xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision ae0af3e3)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84 
85 static struct resource data_resource = {
86 	.name	= "Kernel data",
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
88 };
89 
90 static struct resource code_resource = {
91 	.name	= "Kernel code",
92 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
93 };
94 extern void efi_initialize_iomem_resources(struct resource *,
95 		struct resource *);
96 extern char _text[], _end[], _etext[];
97 
98 unsigned long ia64_max_cacheline_size;
99 
100 int dma_get_cache_alignment(void)
101 {
102         return ia64_max_cacheline_size;
103 }
104 EXPORT_SYMBOL(dma_get_cache_alignment);
105 
106 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
111 
112 /*
113  * "flush_icache_range()" needs to know what processor dependent stride size to use
114  * when it makes i-cache(s) coherent with d-caches.
115  */
116 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
118 
119 /*
120  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
121  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
122  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
123  * address of the second buffer must be aligned to (merge_mask+1) in order to be
124  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
125  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126  * page-size of 2^64.
127  */
128 unsigned long ia64_max_iommu_merge_mask = ~0UL;
129 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130 
131 /*
132  * We use a special marker for the end of memory and it uses the extra (+1) slot
133  */
134 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
135 int num_rsvd_regions __initdata;
136 
137 
138 /*
139  * Filter incoming memory segments based on the primitive map created from the boot
140  * parameters. Segments contained in the map are removed from the memory ranges. A
141  * caller-specified function is called with the memory ranges that remain after filtering.
142  * This routine does not assume the incoming segments are sorted.
143  */
144 int __init
145 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
146 {
147 	unsigned long range_start, range_end, prev_start;
148 	void (*func)(unsigned long, unsigned long, int);
149 	int i;
150 
151 #if IGNORE_PFN0
152 	if (start == PAGE_OFFSET) {
153 		printk(KERN_WARNING "warning: skipping physical page 0\n");
154 		start += PAGE_SIZE;
155 		if (start >= end) return 0;
156 	}
157 #endif
158 	/*
159 	 * lowest possible address(walker uses virtual)
160 	 */
161 	prev_start = PAGE_OFFSET;
162 	func = arg;
163 
164 	for (i = 0; i < num_rsvd_regions; ++i) {
165 		range_start = max(start, prev_start);
166 		range_end   = min(end, rsvd_region[i].start);
167 
168 		if (range_start < range_end)
169 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
170 
171 		/* nothing more available in this segment */
172 		if (range_end == end) return 0;
173 
174 		prev_start = rsvd_region[i].end;
175 	}
176 	/* end of memory marker allows full processing inside loop body */
177 	return 0;
178 }
179 
180 static void __init
181 sort_regions (struct rsvd_region *rsvd_region, int max)
182 {
183 	int j;
184 
185 	/* simple bubble sorting */
186 	while (max--) {
187 		for (j = 0; j < max; ++j) {
188 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
189 				struct rsvd_region tmp;
190 				tmp = rsvd_region[j];
191 				rsvd_region[j] = rsvd_region[j + 1];
192 				rsvd_region[j + 1] = tmp;
193 			}
194 		}
195 	}
196 }
197 
198 /*
199  * Request address space for all standard resources
200  */
201 static int __init register_memory(void)
202 {
203 	code_resource.start = ia64_tpa(_text);
204 	code_resource.end   = ia64_tpa(_etext) - 1;
205 	data_resource.start = ia64_tpa(_etext);
206 	data_resource.end   = ia64_tpa(_end) - 1;
207 	efi_initialize_iomem_resources(&code_resource, &data_resource);
208 
209 	return 0;
210 }
211 
212 __initcall(register_memory);
213 
214 /**
215  * reserve_memory - setup reserved memory areas
216  *
217  * Setup the reserved memory areas set aside for the boot parameters,
218  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
219  * see include/asm-ia64/meminit.h if you need to define more.
220  */
221 void __init
222 reserve_memory (void)
223 {
224 	int n = 0;
225 
226 	/*
227 	 * none of the entries in this table overlap
228 	 */
229 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
230 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 	n++;
232 
233 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
234 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 	n++;
236 
237 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
238 	rsvd_region[n].end   = (rsvd_region[n].start
239 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
240 	n++;
241 
242 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
243 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
244 	n++;
245 
246 #ifdef CONFIG_BLK_DEV_INITRD
247 	if (ia64_boot_param->initrd_start) {
248 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
249 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
250 		n++;
251 	}
252 #endif
253 
254 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
255 	n++;
256 
257 #ifdef CONFIG_KEXEC
258 	/* crashkernel=size@offset specifies the size to reserve for a crash
259 	 * kernel. If offset is 0, then it is determined automatically.
