.field.model; 853 c->family = cpuid.field.family; 854 c->archrev = cpuid.field.archrev; 855 c->features = cpuid.field.features; 856 c->model_name = get_model_name(c->family, c->model); 857 858 status = ia64_pal_vm_summary(&vm1, &vm2); 859 if (status == PAL_STATUS_SUCCESS) { 860 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; 861 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; 862 } 863 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); 864 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); 865 } 866 867 /* 868 * Do the following calculations: 869 * 870 * 1. the max. cache line size. 871 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()". 872 * 3. the minimum of the cache stride sizes for "clflush_cache_range()". 873 */ 874 static void 875 get_cache_info(void) 876 { 877 unsigned long line_size, max = 1; 878 unsigned long l, levels, unique_caches; 879 pal_cache_config_info_t cci; 880 long status; 881 882 status = ia64_pal_cache_summary(&levels, &unique_caches); 883 if (status != 0) { 884 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", 885 __func__, status); 886 max = SMP_CACHE_BYTES; 887 /* Safest setup for "flush_icache_range()" */ 888 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; 889 /* Safest setup for "clflush_cache_range()" */ 890 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; 891 goto out; 892 } 893 894 for (l = 0; l < levels; ++l) { 895 /* cache_type (data_or_unified)=2 */ 896 status = ia64_pal_cache_config_info(l, 2, &cci); 897 if (status != 0) { 898 printk(KERN_ERR "%s: ia64_pal_cache_config_info" 899 "(l=%lu, 2) failed (status=%ld)\n", 900 __func__, l, status); 901 max = SMP_CACHE_BYTES; 902 /* The safest setup for "flush_icache_range()" */ 903 cci.pcci_stride = I_CACHE_STRIDE_SHIFT; 904 /* The safest setup for "clflush_cache_range()" */ 905 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; 906 cci.pcci_unified = 1; 907 } else { 908 if (cci.pcci_stride < ia64_cache_stride_shift) 909 ia64_cache_stride_shift = cci.pcci_stride; 910 911 line_size = 1 << cci.pcci_line_size; 912 if (line_size > max) 913 max = line_size; 914 } 915 916 if (!cci.pcci_unified) { 917 /* cache_type (instruction)=1*/ 918 status = ia64_pal_cache_config_info(l, 1, &cci); 919 if (status != 0) { 920 printk(KERN_ERR "%s: ia64_pal_cache_config_info" 921 "(l=%lu, 1) failed (status=%ld)\n", 922 __func__, l, status); 923 /* The safest setup for flush_icache_range() */ 924 cci.pcci_stride = I_CACHE_STRIDE_SHIFT; 925 } 926 } 927 if (cci.pcci_stride < ia64_i_cache_stride_shift) 928 ia64_i_cache_stride_shift = cci.pcci_stride; 929 } 930 out: 931 if (max > ia64_max_cacheline_size) 932 ia64_max_cacheline_size = max; 933 } 934 935 /* 936 * cpu_init() initializes state that is per-CPU. This function acts 937 * as a 'CPU state barrier', nothing should get across. 938 */ 939 void 940 cpu_init (void) 941 { 942 extern void ia64_mmu_init(void *); 943 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; 944 unsigned long num_phys_stacked; 945 pal_vm_info_2_u_t vmi; 946 unsigned int max_ctx; 947 struct cpuinfo_ia64 *cpu_info; 948 void *cpu_data; 949 950 cpu_data = per_cpu_init(); 951 #ifdef CONFIG_SMP 952 /* 953 * insert boot cpu into sibling and core mapes 954 * (must be done after per_cpu area is setup) 955 */ 956 if (smp_processor_id() == 0) { 957 cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0)); 958 cpumask_set_cpu(0, &cpu_core_map[0]); 959 } else { 960 /* 961 * Set ar.k3 so that assembly code in MCA handler can compute 962 * physical addresses of per cpu variables with a simple: 963 * phys = ar.k3 + &per_cpu_var 964 * and the alt-dtlb-miss handler can set per-cpu mapping into 965 * the TLB when needed. head.S already did this for cpu0. 