xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *	Stephane Eranian <eranian@hpl.hp.com>
8  * Copyright (C) 2000, 2004 Intel Corp
9  * 	Rohit Seth <rohit.seth@intel.com>
10  * 	Suresh Siddha <suresh.b.siddha@intel.com>
11  * 	Gordon Jin <gordon.jin@intel.com>
12  * Copyright (C) 1999 VA Linux Systems
13  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14  *
15  * 12/26/04 S.Siddha, G.Jin, R.Seth
16  *			Add multi-threading and multi-core detection
17  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
18  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
19  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
20  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
21  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
22  * 01/07/99 S.Eranian	added the support for command line argument
23  * 06/24/99 W.Drummond	added boot_cpu_data.
24  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
25  */
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/pgtable.h>
29 
30 #include <linux/acpi.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/cpu.h>
34 #include <linux/kdev_t.h>
35 #include <linux/kernel.h>
36 #include <linux/memblock.h>
37 #include <linux/reboot.h>
38 #include <linux/sched/mm.h>
39 #include <linux/sched/clock.h>
40 #include <linux/sched/task_stack.h>
41 #include <linux/seq_file.h>
42 #include <linux/string.h>
43 #include <linux/threads.h>
44 #include <linux/screen_info.h>
45 #include <linux/dmi.h>
46 #include <linux/root_dev.h>
47 #include <linux/serial.h>
48 #include <linux/serial_core.h>
49 #include <linux/efi.h>
50 #include <linux/initrd.h>
51 #include <linux/pm.h>
52 #include <linux/cpufreq.h>
53 #include <linux/kexec.h>
54 #include <linux/crash_dump.h>
55 
56 #include <asm/mca.h>
57 #include <asm/meminit.h>
58 #include <asm/page.h>
59 #include <asm/patch.h>
60 #include <asm/processor.h>
61 #include <asm/sal.h>
62 #include <asm/sections.h>
63 #include <asm/setup.h>
64 #include <asm/smp.h>
65 #include <asm/tlbflush.h>
66 #include <asm/unistd.h>
67 #include <asm/uv/uv.h>
68 #include <asm/xtp.h>
69 
70 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
71 # error "struct cpuinfo_ia64 too big!"
72 #endif
73 
74 char ia64_platform_name[64];
75 
76 #ifdef CONFIG_SMP
77 unsigned long __per_cpu_offset[NR_CPUS];
78 EXPORT_SYMBOL(__per_cpu_offset);
79 #endif
80 
81 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info);
82 EXPORT_SYMBOL(ia64_cpu_info);
83 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
84 #ifdef CONFIG_SMP
85 EXPORT_SYMBOL(local_per_cpu_offset);
86 #endif
87 unsigned long ia64_cycles_per_usec;
88 struct ia64_boot_param *ia64_boot_param;
89 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_EFI)
90 struct screen_info screen_info;
91 #endif
92 #ifdef CONFIG_VGA_CONSOLE
93 unsigned long vga_console_iobase;
94 unsigned long vga_console_membase;
95 #endif
96 
97 static struct resource data_resource = {
98 	.name	= "Kernel data",
99 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
100 };
101 
102 static struct resource code_resource = {
103 	.name	= "Kernel code",
104 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105 };
106 
107 static struct resource bss_resource = {
108 	.name	= "Kernel bss",
109 	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
110 };
111 
112 unsigned long ia64_max_cacheline_size;
113 
114 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
115 EXPORT_SYMBOL(ia64_iobase);
116 struct io_space io_space[MAX_IO_SPACES];
117 EXPORT_SYMBOL(io_space);
118 unsigned int num_io_spaces;
119 
120 /*
121  * "flush_icache_range()" needs to know what processor dependent stride size to use
122  * when it makes i-cache(s) coherent with d-caches.
123  */
124 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
125 unsigned long ia64_i_cache_stride_shift = ~0;
126 /*
127  * "clflush_cache_range()" needs to know what processor dependent stride size to
128  * use when it flushes cache lines including both d-cache and i-cache.
129  */
130 /* Safest way to go: 32 bytes by 32 bytes */
131 #define	CACHE_STRIDE_SHIFT	5
132 unsigned long ia64_cache_stride_shift = ~0;
133 
134 /*
135  * We use a special marker for the end of memory and it uses the extra (+1) slot
136  */
137 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
138 static int num_rsvd_regions __initdata;
139 
140 
141 /*
142  * Filter incoming memory segments based on the primitive map created from the boot
143  * parameters. Segments contained in the map are removed from the memory ranges. A
144  * caller-specified function is called with the memory ranges that remain after filtering.
145  * This routine does not assume the incoming segments are sorted.