260 	 * By reserving this memory we guarantee that linux never set's it
261 	 * up as a DMA target.Useful for holding code to do something
262 	 * appropriate after a kernel panic.
263 	 */
264 	{
265 		char *from = strstr(saved_command_line, "crashkernel=");
266 		unsigned long base, size;
267 		if (from) {
268 			size = memparse(from + 12, &from);
269 			if (*from == '@')
270 				base = memparse(from+1, &from);
271 			else
272 				base = 0;
273 			if (size) {
274 				if (!base) {
275 					sort_regions(rsvd_region, n);
276 					base = kdump_find_rsvd_region(size,
277 							      	rsvd_region, n);
278 					}
279 				if (base != ~0UL) {
280 					rsvd_region[n].start =
281 						(unsigned long)__va(base);
282 					rsvd_region[n].end =
283 						(unsigned long)__va(base + size);
284 					n++;
285 					crashk_res.start = base;
286 					crashk_res.end = base + size - 1;
287 				}
288 			}
289 		}
290 		efi_memmap_res.start = ia64_boot_param->efi_memmap;
291                 efi_memmap_res.end = efi_memmap_res.start +
292                         ia64_boot_param->efi_memmap_size;
293                 boot_param_res.start = __pa(ia64_boot_param);
294                 boot_param_res.end = boot_param_res.start +
295                         sizeof(*ia64_boot_param);
296 	}
297 #endif
298 	/* end of memory marker */
299 	rsvd_region[n].start = ~0UL;
300 	rsvd_region[n].end   = ~0UL;
301 	n++;
302 
303 	num_rsvd_regions = n;
304 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
305 
306 	sort_regions(rsvd_region, num_rsvd_regions);
307 }
308 
309 
310 /**
311  * find_initrd - get initrd parameters from the boot parameter structure
312  *
313  * Grab the initrd start and end from the boot parameter struct given us by
314  * the boot loader.
315  */
316 void __init
317 find_initrd (void)
318 {
319 #ifdef CONFIG_BLK_DEV_INITRD
320 	if (ia64_boot_param->initrd_start) {
321 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
322 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
323 
324 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
325 		       initrd_start, ia64_boot_param->initrd_size);
326 	}
327 #endif
328 }
329 
330 static void __init
331 io_port_init (void)
332 {
333 	unsigned long phys_iobase;
334 
335 	/*
336 	 * Set `iobase' based on the EFI memory map or, failing that, the
337 	 * value firmware left in ar.k0.
338 	 *
339 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
340 	 * the port's virtual address, so ia32_load_state() loads it with a
341 	 * user virtual address.  But in ia64 mode, glibc uses the
342 	 * *physical* address in ar.k0 to mmap the appropriate area from
343 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
344 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
345 	 *
346 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
347 	 * any of the I/O port spaces and are done via MMIO using the
348 	 * virtual mmio_base from the appropriate io_space[].
349 	 */
350 	phys_iobase = efi_get_iobase();
351 	if (!phys_iobase) {
352 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
353 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
354 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
355 	}
356 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
357 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
358 
359 	/* setup legacy IO port space */
360 	io_space[0].mmio_base = ia64_iobase;
361 	io_space[0].sparse = 1;
362 	num_io_spaces = 1;
363 }
364 
365 /**
366  * early_console_setup - setup debugging console
367  *
368  * Consoles started here require little enough setup that we can start using
369  * them very early in the boot process, either right after the machine
370  * vector initialization, or even before if the drivers can detect their hw.
371  *
372  * Returns non-zero if a console couldn't be setup.
