xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision a0776ec8)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern void efi_initialize_iomem_resources(struct resource *,
94 		struct resource *);
95 extern char _text[], _end[], _etext[];
96 
97 unsigned long ia64_max_cacheline_size;
98 
99 int dma_get_cache_alignment(void)
100 {
101         return ia64_max_cacheline_size;
102 }
103 EXPORT_SYMBOL(dma_get_cache_alignment);
104 
105 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110 
111 /*
112  * "flush_icache_range()" needs to know what processor dependent stride size to use
113  * when it makes i-cache(s) coherent with d-caches.
114  */
115 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117 
118 /*
119  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
120  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
121  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
122  * address of the second buffer must be aligned to (merge_mask+1) in order to be
123  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
124  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
125  * page-size of 2^64.
126  */
127 unsigned long ia64_max_iommu_merge_mask = ~0UL;
128 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129 
130 /*
131  * We use a special marker for the end of memory and it uses the extra (+1) slot
132  */
133 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134 int num_rsvd_regions __initdata;
135 
136 
137 /*
138  * Filter incoming memory segments based on the primitive map created from the boot
139  * parameters. Segments contained in the map are removed from the memory ranges. A
140  * caller-specified function is called with the memory ranges that remain after filtering.
141  * This routine does not assume the incoming segments are sorted.
142  */
143 int __init
144 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 {
146 	unsigned long range_start, range_end, prev_start;
147 	void (*func)(unsigned long, unsigned long, int);
148 	int i;
149 
150 #if IGNORE_PFN0
151 	if (start == PAGE_OFFSET) {
152 		printk(KERN_WARNING "warning: skipping physical page 0\n");
153 		start += PAGE_SIZE;
154 		if (start >= end) return 0;
155 	}
156 #endif
157 	/*
158 	 * lowest possible address(walker uses virtual)
159 	 */
160 	prev_start = PAGE_OFFSET;
161 	func = arg;
162 
163 	for (i = 0; i < num_rsvd_regions; ++i) {
164 		range_start = max(start, prev_start);
165 		range_end   = min(end, rsvd_region[i].start);
166 
167 		if (range_start < range_end)
168 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 
170 		/* nothing more available in this segment */
171 		if (range_end == end) return 0;
172 
173 		prev_start = rsvd_region[i].end;
174 	}
175 	/* end of memory marker allows full processing inside loop body */
176 	return 0;
177 }
178 
179 static void __init
180 sort_regions (struct rsvd_region *rsvd_region, int max)
181 {
182 	int j;
183 
184 	/* simple bubble sorting */
185 	while (max--) {
186 		for (j = 0; j < max; ++j) {
187 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
188 				struct rsvd_region tmp;
189 				tmp = rsvd_region[j];
190 				rsvd_region[j] = rsvd_region[j + 1];
191 				rsvd_region[j + 1] = tmp;
192 			}
193 		}
194 	}
195 }
196 
197 /*
198  * Request address space for all standard resources
199  */
200 static int __init register_memory(void)
201 {
202 	code_resource.start = ia64_tpa(_text);
203 	code_resource.end   = ia64_tpa(_etext) - 1;
204 	data_resource.start = ia64_tpa(_etext);
205 	data_resource.end   = ia64_tpa(_end) - 1;
206 	efi_initialize_iomem_resources(&code_resource, &data_resource);
207 
208 	return 0;
209 }
210 
211 __initcall(register_memory);
212 
213 /**
214  * reserve_memory - setup reserved memory areas
215  *
216  * Setup the reserved memory areas set aside for the boot parameters,
217  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
218  * see include/asm-ia64/meminit.h if you need to define more.
219  */
220 void __init
221 reserve_memory (void)
222 {
223 	int n = 0;
224 
225 	/*
226 	 * none of the entries in this table overlap
227 	 */
228 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
229 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
230 	n++;
231 
232 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
233 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
234 	n++;
235 
236 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
237 	rsvd_region[n].end   = (rsvd_region[n].start
238 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
239 	n++;
240 
241 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
242 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
243 	n++;
244 
245 #ifdef CONFIG_BLK_DEV_INITRD
246 	if (ia64_boot_param->initrd_start) {
247 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
248 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
249 		n++;
250 	}
251 #endif
252 
253 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
254 	n++;
255 
256 #ifdef CONFIG_KEXEC
257 	/* crashkernel=size@offset specifies the size to reserve for a crash
258 	 * kernel. If offset is 0, then it is determined automatically.