966 */ 967 ia64_set_kr(IA64_KR_PER_CPU_DATA, 968 ia64_tpa(cpu_data) - (long) __per_cpu_start); 969 } 970 #endif 971 972 get_cache_info(); 973 974 /* 975 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called 976 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it 977 * depends on the data returned by identify_cpu(). We break the dependency by 978 * accessing cpu_data() through the canonical per-CPU address. 979 */ 980 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start); 981 identify_cpu(cpu_info); 982 983 #ifdef CONFIG_MCKINLEY 984 { 985 # define FEATURE_SET 16 986 struct ia64_pal_retval iprv; 987 988 if (cpu_info->family == 0x1f) { 989 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); 990 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) 991 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, 992 (iprv.v1 | 0x80), FEATURE_SET, 0); 993 } 994 } 995 #endif 996 997 /* Clear the stack memory reserved for pt_regs: */ 998 memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); 999 1000 ia64_set_kr(IA64_KR_FPU_OWNER, 0); 1001 1002 /* 1003 * Initialize the page-table base register to a global 1004 * directory with all zeroes. This ensure that we can handle 1005 * TLB-misses to user address-space even before we created the 1006 * first user address-space. This may happen, e.g., due to 1007 * aggressive use of lfetch.fault. 1008 */ 1009 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); 1010 1011 /* 1012 * Initialize default control register to defer speculative faults except 1013 * for those arising from TLB misses, which are not deferred. The 1014 * kernel MUST NOT depend on a particular setting of these bits (in other words, 1015 * the kernel must have recovery code for all speculative accesses). Turn on 1016 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps 1017 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll 1018 * be fine). 1019 */ 1020 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR 1021 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); 1022 mmgrab(&init_mm); 1023 current->active_mm = &init_mm; 1024 BUG_ON(current->mm); 1025 1026 ia64_mmu_init(ia64_imva(cpu_data)); 1027 ia64_mca_cpu_init(ia64_imva(cpu_data)); 1028 1029 /* Clear ITC to eliminate sched_clock() overflows in human time. */ 1030 ia64_set_itc(0); 1031 1032 /* disable all local interrupt sources: */ 1033 ia64_set_itv(1 << 16); 1034 ia64_set_lrr0(1 << 16); 1035 ia64_set_lrr1(1 << 16); 1036 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); 1037 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); 1038 1039 /* clear TPR & XTP to enable all interrupt classes: */ 1040 ia64_setreg(_IA64_REG_CR_TPR, 0); 1041 1042 /* Clear any pending interrupts left by SAL/EFI */ 1043 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) 1044 ia64_eoi(); 1045 1046 #ifdef CONFIG_SMP 1047 normal_xtp(); 1048 #endif 1049 1050 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ 1051 if (ia64_pal_vm_summary(NULL, &vmi) == 0) { 1052 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; 1053 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL); 1054 } else { 1055 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); 1056 max_ctx = (1U << 15) - 1; /* use architected minimum */ 1057 } 1058 while (max_ctx < ia64_ctx.max_ctx) { 1059 unsigned int old = ia64_ctx.max_ctx; 1060 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) 1061 break; 1062 } 1063 1064 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { 1065 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " 1066 "stacked regs\n"); 1067 num_phys_stacked = 96; 1068 } 1069 /* size of physical stacked register partition plus 8 bytes: */ 1070 if (num_phys_stacked > max_num_phys_stacked) { 1071 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); 1072 max_num_phys_stacked = num_phys_stacked; 1073 } 1074 } 1075 1076 void __init 1077 check_bugs (void) 1078 { 1079 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, 1080 (unsigned long) __end___mckinley_e9_bundles); 1081 } 1082 1083 static int __init run_dmi_scan(void) 1084 { 1085 dmi_setup(); 1086 return 0; 1087 } 1088 core_initcall(run_dmi_scan); 1089