373  */
374 static inline int __init
375 early_console_setup (char *cmdline)
376 {
377 	int earlycons = 0;
378 
379 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
380 	{
381 		extern int sn_serial_console_early_setup(void);
382 		if (!sn_serial_console_early_setup())
383 			earlycons++;
384 	}
385 #endif
386 #ifdef CONFIG_EFI_PCDP
387 	if (!efi_setup_pcdp_console(cmdline))
388 		earlycons++;
389 #endif
390 #ifdef CONFIG_SERIAL_8250_CONSOLE
391 	if (!early_serial_console_init(cmdline))
392 		earlycons++;
393 #endif
394 
395 	return (earlycons) ? 0 : -1;
396 }
397 
398 static inline void
399 mark_bsp_online (void)
400 {
401 #ifdef CONFIG_SMP
402 	/* If we register an early console, allow CPU 0 to printk */
403 	cpu_set(smp_processor_id(), cpu_online_map);
404 #endif
405 }
406 
407 #ifdef CONFIG_SMP
408 static void __init
409 check_for_logical_procs (void)
410 {
411 	pal_logical_to_physical_t info;
412 	s64 status;
413 
414 	status = ia64_pal_logical_to_phys(0, &info);
415 	if (status == -1) {
416 		printk(KERN_INFO "No logical to physical processor mapping "
417 		       "available\n");
418 		return;
419 	}
420 	if (status) {
421 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
422 		       status);
423 		return;
424 	}
425 	/*
426 	 * Total number of siblings that BSP has.  Though not all of them
427 	 * may have booted successfully. The correct number of siblings
428 	 * booted is in info.overview_num_log.
429 	 */
430 	smp_num_siblings = info.overview_tpc;
431 	smp_num_cpucores = info.overview_cpp;
432 }
433 #endif
434 
435 static __initdata int nomca;
436 static __init int setup_nomca(char *s)
437 {
438 	nomca = 1;
439 	return 0;
440 }
441 early_param("nomca", setup_nomca);
442 
443 #ifdef CONFIG_PROC_VMCORE
444 /* elfcorehdr= specifies the location of elf core header
445  * stored by the crashed kernel.
446  */
447 static int __init parse_elfcorehdr(char *arg)
448 {
449 	if (!arg)
450 		return -EINVAL;
451 
452         elfcorehdr_addr = memparse(arg, &arg);
453 	return 0;
454 }
455 early_param("elfcorehdr", parse_elfcorehdr);
456 #endif /* CONFIG_PROC_VMCORE */
457 
458 void __init
459 setup_arch (char **cmdline_p)
460 {
461 	unw_init();
462 
463 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
464 
465 	*cmdline_p = __va(ia64_boot_param->command_line);
466 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
467 
468 	efi_init();
469 	io_port_init();
470 
471 	parse_early_param();
472 
473 #ifdef CONFIG_IA64_GENERIC
474 	machvec_init(NULL);
475 #endif
476 
477 	if (early_console_setup(*cmdline_p) == 0)
478 		mark_bsp_online();
479 
480 #ifdef CONFIG_ACPI
481 	/* Initialize the ACPI boot-time table parser */
482 	acpi_table_init();
483 # ifdef CONFIG_ACPI_NUMA
484 	acpi_numa_init();
485 # endif
486 #else
487 # ifdef CONFIG_SMP
488 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
489 # endif
490 #endif /* CONFIG_APCI_BOOT */
491 
492 	find_memory();
493 
494 	/* process SAL system table: */
495 	ia64_sal_init(__va(efi.sal_systab));
496 
497 	ia64_setup_printk_clock();
498 
499 #ifdef CONFIG_SMP
500 	cpu_physical_id(0) = hard_smp_processor_id();
501 
502 	cpu_set(0, cpu_sibling_map[0]);
503 	cpu_set(0, cpu_core_map[0]);
504 
505 	check_for_logical_procs();
506 	if (smp_num_cpucores > 1)
507 		printk(KERN_INFO
508 		       "cpu package is Multi-Core capable: number of cores=%d\n",
509 		       smp_num_cpucores);
510 	if (smp_num_siblings > 1)
511 		printk(KERN_INFO
512 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
513 		       smp_num_siblings);
514 #endif
515 
516 	cpu_init();	/* initialize the bootstrap CPU */
517 	mmu_context_init();	/* initialize context_id bitmap */
518 
519 	check_sal_cache_flush();
520 
521 #ifdef CONFIG_ACPI
522 	acpi_boot_init();
523 #endif
524 
525 #ifdef CONFIG_VT
526 	if (!conswitchp) {
527 # if defined(CONFIG_DUMMY_CONSOLE)
528 		conswitchp = &dummy_con;
529 # endif
530 # if defined(CONFIG_VGA_CONSOLE)
531 		/*
532 		 * Non-legacy systems may route legacy VGA MMIO range to system
533 		 * memory.  vga_con probes the MMIO hole, so memory looks like
534 		 * a VGA device to it.  The EFI memory map can tell us if it's
535 		 * memory so we can avoid this problem.