259 	 * By reserving this memory we guarantee that linux never set's it
260 	 * up as a DMA target.Useful for holding code to do something
261 	 * appropriate after a kernel panic.
262 	 */
263 	{
264 		char *from = strstr(saved_command_line, "crashkernel=");
265 		unsigned long base, size;
266 		if (from) {
267 			size = memparse(from + 12, &from);
268 			if (*from == '@')
269 				base = memparse(from+1, &from);
270 			else
271 				base = 0;
272 			if (size) {
273 				if (!base) {
274 					sort_regions(rsvd_region, n);
275 					base = kdump_find_rsvd_region(size,
276 							      	rsvd_region, n);
277 					}
278 				if (base != ~0UL) {
279 					rsvd_region[n].start =
280 						(unsigned long)__va(base);
281 					rsvd_region[n].end =
282 						(unsigned long)__va(base + size);
283 					n++;
284 					crashk_res.start = base;
285 					crashk_res.end = base + size - 1;
286 				}
287 			}
288 		}
289 		efi_memmap_res.start = ia64_boot_param->efi_memmap;
290                 efi_memmap_res.end = efi_memmap_res.start +
291                         ia64_boot_param->efi_memmap_size;
292                 boot_param_res.start = __pa(ia64_boot_param);
293                 boot_param_res.end = boot_param_res.start +
294                         sizeof(*ia64_boot_param);
295 	}
296 #endif
297 	/* end of memory marker */
298 	rsvd_region[n].start = ~0UL;
299 	rsvd_region[n].end   = ~0UL;
300 	n++;
301 
302 	num_rsvd_regions = n;
303 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
304 
305 	sort_regions(rsvd_region, num_rsvd_regions);
306 }
307 
308 
309 /**
310  * find_initrd - get initrd parameters from the boot parameter structure
311  *
312  * Grab the initrd start and end from the boot parameter struct given us by
313  * the boot loader.
314  */
315 void __init
316 find_initrd (void)
317 {
318 #ifdef CONFIG_BLK_DEV_INITRD
319 	if (ia64_boot_param->initrd_start) {
320 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
321 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
322 
323 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
324 		       initrd_start, ia64_boot_param->initrd_size);
325 	}
326 #endif
327 }
328 
329 static void __init
330 io_port_init (void)
331 {
332 	unsigned long phys_iobase;
333 
334 	/*
335 	 * Set `iobase' based on the EFI memory map or, failing that, the
336 	 * value firmware left in ar.k0.
337 	 *
338 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
339 	 * the port's virtual address, so ia32_load_state() loads it with a
340 	 * user virtual address.  But in ia64 mode, glibc uses the
341 	 * *physical* address in ar.k0 to mmap the appropriate area from
342 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
343 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
344 	 *
345 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
346 	 * any of the I/O port spaces and are done via MMIO using the
347 	 * virtual mmio_base from the appropriate io_space[].
348 	 */
349 	phys_iobase = efi_get_iobase();
350 	if (!phys_iobase) {
351 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
352 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
353 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
354 	}
355 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
356 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
357 
358 	/* setup legacy IO port space */
359 	io_space[0].mmio_base = ia64_iobase;
360 	io_space[0].sparse = 1;
361 	num_io_spaces = 1;
362 }
363 
364 /**
365  * early_console_setup - setup debugging console
366  *
367  * Consoles started here require little enough setup that we can start using
368  * them very early in the boot process, either right after the machine
369  * vector initialization, or even before if the drivers can detect their hw.
370  *
371  * Returns non-zero if a console couldn't be setup.
372  */
373 static inline int __init
374 early_console_setup (char *cmdline)
375 {
376 	int earlycons = 0;
377 
378 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
379 	{
380 		extern int sn_serial_console_early_setup(void);
381 		if (!sn_serial_console_early_setup())
382 			earlycons++;
383 	}
384 #endif
385 #ifdef CONFIG_EFI_PCDP
386 	if (!efi_setup_pcdp_console(cmdline))
387 		earlycons++;
388 #endif
389 #ifdef CONFIG_SERIAL_8250_CONSOLE
390 	if (!early_serial_console_init(cmdline))
391 		earlycons++;
392 #endif
393 
394 	return (earlycons) ? 0 : -1;
395 }
396 
397 static inline void
398 mark_bsp_online (void)
399 {
400 #ifdef CONFIG_SMP
401 	/* If we register an early console, allow CPU 0 to printk */
402 	cpu_set(smp_processor_id(), cpu_online_map);
403 #endif
404 }
405 
406 #ifdef CONFIG_SMP
407 static void __init
408 check_for_logical_procs (void)
409 {
410 	pal_logical_to_physical_t info;
411 	s64 status;
412 
413 	status = ia64_pal_logical_to_phys(0, &info);
414 	if (status == -1) {
415 		printk(KERN_INFO "No logical to physical processor mapping "
416 		       "available\n");
417 		return;
418 	}
419 	if (status) {
420 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
421 		       status);
422 		return;
423 	}
424 	/*
425 	 * Total number of siblings that BSP has.  Though not all of them
426 	 * may have booted successfully. The correct number of siblings
427 	 * booted is in info.overview_num_log.
