xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision b898a424)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 
94 static struct resource bss_resource = {
95 	.name	= "Kernel bss",
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98 
99 unsigned long ia64_max_cacheline_size;
100 
101 int dma_get_cache_alignment(void)
102 {
103         return ia64_max_cacheline_size;
104 }
105 EXPORT_SYMBOL(dma_get_cache_alignment);
106 
107 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
108 EXPORT_SYMBOL(ia64_iobase);
109 struct io_space io_space[MAX_IO_SPACES];
110 EXPORT_SYMBOL(io_space);
111 unsigned int num_io_spaces;
112 
113 /*
114  * "flush_icache_range()" needs to know what processor dependent stride size to use
115  * when it makes i-cache(s) coherent with d-caches.
116  */
117 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
118 unsigned long ia64_i_cache_stride_shift = ~0;
119 
120 /*
121  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
122  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
123  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
124  * address of the second buffer must be aligned to (merge_mask+1) in order to be
125  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
126  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
127  * page-size of 2^64.
128  */
129 unsigned long ia64_max_iommu_merge_mask = ~0UL;
130 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
131 
132 /*
133  * We use a special marker for the end of memory and it uses the extra (+1) slot
134  */
135 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
136 int num_rsvd_regions __initdata;
137 
138 
139 /*
140  * Filter incoming memory segments based on the primitive map created from the boot
141  * parameters. Segments contained in the map are removed from the memory ranges. A
142  * caller-specified function is called with the memory ranges that remain after filtering.
143  * This routine does not assume the incoming segments are sorted.
144  */
145 int __init
146 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
147 {
148 	unsigned long range_start, range_end, prev_start;
149 	void (*func)(unsigned long, unsigned long, int);
150 	int i;
151 
152 #if IGNORE_PFN0
153 	if (start == PAGE_OFFSET) {
154 		printk(KERN_WARNING "warning: skipping physical page 0\n");
155 		start += PAGE_SIZE;
156 		if (start >= end) return 0;
157 	}
158 #endif
159 	/*
160 	 * lowest possible address(walker uses virtual)
161 	 */
162 	prev_start = PAGE_OFFSET;
163 	func = arg;
164 
165 	for (i = 0; i < num_rsvd_regions; ++i) {
166 		range_start = max(start, prev_start);
167 		range_end   = min(end, rsvd_region[i].start);
168 
169 		if (range_start < range_end)
170 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
171 
172 		/* nothing more available in this segment */
173 		if (range_end == end) return 0;
174 
175 		prev_start = rsvd_region[i].end;
176 	}
177 	/* end of memory marker allows full processing inside loop body */
178 	return 0;
179 }
180 
181 static void __init
182 sort_regions (struct rsvd_region *rsvd_region, int max)
183 {
184 	int j;
185 
186 	/* simple bubble sorting */
187 	while (max--) {
188 		for (j = 0; j < max; ++j) {
189 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
190 				struct rsvd_region tmp;
191 				tmp = rsvd_region[j];
192 				rsvd_region[j] = rsvd_region[j + 1];
193 				rsvd_region[j + 1] = tmp;
194 			}
195 		}
196 	}
197 }
198 
199 /*
200  * Request address space for all standard resources
201  */
202 static int __init register_memory(void)
203 {
204 	code_resource.start = ia64_tpa(_text);
205 	code_resource.end   = ia64_tpa(_etext) - 1;
206 	data_resource.start = ia64_tpa(_etext);
207 	data_resource.end   = ia64_tpa(_edata) - 1;
208 	bss_resource.start  = ia64_tpa(__bss_start);
209 	bss_resource.end    = ia64_tpa(_end) - 1;
210 	efi_initialize_iomem_resources(&code_resource, &data_resource,
211 			&bss_resource);