536 		 */
537 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
538 			conswitchp = &vga_con;
539 # endif
540 	}
541 #endif
542 
543 	/* enable IA-64 Machine Check Abort Handling unless disabled */
544 	if (!nomca)
545 		ia64_mca_init();
546 
547 	platform_setup(cmdline_p);
548 	paging_init();
549 }
550 
551 /*
552  * Display cpu info for all cpu's.
553  */
554 static int
555 show_cpuinfo (struct seq_file *m, void *v)
556 {
557 #ifdef CONFIG_SMP
558 #	define lpj	c->loops_per_jiffy
559 #	define cpunum	c->cpu
560 #else
561 #	define lpj	loops_per_jiffy
562 #	define cpunum	0
563 #endif
564 	static struct {
565 		unsigned long mask;
566 		const char *feature_name;
567 	} feature_bits[] = {
568 		{ 1UL << 0, "branchlong" },
569 		{ 1UL << 1, "spontaneous deferral"},
570 		{ 1UL << 2, "16-byte atomic ops" }
571 	};
572 	char features[128], *cp, *sep;
573 	struct cpuinfo_ia64 *c = v;
574 	unsigned long mask;
575 	unsigned long proc_freq;
576 	int i, size;
577 
578 	mask = c->features;
579 
580 	/* build the feature string: */
581 	memcpy(features, "standard", 9);
582 	cp = features;
583 	size = sizeof(features);
584 	sep = "";
585 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
586 		if (mask & feature_bits[i].mask) {
587 			cp += snprintf(cp, size, "%s%s", sep,
588 				       feature_bits[i].feature_name),
589 			sep = ", ";
590 			mask &= ~feature_bits[i].mask;
591 			size = sizeof(features) - (cp - features);
592 		}
593 	}
594 	if (mask && size > 1) {
595 		/* print unknown features as a hex value */
596 		snprintf(cp, size, "%s0x%lx", sep, mask);
597 	}
598 
599 	proc_freq = cpufreq_quick_get(cpunum);
600 	if (!proc_freq)
601 		proc_freq = c->proc_freq / 1000;
602 
603 	seq_printf(m,
604 		   "processor  : %d\n"
605 		   "vendor     : %s\n"
606 		   "arch       : IA-64\n"
607 		   "family     : %u\n"
608 		   "model      : %u\n"
609 		   "model name : %s\n"
610 		   "revision   : %u\n"
611 		   "archrev    : %u\n"
612 		   "features   : %s\n"
613 		   "cpu number : %lu\n"
614 		   "cpu regs   : %u\n"
615 		   "cpu MHz    : %lu.%06lu\n"
616 		   "itc MHz    : %lu.%06lu\n"
617 		   "BogoMIPS   : %lu.%02lu\n",
618 		   cpunum, c->vendor, c->family, c->model,
619 		   c->model_name, c->revision, c->archrev,
620 		   features, c->ppn, c->number,
621 		   proc_freq / 1000, proc_freq % 1000,
622 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
623 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
624 #ifdef CONFIG_SMP
625 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
626 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
627 		seq_printf(m,
628 		   	   "physical id: %u\n"
629 		   	   "core id    : %u\n"
630 		   	   "thread id  : %u\n",
631 		   	   c->socket_id, c->core_id, c->thread_id);
632 #endif
633 	seq_printf(m,"\n");
634 
635 	return 0;
636 }
637 
638 static void *
639 c_start (struct seq_file *m, loff_t *pos)
640 {
641 #ifdef CONFIG_SMP
642 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
643 		++*pos;
644 #endif
645 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
646 }
647 
648 static void *
649 c_next (struct seq_file *m, void *v, loff_t *pos)
650 {
651 	++*pos;
652 	return c_start(m, pos);
653 }
654 
655 static void
656 c_stop (struct seq_file *m, void *v)
657 {
658 }
659 
660 struct seq_operations cpuinfo_op = {
661 	.start =	c_start,
662 	.next =		c_next,
663 	.stop =		c_stop,
664 	.show =		show_cpuinfo
665 };
666 
667 static char brandname[128];
668 
669 static char * __cpuinit
670 get_model_name(__u8 family, __u8 model)
671 {
672 	char brand[128];
673 
674 	memcpy(brand, "Unknown", 8);
675 	if (ia64_pal_get_brand_info(brand)) {
676 		if (family == 0x7)
677 			memcpy(brand, "Merced", 7);
678 		else if (family == 0x1f) switch (model) {
679 			case 0: memcpy(brand, "McKinley", 9); break;
680 			case 1: memcpy(brand, "Madison", 8); break;
681 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
682 		}
683 	}
684 	if (brandname[0] == '\0')
685 		return strcpy(brandname, brand);
686 	else if (strcmp(brandname, brand) == 0)
687 		return brandname;
688 	else
689 		return kstrdup(brand, GFP_KERNEL);
690 }
691 
692 static void __cpuinit
693 identify_cpu (struct cpuinfo_ia64 *c)
694 {