428 	 */
429 	smp_num_siblings = info.overview_tpc;
430 	smp_num_cpucores = info.overview_cpp;
431 }
432 #endif
433 
434 static __initdata int nomca;
435 static __init int setup_nomca(char *s)
436 {
437 	nomca = 1;
438 	return 0;
439 }
440 early_param("nomca", setup_nomca);
441 
442 #ifdef CONFIG_PROC_VMCORE
443 /* elfcorehdr= specifies the location of elf core header
444  * stored by the crashed kernel.
445  */
446 static int __init parse_elfcorehdr(char *arg)
447 {
448 	if (!arg)
449 		return -EINVAL;
450 
451         elfcorehdr_addr = memparse(arg, &arg);
452 	return 0;
453 }
454 early_param("elfcorehdr", parse_elfcorehdr);
455 #endif /* CONFIG_PROC_VMCORE */
456 
457 void __init
458 setup_arch (char **cmdline_p)
459 {
460 	unw_init();
461 
462 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
463 
464 	*cmdline_p = __va(ia64_boot_param->command_line);
465 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
466 
467 	efi_init();
468 	io_port_init();
469 
470 	parse_early_param();
471 
472 #ifdef CONFIG_IA64_GENERIC
473 	machvec_init(NULL);
474 #endif
475 
476 	if (early_console_setup(*cmdline_p) == 0)
477 		mark_bsp_online();
478 
479 #ifdef CONFIG_ACPI
480 	/* Initialize the ACPI boot-time table parser */
481 	acpi_table_init();
482 # ifdef CONFIG_ACPI_NUMA
483 	acpi_numa_init();
484 # endif
485 #else
486 # ifdef CONFIG_SMP
487 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
488 # endif
489 #endif /* CONFIG_APCI_BOOT */
490 
491 	find_memory();
492 
493 	/* process SAL system table: */
494 	ia64_sal_init(__va(efi.sal_systab));
495 
496 	ia64_setup_printk_clock();
497 
498 #ifdef CONFIG_SMP
499 	cpu_physical_id(0) = hard_smp_processor_id();
500 
501 	cpu_set(0, cpu_sibling_map[0]);
502 	cpu_set(0, cpu_core_map[0]);
503 
504 	check_for_logical_procs();
505 	if (smp_num_cpucores > 1)
506 		printk(KERN_INFO
507 		       "cpu package is Multi-Core capable: number of cores=%d\n",
508 		       smp_num_cpucores);
509 	if (smp_num_siblings > 1)
510 		printk(KERN_INFO
511 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
512 		       smp_num_siblings);
513 #endif
514 
515 	cpu_init();	/* initialize the bootstrap CPU */
516 	mmu_context_init();	/* initialize context_id bitmap */
517 
518 	check_sal_cache_flush();
519 
520 #ifdef CONFIG_ACPI
521 	acpi_boot_init();
522 #endif
523 
524 #ifdef CONFIG_VT
525 	if (!conswitchp) {
526 # if defined(CONFIG_DUMMY_CONSOLE)
527 		conswitchp = &dummy_con;
528 # endif
529 # if defined(CONFIG_VGA_CONSOLE)
530 		/*
531 		 * Non-legacy systems may route legacy VGA MMIO range to system
532 		 * memory.  vga_con probes the MMIO hole, so memory looks like
533 		 * a VGA device to it.  The EFI memory map can tell us if it's
534 		 * memory so we can avoid this problem.
535 		 */
536 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
537 			conswitchp = &vga_con;
538 # endif
539 	}
540 #endif
541 
542 	/* enable IA-64 Machine Check Abort Handling unless disabled */
543 	if (!nomca)
544 		ia64_mca_init();
545 
546 	platform_setup(cmdline_p);
547 	paging_init();
548 }
549 
550 /*
551  * Display cpu info for all cpu's.