212 
213 	return 0;
214 }
215 
216 __initcall(register_memory);
217 
218 
219 #ifdef CONFIG_KEXEC
220 static void __init setup_crashkernel(unsigned long total, int *n)
221 {
222 	unsigned long long base = 0, size = 0;
223 	int ret;
224 
225 	ret = parse_crashkernel(boot_command_line, total,
226 			&size, &base);
227 	if (ret == 0 && size > 0) {
228 		if (!base) {
229 			sort_regions(rsvd_region, *n);
230 			base = kdump_find_rsvd_region(size,
231 					rsvd_region, *n);
232 		}
233 		if (base != ~0UL) {
234 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
235 					"for crashkernel (System RAM: %ldMB)\n",
236 					(unsigned long)(size >> 20),
237 					(unsigned long)(base >> 20),
238 					(unsigned long)(total >> 20));
239 			rsvd_region[*n].start =
240 				(unsigned long)__va(base);
241 			rsvd_region[*n].end =
242 				(unsigned long)__va(base + size);
243 			(*n)++;
244 			crashk_res.start = base;
245 			crashk_res.end = base + size - 1;
246 		}
247 	}
248 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
249 	efi_memmap_res.end = efi_memmap_res.start +
250 		ia64_boot_param->efi_memmap_size;
251 	boot_param_res.start = __pa(ia64_boot_param);
252 	boot_param_res.end = boot_param_res.start +
253 		sizeof(*ia64_boot_param);
254 }
255 #else
256 static inline void __init setup_crashkernel(unsigned long total, int *n)
257 {}
258 #endif
259 
260 /**
261  * reserve_memory - setup reserved memory areas
262  *
263  * Setup the reserved memory areas set aside for the boot parameters,
264  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
265  * see include/asm-ia64/meminit.h if you need to define more.
266  */
267 void __init
268 reserve_memory (void)
269 {
270 	int n = 0;
271 	unsigned long total_memory;
272 
273 	/*
274 	 * none of the entries in this table overlap
275 	 */
276 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
277 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
278 	n++;
279 
280 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
281 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
282 	n++;
283 
284 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
285 	rsvd_region[n].end   = (rsvd_region[n].start
286 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
287 	n++;
288 
289 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
290 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
291 	n++;
292 
293 #ifdef CONFIG_BLK_DEV_INITRD
294 	if (ia64_boot_param->initrd_start) {
295 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
296 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
297 		n++;
298 	}
299 #endif
300 
301 #ifdef CONFIG_PROC_VMCORE
302 	if (reserve_elfcorehdr(&rsvd_region[n].start,
303 			       &rsvd_region[n].end) == 0)
304 		n++;
305 #endif
306 
307 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
308 	n++;
309 
310 	setup_crashkernel(total_memory, &n);
311 
312 	/* end of memory marker */
313 	rsvd_region[n].start = ~0UL;
314 	rsvd_region[n].end   = ~0UL;
315 	n++;
316 
317 	num_rsvd_regions = n;
318 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
319 
320 	sort_regions(rsvd_region, num_rsvd_regions);
321 }
322 
323 
324 /**
325  * find_initrd - get initrd parameters from the boot parameter structure
326  *
327  * Grab the initrd start and end from the boot parameter struct given us by
328  * the boot loader.
329  */
330 void __init
331 find_initrd (void)
332 {
333 #ifdef CONFIG_BLK_DEV_INITRD
334 	if (ia64_boot_param->initrd_start) {
335 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
336 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
337 
338 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
339 		       initrd_start, ia64_boot_param->initrd_size);
340 	}
341 #endif
342 }
343 
344 static void __init
345 io_port_init (void)
346 {
347 	unsigned long phys_iobase;
348 
349 	/*
350 	 * Set `iobase' based on the EFI memory map or, failing that, the
351 	 * value firmware left in ar.k0.