695 	union {
696 		unsigned long bits[5];
697 		struct {
698 			/* id 0 & 1: */
699 			char vendor[16];
700 
701 			/* id 2 */
702 			u64 ppn;		/* processor serial number */
703 
704 			/* id 3: */
705 			unsigned number		:  8;
706 			unsigned revision	:  8;
707 			unsigned model		:  8;
708 			unsigned family		:  8;
709 			unsigned archrev	:  8;
710 			unsigned reserved	: 24;
711 
712 			/* id 4: */
713 			u64 features;
714 		} field;
715 	} cpuid;
716 	pal_vm_info_1_u_t vm1;
717 	pal_vm_info_2_u_t vm2;
718 	pal_status_t status;
719 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
720 	int i;
721 	for (i = 0; i < 5; ++i)
722 		cpuid.bits[i] = ia64_get_cpuid(i);
723 
724 	memcpy(c->vendor, cpuid.field.vendor, 16);
725 #ifdef CONFIG_SMP
726 	c->cpu = smp_processor_id();
727 
728 	/* below default values will be overwritten  by identify_siblings()
729 	 * for Multi-Threading/Multi-Core capable cpu's
730 	 */
731 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
732 	c->socket_id = -1;
733 
734 	identify_siblings(c);
735 #endif
736 	c->ppn = cpuid.field.ppn;
737 	c->number = cpuid.field.number;
738 	c->revision = cpuid.field.revision;
739 	c->model = cpuid.field.model;
740 	c->family = cpuid.field.family;
741 	c->archrev = cpuid.field.archrev;
742 	c->features = cpuid.field.features;
743 	c->model_name = get_model_name(c->family, c->model);
744 
745 	status = ia64_pal_vm_summary(&vm1, &vm2);
746 	if (status == PAL_STATUS_SUCCESS) {
747 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
748 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
749 	}
750 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
751 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
752 }
753 
754 void
755 setup_per_cpu_areas (void)
756 {
757 	/* start_kernel() requires this... */
758 #ifdef CONFIG_ACPI_HOTPLUG_CPU
759 	prefill_possible_map();
760 #endif
761 }
762 
763 /*
764  * Calculate the max. cache line size.
765  *
766  * In addition, the minimum of the i-cache stride sizes is calculated for
767  * "flush_icache_range()".
768  */
769 static void __cpuinit
770 get_max_cacheline_size (void)
771 {
772 	unsigned long line_size, max = 1;
773 	unsigned int cache_size = 0;
774 	u64 l, levels, unique_caches;
775         pal_cache_config_info_t cci;
776         s64 status;
777 
778         status = ia64_pal_cache_summary(&levels, &unique_caches);
779         if (status != 0) {
780                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
781                        __FUNCTION__, status);
782                 max = SMP_CACHE_BYTES;
783 		/* Safest setup for "flush_icache_range()" */
784 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
785 		goto out;
786         }
787 
788 	for (l = 0; l < levels; ++l) {
789 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
790 						    &cci);
791 		if (status != 0) {
792 			printk(KERN_ERR
793 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
794 			       __FUNCTION__, l, status);
795 			max = SMP_CACHE_BYTES;
796 			/* The safest setup for "flush_icache_range()" */
797 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
798 			cci.pcci_unified = 1;
799 		}
800 		line_size = 1 << cci.pcci_line_size;
801 		if (line_size > max)
802 			max = line_size;
803 		if (cache_size < cci.pcci_cache_size)
804 			cache_size = cci.pcci_cache_size;
805 		if (!cci.pcci_unified) {
806 			status = ia64_pal_cache_config_info(l,
807 						    /* cache_type (instruction)= */ 1,
808 						    &cci);
809 			if (status != 0) {
810 				printk(KERN_ERR
811 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
812 					__FUNCTION__, l, status);
813 				/* The safest setup for "flush_icache_range()" */
814 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
815 			}
816 		}
817 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
818 			ia64_i_cache_stride_shift = cci.pcci_stride;
819 	}
820   out:
821 #ifdef CONFIG_SMP
822 	max_cache_size = max(max_cache_size, cache_size);
823 #endif
824 	if (max > ia64_max_cacheline_size)
825 		ia64_max_cacheline_size = max;
826 }
827 
828 /*
829  * cpu_init() initializes state that is per-CPU.  This function acts
830  * as a 'CPU state barrier', nothing should get across.