552  */
553 static int
554 show_cpuinfo (struct seq_file *m, void *v)
555 {
556 #ifdef CONFIG_SMP
557 #	define lpj	c->loops_per_jiffy
558 #	define cpunum	c->cpu
559 #else
560 #	define lpj	loops_per_jiffy
561 #	define cpunum	0
562 #endif
563 	static struct {
564 		unsigned long mask;
565 		const char *feature_name;
566 	} feature_bits[] = {
567 		{ 1UL << 0, "branchlong" },
568 		{ 1UL << 1, "spontaneous deferral"},
569 		{ 1UL << 2, "16-byte atomic ops" }
570 	};
571 	char features[128], *cp, sep;
572 	struct cpuinfo_ia64 *c = v;
573 	unsigned long mask;
574 	unsigned long proc_freq;
575 	int i;
576 
577 	mask = c->features;
578 
579 	/* build the feature string: */
580 	memcpy(features, " standard", 10);
581 	cp = features;
582 	sep = 0;
583 	for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
584 		if (mask & feature_bits[i].mask) {
585 			if (sep)
586 				*cp++ = sep;
587 			sep = ',';
588 			*cp++ = ' ';
589 			strcpy(cp, feature_bits[i].feature_name);
590 			cp += strlen(feature_bits[i].feature_name);
591 			mask &= ~feature_bits[i].mask;
592 		}
593 	}
594 	if (mask) {
595 		/* print unknown features as a hex value: */
596 		if (sep)
597 			*cp++ = sep;
598 		sprintf(cp, " 0x%lx", mask);
599 	}
600 
601 	proc_freq = cpufreq_quick_get(cpunum);
602 	if (!proc_freq)
603 		proc_freq = c->proc_freq / 1000;
604 
605 	seq_printf(m,
606 		   "processor  : %d\n"
607 		   "vendor     : %s\n"
608 		   "arch       : IA-64\n"
609 		   "family     : %u\n"
610 		   "model      : %u\n"
611 		   "model name : %s\n"
612 		   "revision   : %u\n"
613 		   "archrev    : %u\n"
614 		   "features   :%s\n"	/* don't change this---it _is_ right! */
615 		   "cpu number : %lu\n"
616 		   "cpu regs   : %u\n"
617 		   "cpu MHz    : %lu.%06lu\n"
618 		   "itc MHz    : %lu.%06lu\n"
619 		   "BogoMIPS   : %lu.%02lu\n",
620 		   cpunum, c->vendor, c->family, c->model,
621 		   c->model_name, c->revision, c->archrev,
622 		   features, c->ppn, c->number,
623 		   proc_freq / 1000, proc_freq % 1000,
624 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
625 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
626 #ifdef CONFIG_SMP
627 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
628 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
629 		seq_printf(m,
630 		   	   "physical id: %u\n"
631 		   	   "core id    : %u\n"
632 		   	   "thread id  : %u\n",
633 		   	   c->socket_id, c->core_id, c->thread_id);
634 #endif
635 	seq_printf(m,"\n");
636 
637 	return 0;
638 }
639 
640 static void *
641 c_start (struct seq_file *m, loff_t *pos)
642 {
643 #ifdef CONFIG_SMP
644 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
645 		++*pos;
646 #endif
647 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
648 }
649 
650 static void *
651 c_next (struct seq_file *m, void *v, loff_t *pos)
652 {
653 	++*pos;
654 	return c_start(m, pos);
655 }
656 
657 static void
658 c_stop (struct seq_file *m, void *v)
659 {
660 }
661 
662 struct seq_operations cpuinfo_op = {
663 	.start =	c_start,
664 	.next =		c_next,
665 	.stop =		c_stop,
666 	.show =		show_cpuinfo
667 };
668 
669 static char brandname[128];
670 
671 static char * __cpuinit
672 get_model_name(__u8 family, __u8 model)
673 {
674 	char brand[128];
675 
676 	memcpy(brand, "Unknown", 8);
677 	if (ia64_pal_get_brand_info(brand)) {
678 		if (family == 0x7)
679 			memcpy(brand, "Merced", 7);
680 		else if (family == 0x1f) switch (model) {
681 			case 0: memcpy(brand, "McKinley", 9); break;
682 			case 1: memcpy(brand, "Madison", 8); break;
683 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
684 		}
685 	}
686 	if (brandname[0] == '\0')
687 		return strcpy(brandname, brand);
688 	else if (strcmp(brandname, brand) == 0)
689 		return brandname;
690 	else
691 		return kstrdup(brand, GFP_KERNEL);
692 }
693 
694 static void __cpuinit
695 identify_cpu (struct cpuinfo_ia64 *c)
696 {
697 	union {
698 		unsigned long bits[5];
699 		struct {
700 			/* id 0 & 1: */
701 			char vendor[16];
702 
703 			/* id 2 */
704 			u64 ppn;		/* processor serial number */