146  */
147 int __init
148 filter_rsvd_memory (u64 start, u64 end, void *arg)
149 {
150 	u64 range_start, range_end, prev_start;
151 	void (*func)(unsigned long, unsigned long, int);
152 	int i;
153 
154 #if IGNORE_PFN0
155 	if (start == PAGE_OFFSET) {
156 		printk(KERN_WARNING "warning: skipping physical page 0\n");
157 		start += PAGE_SIZE;
158 		if (start >= end) return 0;
159 	}
160 #endif
161 	/*
162 	 * lowest possible address(walker uses virtual)
163 	 */
164 	prev_start = PAGE_OFFSET;
165 	func = arg;
166 
167 	for (i = 0; i < num_rsvd_regions; ++i) {
168 		range_start = max(start, prev_start);
169 		range_end   = min(end, rsvd_region[i].start);
170 
171 		if (range_start < range_end)
172 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
173 
174 		/* nothing more available in this segment */
175 		if (range_end == end) return 0;
176 
177 		prev_start = rsvd_region[i].end;
178 	}
179 	/* end of memory marker allows full processing inside loop body */
180 	return 0;
181 }
182 
183 /*
184  * Similar to "filter_rsvd_memory()", but the reserved memory ranges
185  * are not filtered out.
186  */
187 int __init
188 filter_memory(u64 start, u64 end, void *arg)
189 {
190 	void (*func)(unsigned long, unsigned long, int);
191 
192 #if IGNORE_PFN0
193 	if (start == PAGE_OFFSET) {
194 		printk(KERN_WARNING "warning: skipping physical page 0\n");
195 		start += PAGE_SIZE;
196 		if (start >= end)
197 			return 0;
198 	}
199 #endif
200 	func = arg;
201 	if (start < end)
202 		call_pernode_memory(__pa(start), end - start, func);
203 	return 0;
204 }
205 
206 static void __init
207 sort_regions (struct rsvd_region *rsvd_region, int max)
208 {
209 	int j;
210 
211 	/* simple bubble sorting */
212 	while (max--) {
213 		for (j = 0; j < max; ++j) {
214 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
215 				swap(rsvd_region[j], rsvd_region[j + 1]);
216 			}
217 		}
218 	}
219 }
220 
221 /* merge overlaps */
222 static int __init
223 merge_regions (struct rsvd_region *rsvd_region, int max)
224 {
225 	int i;
226 	for (i = 1; i < max; ++i) {
227 		if (rsvd_region[i].start >= rsvd_region[i-1].end)
228 			continue;
229 		if (rsvd_region[i].end > rsvd_region[i-1].end)
230 			rsvd_region[i-1].end = rsvd_region[i].end;
231 		--max;
232 		memmove(&rsvd_region[i], &rsvd_region[i+1],
233 			(max - i) * sizeof(struct rsvd_region));
234 	}
235 	return max;
236 }
237 
238 /*
239  * Request address space for all standard resources
240  */
241 static int __init register_memory(void)
242 {
243 	code_resource.start = ia64_tpa(_text);
244 	code_resource.end   = ia64_tpa(_etext) - 1;
245 	data_resource.start = ia64_tpa(_etext);
246 	data_resource.end   = ia64_tpa(_edata) - 1;
247 	bss_resource.start  = ia64_tpa(__bss_start);
248 	bss_resource.end    = ia64_tpa(_end) - 1;
249 	efi_initialize_iomem_resources(&code_resource, &data_resource,
250 			&bss_resource);
251 
252 	return 0;
253 }
254 
255 __initcall(register_memory);
256 
257 
258 #ifdef CONFIG_KEXEC
259 
260 /*
261  * This function checks if the reserved crashkernel is allowed on the specific
262  * IA64 machine flavour. Machines without an IO TLB use swiotlb and require
263  * some memory below 4 GB (i.e. in 32 bit area), see the implementation of
264  * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that
265  * in kdump case. See the comment in sba_init() in sba_iommu.c.
266  *
267  * So, the only machvec that really supports loading the kdump kernel
268  * over 4 GB is "uv".