352 	 *
353 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
354 	 * the port's virtual address, so ia32_load_state() loads it with a
355 	 * user virtual address.  But in ia64 mode, glibc uses the
356 	 * *physical* address in ar.k0 to mmap the appropriate area from
357 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
358 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
359 	 *
360 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
361 	 * any of the I/O port spaces and are done via MMIO using the
362 	 * virtual mmio_base from the appropriate io_space[].
363 	 */
364 	phys_iobase = efi_get_iobase();
365 	if (!phys_iobase) {
366 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
367 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
368 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
369 	}
370 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
371 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
372 
373 	/* setup legacy IO port space */
374 	io_space[0].mmio_base = ia64_iobase;
375 	io_space[0].sparse = 1;
376 	num_io_spaces = 1;
377 }
378 
379 /**
380  * early_console_setup - setup debugging console
381  *
382  * Consoles started here require little enough setup that we can start using
383  * them very early in the boot process, either right after the machine
384  * vector initialization, or even before if the drivers can detect their hw.
385  *
386  * Returns non-zero if a console couldn't be setup.
387  */
388 static inline int __init
389 early_console_setup (char *cmdline)
390 {
391 	int earlycons = 0;
392 
393 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
394 	{
395 		extern int sn_serial_console_early_setup(void);
396 		if (!sn_serial_console_early_setup())
397 			earlycons++;
398 	}
399 #endif
400 #ifdef CONFIG_EFI_PCDP
401 	if (!efi_setup_pcdp_console(cmdline))
402 		earlycons++;
403 #endif
404 	if (!simcons_register())
405 		earlycons++;
406 
407 	return (earlycons) ? 0 : -1;
408 }
409 
410 static inline void
411 mark_bsp_online (void)
412 {
413 #ifdef CONFIG_SMP
414 	/* If we register an early console, allow CPU 0 to printk */
415 	cpu_set(smp_processor_id(), cpu_online_map);
416 #endif
417 }
418 
419 static __initdata int nomca;
420 static __init int setup_nomca(char *s)
421 {
422 	nomca = 1;
423 	return 0;
424 }
425 early_param("nomca", setup_nomca);
426 
427 #ifdef CONFIG_PROC_VMCORE
428 /* elfcorehdr= specifies the location of elf core header
429  * stored by the crashed kernel.
430  */
431 static int __init parse_elfcorehdr(char *arg)
432 {
433 	if (!arg)
434 		return -EINVAL;
435 
436         elfcorehdr_addr = memparse(arg, &arg);
437 	return 0;
438 }
439 early_param("elfcorehdr", parse_elfcorehdr);
440 
441 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
442 {
443 	unsigned long length;
444 
445 	/* We get the address using the kernel command line,
446 	 * but the size is extracted from the EFI tables.
447 	 * Both address and size are required for reservation
448 	 * to work properly.
449 	 */
450 
451 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
452 		return -EINVAL;
453 
454 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
455 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
456 		return -EINVAL;
457 	}
458 
459 	*start = (unsigned long)__va(elfcorehdr_addr);
460 	*end = *start + length;
461 	return 0;
462 }
463 
464 #endif /* CONFIG_PROC_VMCORE */
465 
466 void __init
467 setup_arch (char **cmdline_p)
468 {
469 	unw_init();
470 