705 
706 			/* id 3: */
707 			unsigned number		:  8;
708 			unsigned revision	:  8;
709 			unsigned model		:  8;
710 			unsigned family		:  8;
711 			unsigned archrev	:  8;
712 			unsigned reserved	: 24;
713 
714 			/* id 4: */
715 			u64 features;
716 		} field;
717 	} cpuid;
718 	pal_vm_info_1_u_t vm1;
719 	pal_vm_info_2_u_t vm2;
720 	pal_status_t status;
721 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
722 	int i;
723 	for (i = 0; i < 5; ++i)
724 		cpuid.bits[i] = ia64_get_cpuid(i);
725 
726 	memcpy(c->vendor, cpuid.field.vendor, 16);
727 #ifdef CONFIG_SMP
728 	c->cpu = smp_processor_id();
729 
730 	/* below default values will be overwritten  by identify_siblings()
731 	 * for Multi-Threading/Multi-Core capable cpu's
732 	 */
733 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
734 	c->socket_id = -1;
735 
736 	identify_siblings(c);
737 #endif
738 	c->ppn = cpuid.field.ppn;
739 	c->number = cpuid.field.number;
740 	c->revision = cpuid.field.revision;
741 	c->model = cpuid.field.model;
742 	c->family = cpuid.field.family;
743 	c->archrev = cpuid.field.archrev;
744 	c->features = cpuid.field.features;
745 	c->model_name = get_model_name(c->family, c->model);
746 
747 	status = ia64_pal_vm_summary(&vm1, &vm2);
748 	if (status == PAL_STATUS_SUCCESS) {
749 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
750 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
751 	}
752 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
753 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
754 }
755 
756 void
757 setup_per_cpu_areas (void)
758 {
759 	/* start_kernel() requires this... */
760 #ifdef CONFIG_ACPI_HOTPLUG_CPU
761 	prefill_possible_map();
762 #endif
763 }
764 
765 /*
766  * Calculate the max. cache line size.
767  *
768  * In addition, the minimum of the i-cache stride sizes is calculated for
769  * "flush_icache_range()".
770  */
771 static void __cpuinit
772 get_max_cacheline_size (void)
773 {
774 	unsigned long line_size, max = 1;
775 	unsigned int cache_size = 0;
776 	u64 l, levels, unique_caches;
777         pal_cache_config_info_t cci;
778         s64 status;
779 
780         status = ia64_pal_cache_summary(&levels, &unique_caches);
781         if (status != 0) {
782                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
783                        __FUNCTION__, status);
784                 max = SMP_CACHE_BYTES;
785 		/* Safest setup for "flush_icache_range()" */
786 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
787 		goto out;
788         }
789 
790 	for (l = 0; l < levels; ++l) {
791 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
792 						    &cci);
793 		if (status != 0) {
794 			printk(KERN_ERR
795 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
796 			       __FUNCTION__, l, status);
797 			max = SMP_CACHE_BYTES;
798 			/* The safest setup for "flush_icache_range()" */
799 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
800 			cci.pcci_unified = 1;
801 		}
802 		line_size = 1 << cci.pcci_line_size;
803 		if (line_size > max)
804 			max = line_size;
805 		if (cache_size < cci.pcci_cache_size)
806 			cache_size = cci.pcci_cache_size;
807 		if (!cci.pcci_unified) {
808 			status = ia64_pal_cache_config_info(l,
809 						    /* cache_type (instruction)= */ 1,
810 						    &cci);
811 			if (status != 0) {
812 				printk(KERN_ERR
813 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
814 					__FUNCTION__, l, status);
815 				/* The safest setup for "flush_icache_range()" */
816 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
817 			}
818 		}
819 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
820 			ia64_i_cache_stride_shift = cci.pcci_stride;
821 	}
822   out:
823 #ifdef CONFIG_SMP
824 	max_cache_size = max(max_cache_size, cache_size);
825 #endif
826 	if (max > ia64_max_cacheline_size)
827 		ia64_max_cacheline_size = max;
828 }
829 
830 /*
831  * cpu_init() initializes state that is per-CPU.  This function acts
832  * as a 'CPU state barrier', nothing should get across.