269  */
270 static int __init check_crashkernel_memory(unsigned long pbase, size_t size)
271 {
272 	if (is_uv_system())
273 		return 1;
274 	else
275 		return pbase < (1UL << 32);
276 }
277 
278 static void __init setup_crashkernel(unsigned long total, int *n)
279 {
280 	unsigned long long base = 0, size = 0;
281 	int ret;
282 
283 	ret = parse_crashkernel(boot_command_line, total,
284 			&size, &base);
285 	if (ret == 0 && size > 0) {
286 		if (!base) {
287 			sort_regions(rsvd_region, *n);
288 			*n = merge_regions(rsvd_region, *n);
289 			base = kdump_find_rsvd_region(size,
290 					rsvd_region, *n);
291 		}
292 
293 		if (!check_crashkernel_memory(base, size)) {
294 			pr_warn("crashkernel: There would be kdump memory "
295 				"at %ld GB but this is unusable because it "
296 				"must\nbe below 4 GB. Change the memory "
297 				"configuration of the machine.\n",
298 				(unsigned long)(base >> 30));
299 			return;
300 		}
301 
302 		if (base != ~0UL) {
303 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
304 					"for crashkernel (System RAM: %ldMB)\n",
305 					(unsigned long)(size >> 20),
306 					(unsigned long)(base >> 20),
307 					(unsigned long)(total >> 20));
308 			rsvd_region[*n].start =
309 				(unsigned long)__va(base);
310 			rsvd_region[*n].end =
311 				(unsigned long)__va(base + size);
312 			(*n)++;
313 			crashk_res.start = base;
314 			crashk_res.end = base + size - 1;
315 		}
316 	}
317 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
318 	efi_memmap_res.end = efi_memmap_res.start +
319 		ia64_boot_param->efi_memmap_size;
320 	boot_param_res.start = __pa(ia64_boot_param);
321 	boot_param_res.end = boot_param_res.start +
322 		sizeof(*ia64_boot_param);
323 }
324 #else
325 static inline void __init setup_crashkernel(unsigned long total, int *n)
326 {}
327 #endif
328 
329 #ifdef CONFIG_CRASH_DUMP
330 static int __init reserve_elfcorehdr(u64 *start, u64 *end)
331 {
332 	u64 length;
333 
334 	/* We get the address using the kernel command line,
335 	 * but the size is extracted from the EFI tables.
336 	 * Both address and size are required for reservation
337 	 * to work properly.
338 	 */
339 
340 	if (!is_vmcore_usable())
341 		return -EINVAL;
342 
343 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
344 		vmcore_unusable();
345 		return -EINVAL;
346 	}
347 
348 	*start = (unsigned long)__va(elfcorehdr_addr);
349 	*end = *start + length;
350 	return 0;
351 }
352 #endif /* CONFIG_CRASH_DUMP */
353 
354 /**
355  * reserve_memory - setup reserved memory areas
356  *
357  * Setup the reserved memory areas set aside for the boot parameters,
358  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
359  * see arch/ia64/include/asm/meminit.h if you need to define more.
360  */
361 void __init
362 reserve_memory (void)
363 {
364 	int n = 0;
365 	unsigned long total_memory;
366 
367 	/*
368 	 * none of the entries in this table overlap
369 	 */
370 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
371 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
372 	n++;
373 
374 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
375 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
376 	n++;
377 
378 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
379 	rsvd_region[n].end   = (rsvd_region[n].start
380 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
381 	n++;
382 
383 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
384 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
385 	n++;
386 
387 #ifdef CONFIG_BLK_DEV_INITRD
388 	if (ia64_boot_param->initrd_start) {
389 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
390 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
391 		n++;
392 	}
393 #endif
394 
395 #ifdef CONFIG_CRASH_DUMP
396 	if (reserve_elfcorehdr(&rsvd_region[n].start,
397 			       &rsvd_region[n].end) == 0)
398 		n++;
399 #endif
400 
401 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
402 	n++;
403 
404 	setup_crashkernel(total_memory, &n);
405 
406 	/* end of memory marker */
407 	rsvd_region[n].start = ~0UL;
408 	rsvd_region[n].end   = ~0UL;
409 	n++;
410 
411 	num_rsvd_regions = n;
412 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
413 
414 	sort_regions(rsvd_region, num_rsvd_regions);
415 	num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions);
416 
417 	/* reserve all regions except the end of memory marker with memblock */
418 	for (n = 0; n < num_rsvd_regions - 1; n++) {
419 		struct rsvd_region *region = &rsvd_region[n];
420 		phys_addr_t addr = __pa(region->start);
421 		phys_addr_t size = region->end - region->start;
422 
423 		memblock_reserve(addr, size);
424 	}
425 }
426 
427 /**
428  * find_initrd - get initrd parameters from the boot parameter structure
429  *
430  * Grab the initrd start and end from the boot parameter struct given us by
431  * the boot loader.
432  */
433 void __init
434 find_initrd (void)
435 {
436 #ifdef CONFIG_BLK_DEV_INITRD
437 	if (ia64_boot_param->initrd_start) {
438 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
439 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
440 
441 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n",
442 		       initrd_start, ia64_boot_param->initrd_size);
443 	}
444 #endif
445 }
446 
447 static void __init
448 io_port_init (void)
449 {
450 	unsigned long phys_iobase;
451 
452 	/*
453 	 * Set `iobase' based on the EFI memory map or, failing that, the
454 	 * value firmware left in ar.k0.
455 	 *
456 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
457 	 * the port's virtual address, so ia32_load_state() loads it with a
458 	 * user virtual address.  But in ia64 mode, glibc uses the
459 	 * *physical* address in ar.k0 to mmap the appropriate area from
460 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
461 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
462 	 *
463 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
464 	 * any of the I/O port spaces and are done via MMIO using the
465 	 * virtual mmio_base from the appropriate io_space[].