471 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
472 
473 	*cmdline_p = __va(ia64_boot_param->command_line);
474 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
475 
476 	efi_init();
477 	io_port_init();
478 
479 #ifdef CONFIG_IA64_GENERIC
480 	/* machvec needs to be parsed from the command line
481 	 * before parse_early_param() is called to ensure
482 	 * that ia64_mv is initialised before any command line
483 	 * settings may cause console setup to occur
484 	 */
485 	machvec_init_from_cmdline(*cmdline_p);
486 #endif
487 
488 	parse_early_param();
489 
490 	if (early_console_setup(*cmdline_p) == 0)
491 		mark_bsp_online();
492 
493 #ifdef CONFIG_ACPI
494 	/* Initialize the ACPI boot-time table parser */
495 	acpi_table_init();
496 # ifdef CONFIG_ACPI_NUMA
497 	acpi_numa_init();
498 # endif
499 #else
500 # ifdef CONFIG_SMP
501 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
502 # endif
503 #endif /* CONFIG_APCI_BOOT */
504 
505 	find_memory();
506 
507 	/* process SAL system table: */
508 	ia64_sal_init(__va(efi.sal_systab));
509 
510 	ia64_setup_printk_clock();
511 
512 #ifdef CONFIG_SMP
513 	cpu_physical_id(0) = hard_smp_processor_id();
514 #endif
515 
516 	cpu_init();	/* initialize the bootstrap CPU */
517 	mmu_context_init();	/* initialize context_id bitmap */
518 
519 	check_sal_cache_flush();
520 
521 #ifdef CONFIG_ACPI
522 	acpi_boot_init();
523 #endif
524 
525 #ifdef CONFIG_VT
526 	if (!conswitchp) {
527 # if defined(CONFIG_DUMMY_CONSOLE)
528 		conswitchp = &dummy_con;
529 # endif
530 # if defined(CONFIG_VGA_CONSOLE)
531 		/*
532 		 * Non-legacy systems may route legacy VGA MMIO range to system
533 		 * memory.  vga_con probes the MMIO hole, so memory looks like
534 		 * a VGA device to it.  The EFI memory map can tell us if it's
535 		 * memory so we can avoid this problem.
536 		 */
537 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
538 			conswitchp = &vga_con;
539 # endif
540 	}
541 #endif
542 
543 	/* enable IA-64 Machine Check Abort Handling unless disabled */
544 	if (!nomca)
545 		ia64_mca_init();
546 
547 	platform_setup(cmdline_p);
548 	paging_init();
549 }
550 
551 /*
552  * Display cpu info for all CPUs.
553  */
554 static int
555 show_cpuinfo (struct seq_file *m, void *v)
556 {
557 #ifdef CONFIG_SMP
558 #	define lpj	c->loops_per_jiffy
559 #	define cpunum	c->cpu
560 #else
561 #	define lpj	loops_per_jiffy
562 #	define cpunum	0
563 #endif
564 	static struct {
565 		unsigned long mask;
566 		const char *feature_name;
567 	} feature_bits[] = {
568 		{ 1UL << 0, "branchlong" },
569 		{ 1UL << 1, "spontaneous deferral"},
570 		{ 1UL << 2, "16-byte atomic ops" }
571 	};
572 	char features[128], *cp, *sep;
573 	struct cpuinfo_ia64 *c = v;
574 	unsigned long mask;
575 	unsigned long proc_freq;
576 	int i, size;
577 
578 	mask = c->features;
579 
580 	/* build the feature string: */
581 	memcpy(features, "standard", 9);
582 	cp = features;
583 	size = sizeof(features);
584 	sep = "";
585 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
586 		if (mask & feature_bits[i].mask) {
587 			cp += snprintf(cp, size, "%s%s", sep,
588 				       feature_bits[i].feature_name),
589 			sep = ", ";
590 			mask &= ~feature_bits[i].mask;
591 			size = sizeof(features) - (cp - features);
592 		}
593 	}
594 	if (mask && size > 1) {
595 		/* print unknown features as a hex value */
596 		snprintf(cp, size, "%s0x%lx", sep, mask);
597 	}
598 
599 	proc_freq = cpufreq_quick_get(cpunum);
600 	if (!proc_freq)