831  */
832 void __cpuinit
833 cpu_init (void)
834 {
835 	extern void __cpuinit ia64_mmu_init (void *);
836 	unsigned long num_phys_stacked;
837 	pal_vm_info_2_u_t vmi;
838 	unsigned int max_ctx;
839 	struct cpuinfo_ia64 *cpu_info;
840 	void *cpu_data;
841 
842 	cpu_data = per_cpu_init();
843 
844 	/*
845 	 * We set ar.k3 so that assembly code in MCA handler can compute
846 	 * physical addresses of per cpu variables with a simple:
847 	 *   phys = ar.k3 + &per_cpu_var
848 	 */
849 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
850 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
851 
852 	get_max_cacheline_size();
853 
854 	/*
855 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
856 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
857 	 * depends on the data returned by identify_cpu().  We break the dependency by
858 	 * accessing cpu_data() through the canonical per-CPU address.
859 	 */
860 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
861 	identify_cpu(cpu_info);
862 
863 #ifdef CONFIG_MCKINLEY
864 	{
865 #		define FEATURE_SET 16
866 		struct ia64_pal_retval iprv;
867 
868 		if (cpu_info->family == 0x1f) {
869 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
870 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
871 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
872 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
873 		}
874 	}
875 #endif
876 
877 	/* Clear the stack memory reserved for pt_regs: */
878 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
879 
880 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
881 
882 	/*
883 	 * Initialize the page-table base register to a global
884 	 * directory with all zeroes.  This ensure that we can handle
885 	 * TLB-misses to user address-space even before we created the
886 	 * first user address-space.  This may happen, e.g., due to
887 	 * aggressive use of lfetch.fault.
888 	 */
889 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
890 
891 	/*
892 	 * Initialize default control register to defer speculative faults except
893 	 * for those arising from TLB misses, which are not deferred.  The
894 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
895 	 * the kernel must have recovery code for all speculative accesses).  Turn on
896 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
897 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
898 	 * be fine).
899 	 */
900 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
901 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
902 	atomic_inc(&init_mm.mm_count);
903 	current->active_mm = &init_mm;
904 	if (current->mm)
905 		BUG();
906 
907 	ia64_mmu_init(ia64_imva(cpu_data));
908 	ia64_mca_cpu_init(ia64_imva(cpu_data));
909 
910 #ifdef CONFIG_IA32_SUPPORT
911 	ia32_cpu_init();
912 #endif
913 
914 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
915 	ia64_set_itc(0);
916 
917 	/* disable all local interrupt sources: */
918 	ia64_set_itv(1 << 16);
919 	ia64_set_lrr0(1 << 16);
920 	ia64_set_lrr1(1 << 16);
921 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
922 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
923 
924 	/* clear TPR & XTP to enable all interrupt classes: */
925 	ia64_setreg(_IA64_REG_CR_TPR, 0);
926 #ifdef CONFIG_SMP
927 	normal_xtp();
928 #endif
929 
930 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
931 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
932 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
933 	else {
934 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
935 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
936 	}
937 	while (max_ctx < ia64_ctx.max_ctx) {
938 		unsigned int old = ia64_ctx.max_ctx;
939 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
940 			break;
941 	}
942 
943 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
944 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
945 		       "stacked regs\n");
946 		num_phys_stacked = 96;
947 	}
948 	/* size of physical stacked register partition plus 8 bytes: */
949 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
950 	platform_cpu_init();
951 	pm_idle = default_idle;
952 }
953 
954 /*
955  * On SMP systems, when the scheduler does migration-cost autodetection,
956  * it needs a way to flush as much of the CPU's caches as possible.
957  */
958 void sched_cacheflush(void)
959 {
960 	ia64_sal_cache_flush(3);
961 }
962 
963 void __init
964 check_bugs (void)
965 {
966 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
967 			       (unsigned long) __end___mckinley_e9_bundles);
968 }
969 
970 static int __init run_dmi_scan(void)
971 {
972 	dmi_scan_machine();
973 	return 0;
974 }
975 core_initcall(run_dmi_scan);
976