833  */
834 void __cpuinit
835 cpu_init (void)
836 {
837 	extern void __cpuinit ia64_mmu_init (void *);
838 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
839 	unsigned long num_phys_stacked;
840 	pal_vm_info_2_u_t vmi;
841 	unsigned int max_ctx;
842 	struct cpuinfo_ia64 *cpu_info;
843 	void *cpu_data;
844 
845 	cpu_data = per_cpu_init();
846 
847 	/*
848 	 * We set ar.k3 so that assembly code in MCA handler can compute
849 	 * physical addresses of per cpu variables with a simple:
850 	 *   phys = ar.k3 + &per_cpu_var
851 	 */
852 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
853 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
854 
855 	get_max_cacheline_size();
856 
857 	/*
858 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
859 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
860 	 * depends on the data returned by identify_cpu().  We break the dependency by
861 	 * accessing cpu_data() through the canonical per-CPU address.
862 	 */
863 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
864 	identify_cpu(cpu_info);
865 
866 #ifdef CONFIG_MCKINLEY
867 	{
868 #		define FEATURE_SET 16
869 		struct ia64_pal_retval iprv;
870 
871 		if (cpu_info->family == 0x1f) {
872 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
873 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
874 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
875 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
876 		}
877 	}
878 #endif
879 
880 	/* Clear the stack memory reserved for pt_regs: */
881 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
882 
883 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
884 
885 	/*
886 	 * Initialize the page-table base register to a global
887 	 * directory with all zeroes.  This ensure that we can handle
888 	 * TLB-misses to user address-space even before we created the
889 	 * first user address-space.  This may happen, e.g., due to
890 	 * aggressive use of lfetch.fault.
891 	 */
892 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
893 
894 	/*
895 	 * Initialize default control register to defer speculative faults except
896 	 * for those arising from TLB misses, which are not deferred.  The
897 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
898 	 * the kernel must have recovery code for all speculative accesses).  Turn on
899 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
900 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
901 	 * be fine).
902 	 */
903 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
904 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
905 	atomic_inc(&init_mm.mm_count);
906 	current->active_mm = &init_mm;
907 	if (current->mm)
908 		BUG();
909 
910 	ia64_mmu_init(ia64_imva(cpu_data));
911 	ia64_mca_cpu_init(ia64_imva(cpu_data));
912 
913 #ifdef CONFIG_IA32_SUPPORT
914 	ia32_cpu_init();
915 #endif
916 
917 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
918 	ia64_set_itc(0);
919 
920 	/* disable all local interrupt sources: */
921 	ia64_set_itv(1 << 16);
922 	ia64_set_lrr0(1 << 16);
923 	ia64_set_lrr1(1 << 16);
924 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
925 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
926 
927 	/* clear TPR & XTP to enable all interrupt classes: */
928 	ia64_setreg(_IA64_REG_CR_TPR, 0);
929 #ifdef CONFIG_SMP
930 	normal_xtp();
931 #endif
932 
933 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
934 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
935 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
936 	else {
937 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
938 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
939 	}
940 	while (max_ctx < ia64_ctx.max_ctx) {
941 		unsigned int old = ia64_ctx.max_ctx;
942 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
943 			break;
944 	}
945 
946 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
947 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
948 		       "stacked regs\n");
949 		num_phys_stacked = 96;
950 	}
951 	/* size of physical stacked register partition plus 8 bytes: */
952 	if (num_phys_stacked > max_num_phys_stacked) {
953 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
954 		max_num_phys_stacked = num_phys_stacked;
955 	}
956 	platform_cpu_init();
957 	pm_idle = default_idle;
958 }
959 
960 /*
961  * On SMP systems, when the scheduler does migration-cost autodetection,
962  * it needs a way to flush as much of the CPU's caches as possible.
963  */
964 void sched_cacheflush(void)
965 {
966 	ia64_sal_cache_flush(3);
967 }
968 
969 void __init
970 check_bugs (void)
971 {
972 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
973 			       (unsigned long) __end___mckinley_e9_bundles);
974 }
975 
976 static int __init run_dmi_scan(void)
977 {
978 	dmi_scan_machine();
979 	return 0;
980 }
981 core_initcall(run_dmi_scan);
982