601 		proc_freq = c->proc_freq / 1000;
602 
603 	seq_printf(m,
604 		   "processor  : %d\n"
605 		   "vendor     : %s\n"
606 		   "arch       : IA-64\n"
607 		   "family     : %u\n"
608 		   "model      : %u\n"
609 		   "model name : %s\n"
610 		   "revision   : %u\n"
611 		   "archrev    : %u\n"
612 		   "features   : %s\n"
613 		   "cpu number : %lu\n"
614 		   "cpu regs   : %u\n"
615 		   "cpu MHz    : %lu.%03lu\n"
616 		   "itc MHz    : %lu.%06lu\n"
617 		   "BogoMIPS   : %lu.%02lu\n",
618 		   cpunum, c->vendor, c->family, c->model,
619 		   c->model_name, c->revision, c->archrev,
620 		   features, c->ppn, c->number,
621 		   proc_freq / 1000, proc_freq % 1000,
622 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
623 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
624 #ifdef CONFIG_SMP
625 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
626 	if (c->socket_id != -1)
627 		seq_printf(m, "physical id: %u\n", c->socket_id);
628 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
629 		seq_printf(m,
630 			   "core id    : %u\n"
631 			   "thread id  : %u\n",
632 			   c->core_id, c->thread_id);
633 #endif
634 	seq_printf(m,"\n");
635 
636 	return 0;
637 }
638 
639 static void *
640 c_start (struct seq_file *m, loff_t *pos)
641 {
642 #ifdef CONFIG_SMP
643 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
644 		++*pos;
645 #endif
646 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
647 }
648 
649 static void *
650 c_next (struct seq_file *m, void *v, loff_t *pos)
651 {
652 	++*pos;
653 	return c_start(m, pos);
654 }
655 
656 static void
657 c_stop (struct seq_file *m, void *v)
658 {
659 }
660 
661 struct seq_operations cpuinfo_op = {
662 	.start =	c_start,
663 	.next =		c_next,
664 	.stop =		c_stop,
665 	.show =		show_cpuinfo
666 };
667 
668 #define MAX_BRANDS	8
669 static char brandname[MAX_BRANDS][128];
670 
671 static char * __cpuinit
672 get_model_name(__u8 family, __u8 model)
673 {
674 	static int overflow;
675 	char brand[128];
676 	int i;
677 
678 	memcpy(brand, "Unknown", 8);
679 	if (ia64_pal_get_brand_info(brand)) {
680 		if (family == 0x7)
681 			memcpy(brand, "Merced", 7);
682 		else if (family == 0x1f) switch (model) {
683 			case 0: memcpy(brand, "McKinley", 9); break;
684 			case 1: memcpy(brand, "Madison", 8); break;
685 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
686 		}
687 	}
688 	for (i = 0; i < MAX_BRANDS; i++)
689 		if (strcmp(brandname[i], brand) == 0)
690 			return brandname[i];
691 	for (i = 0; i < MAX_BRANDS; i++)
692 		if (brandname[i][0] == '\0')
693 			return strcpy(brandname[i], brand);
694 	if (overflow++ == 0)
695 		printk(KERN_ERR
696 		       "%s: Table overflow. Some processor model information will be missing\n",
697 		       __FUNCTION__);
698 	return "Unknown";
699 }
700 
701 static void __cpuinit
702 identify_cpu (struct cpuinfo_ia64 *c)
703 {
704 	union {
705 		unsigned long bits[5];
706 		struct {
707 			/* id 0 & 1: */
708 			char vendor[16];
709 
710 			/* id 2 */
711 			u64 ppn;		/* processor serial number */
712 
713 			/* id 3: */
714 			unsigned number		:  8;
715 			unsigned revision	:  8;
716 			unsigned model		:  8;
717 			unsigned family		:  8;
718 			unsigned archrev	:  8;
719 			unsigned reserved	: 24;
720 
721 			/* id 4: */
722 			u64 features;
723 		} field;
724 	} cpuid;
725 	pal_vm_info_1_u_t vm1;
726 	pal_vm_info_2_u_t vm2;
727 	pal_status_t status;
728 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
729 	int i;
730 	for (i = 0; i < 5; ++i)
731 		cpuid.bits[i] = ia64_get_cpuid(i);
732 
733 	memcpy(c->vendor, cpuid.field.vendor, 16);
734 #ifdef CONFIG_SMP
735 	c->cpu = smp_processor_id();
736 
737 	/* below default values will be overwritten  by identify_siblings()
738 	 * for Multi-Threading/Multi-Core capable CPUs
739 	 */
740 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
741 	c->socket_id = -1;
742 
743 	identify_siblings(c);
744 
745 	if (c->threads_per_core > smp_num_siblings)
746 		smp_num_siblings = c->threads_per_core;
747 #endif
748 	c->ppn = cpuid.field.ppn;
749 	c->number = cpuid.field.number;
750 	c->revision = cpuid.field.revision;
751 	c->model = cpuid.field.model;
752 	c->family = cpuid.field.family;
753 	c->archrev = cpuid.field.archrev;
754 	c->features = cpuid.field.features;
755 	c->model_name = get_model_name(c->family, c->model);
756 
757 	status = ia64_pal_vm_summary(&vm1, &vm2);
758 	if (status == PAL_STATUS_SUCCESS) {
759 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
760 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
761 	}
762 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
763 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
764 }
765 
766 void __init
767 setup_per_cpu_areas (void)
768 {
769 	/* start_kernel() requires this... */
770 #ifdef CONFIG_ACPI_HOTPLUG_CPU
771 	prefill_possible_map();
772 #endif
773 }
774 
775 /*
776  * Calculate the max. cache line size.
777  *
778  * In addition, the minimum of the i-cache stride sizes is calculated for
779  * "flush_icache_range()".
780  */
781 static void __cpuinit
782 get_max_cacheline_size (void)
783 {
784 	unsigned long line_size, max = 1;
785 	u64 l, levels, unique_caches;
786         pal_cache_config_info_t cci;
787         s64 status;
788 
789         status = ia64_pal_cache_summary(&levels, &unique_caches);
790         if (status != 0) {
791                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
792                        __FUNCTION__, status);
793                 max = SMP_CACHE_BYTES;
794 		/* Safest setup for "flush_icache_range()" */
795 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
796 		goto out;
797         }
798 
799 	for (l = 0; l < levels; ++l) {
800 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
801 						    &cci);
802 		if (status != 0) {
803 			printk(KERN_ERR
804 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
805 			       __FUNCTION__, l, status);
806 			max = SMP_CACHE_BYTES;
807 			/* The safest setup for "flush_icache_range()" */
808 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
809 			cci.pcci_unified = 1;
810 		}
811 		line_size = 1 << cci.pcci_line_size;
812 		if (line_size > max)
813 			max = line_size;
814 		if (!cci.pcci_unified) {
815 			status = ia64_pal_cache_config_info(l,
816 						    /* cache_type (instruction)= */ 1,
817 						    &cci);
818 			if (status != 0) {
819 				printk(KERN_ERR
820 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
821 					__FUNCTION__, l, status);
822 				/* The safest setup for "flush_icache_range()" */
823 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
824 			}
825 		}
826 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
827 			ia64_i_cache_stride_shift = cci.pcci_stride;
828 	}
829   out:
830 	if (max > ia64_max_cacheline_size)
831 		ia64_max_cacheline_size = max;
832 }
833 
834 /*
835  * cpu_init() initializes state that is per-CPU.  This function acts
836  * as a 'CPU state barrier', nothing should get across.
837  */
838 void __cpuinit
839 cpu_init (void)
840 {
841 	extern void __cpuinit ia64_mmu_init (void *);
842 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
843 	unsigned long num_phys_stacked;
844 	pal_vm_info_2_u_t vmi;
845 	unsigned int max_ctx;
846 	struct cpuinfo_ia64 *cpu_info;
847 	void *cpu_data;
848 
849 	cpu_data = per_cpu_init();
850 #ifdef CONFIG_SMP
851 	/*
852 	 * insert boot cpu into sibling and core mapes
853 	 * (must be done after per_cpu area is setup)
854 	 */
855 	if (smp_processor_id() == 0) {
856 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
857 		cpu_set(0, cpu_core_map[0]);
858 	}
859 #endif
860 
861 	/*
862 	 * We set ar.k3 so that assembly code in MCA handler can compute
863 	 * physical addresses of per cpu variables with a simple:
864 	 *   phys = ar.k3 + &per_cpu_var
865 	 */
866 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
867 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
868 
869 	get_max_cacheline_size();
870 
871 	/*
872 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
873 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
874 	 * depends on the data returned by identify_cpu().  We break the dependency by
875 	 * accessing cpu_data() through the canonical per-CPU address.
876 	 */
877 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
878 	identify_cpu(cpu_info);
879 
880 #ifdef CONFIG_MCKINLEY
881 	{
882 #		define FEATURE_SET 16
883 		struct ia64_pal_retval iprv;
884 
885 		if (cpu_info->family == 0x1f) {
886 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
887 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
888 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
889 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
890 		}
891 	}
892 #endif
893 
894 	/* Clear the stack memory reserved for pt_regs: */
895 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
896 
897 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
898 
899 	/*
900 	 * Initialize the page-table base register to a global
901 	 * directory with all zeroes.  This ensure that we can handle
902 	 * TLB-misses to user address-space even before we created the
903 	 * first user address-space.  This may happen, e.g., due to
904 	 * aggressive use of lfetch.fault.
905 	 */
906 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
907 
908 	/*
909 	 * Initialize default control register to defer speculative faults except
910 	 * for those arising from TLB misses, which are not deferred.  The
911 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
912 	 * the kernel must have recovery code for all speculative accesses).  Turn on
913 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
914 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
915 	 * be fine).
916 	 */
917 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
918 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
919 	atomic_inc(&init_mm.mm_count);
920 	current->active_mm = &init_mm;
921 	if (current->mm)
922 		BUG();
923 
924 	ia64_mmu_init(ia64_imva(cpu_data));
925 	ia64_mca_cpu_init(ia64_imva(cpu_data));
926 
927 #ifdef CONFIG_IA32_SUPPORT
928 	ia32_cpu_init();
929 #endif
930 
931 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
932 	ia64_set_itc(0);
933 
934 	/* disable all local interrupt sources: */
935 	ia64_set_itv(1 << 16);
936 	ia64_set_lrr0(1 << 16);
937 	ia64_set_lrr1(1 << 16);
938 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
939 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
940 
941 	/* clear TPR & XTP to enable all interrupt classes: */
942 	ia64_setreg(_IA64_REG_CR_TPR, 0);
943 
944 	/* Clear any pending interrupts left by SAL/EFI */
945 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
946 		ia64_eoi();
947 
948 #ifdef CONFIG_SMP
949 	normal_xtp();
950 #endif
951 
952 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
953 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
954 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
955 	else {
956 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
957 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
958 	}
959 	while (max_ctx < ia64_ctx.max_ctx) {
960 		unsigned int old = ia64_ctx.max_ctx;
961 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
962 			break;
963 	}
964 
965 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
966 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
967 		       "stacked regs\n");
968 		num_phys_stacked = 96;
969 	}
970 	/* size of physical stacked register partition plus 8 bytes: */
971 	if (num_phys_stacked > max_num_phys_stacked) {
972 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
973 		max_num_phys_stacked = num_phys_stacked;
974 	}
975 	platform_cpu_init();
976 	pm_idle = default_idle;
977 }
978 
979 void __init
980 check_bugs (void)
981 {
982 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
983 			       (unsigned long) __end___mckinley_e9_bundles);
984 }
985 
986 static int __init run_dmi_scan(void)
987 {
988 	dmi_scan_machine();
989 	return 0;
990 }
991 core_initcall(run_dmi_scan);
992