466 	 */
467 	phys_iobase = efi_get_iobase();
468 	if (!phys_iobase) {
469 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
470 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
471 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
472 	}
473 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
474 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
475 
476 	/* setup legacy IO port space */
477 	io_space[0].mmio_base = ia64_iobase;
478 	io_space[0].sparse = 1;
479 	num_io_spaces = 1;
480 }
481 
482 /**
483  * early_console_setup - setup debugging console
484  *
485  * Consoles started here require little enough setup that we can start using
486  * them very early in the boot process, either right after the machine
487  * vector initialization, or even before if the drivers can detect their hw.
488  *
489  * Returns non-zero if a console couldn't be setup.
490  */
491 static inline int __init
492 early_console_setup (char *cmdline)
493 {
494 #ifdef CONFIG_EFI_PCDP
495 	if (!efi_setup_pcdp_console(cmdline))
496 		return 0;
497 #endif
498 	return -1;
499 }
500 
501 static void __init
502 screen_info_setup(void)
503 {
504 #ifdef CONFIG_VGA_CONSOLE
505 	unsigned int orig_x, orig_y, num_cols, num_rows, font_height;
506 
507 	memset(&screen_info, 0, sizeof(screen_info));
508 
509 	if (!ia64_boot_param->console_info.num_rows ||
510 	    !ia64_boot_param->console_info.num_cols) {
511 		printk(KERN_WARNING "invalid screen-info, guessing 80x25\n");
512 		orig_x = 0;
513 		orig_y = 0;
514 		num_cols = 80;
515 		num_rows = 25;
516 		font_height = 16;
517 	} else {
518 		orig_x = ia64_boot_param->console_info.orig_x;
519 		orig_y = ia64_boot_param->console_info.orig_y;
520 		num_cols = ia64_boot_param->console_info.num_cols;
521 		num_rows = ia64_boot_param->console_info.num_rows;
522 		font_height = 400 / num_rows;
523 	}
524 
525 	screen_info.orig_x = orig_x;
526 	screen_info.orig_y = orig_y;
527 	screen_info.orig_video_cols  = num_cols;
528 	screen_info.orig_video_lines = num_rows;
529 	screen_info.orig_video_points = font_height;
530 	screen_info.orig_video_mode = 3;	/* XXX fake */
531 	screen_info.orig_video_isVGA = 1;	/* XXX fake */
532 	screen_info.orig_video_ega_bx = 3;	/* XXX fake */
533 #endif
534 }
535 
536 static inline void
537 mark_bsp_online (void)
538 {
539 #ifdef CONFIG_SMP
540 	/* If we register an early console, allow CPU 0 to printk */
541 	set_cpu_online(smp_processor_id(), true);
542 #endif
543 }
544 
545 static __initdata int nomca;
546 static __init int setup_nomca(char *s)
547 {
548 	nomca = 1;
549 	return 0;
550 }
551 early_param("nomca", setup_nomca);
552 
553 void __init
554 setup_arch (char **cmdline_p)
555 {
556 	unw_init();
557 
558 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
559 
560 	*cmdline_p = __va(ia64_boot_param->command_line);
561 	strscpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
562 
563 	efi_init();
564 	io_port_init();
565 
566 	uv_probe_system_type();
567 	parse_early_param();
568 
569 	if (early_console_setup(*cmdline_p) == 0)
570 		mark_bsp_online();
571 
572 	/* Initialize the ACPI boot-time table parser */
573 	acpi_table_init();
574 	early_acpi_boot_init();
575 #ifdef CONFIG_ACPI_NUMA
576 	acpi_numa_init();
577 	acpi_numa_fixup();
578 #ifdef CONFIG_ACPI_HOTPLUG_CPU
579 	prefill_possible_map();
580 #endif
581 	per_cpu_scan_finalize((cpumask_empty(&early_cpu_possible_map) ?
582 		32 : cpumask_weight(&early_cpu_possible_map)),
583 		additional_cpus > 0 ? additional_cpus : 0);
584 #endif /* CONFIG_ACPI_NUMA */
585 
586 #ifdef CONFIG_SMP
587 	smp_build_cpu_map();
588 #endif
589 	find_memory();
590 
591 	/* process SAL system table: */
592 	ia64_sal_init(__va(sal_systab_phys));
593 
594 #ifdef CONFIG_ITANIUM
595 	ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
596 #else
597 	{
598 		unsigned long num_phys_stacked;
599 
600 		if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96)
601 			ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist);
602 	}
603 #endif
604 
605 #ifdef CONFIG_SMP
606 	cpu_physical_id(0) = hard_smp_processor_id();
607 #endif
608 
609 	cpu_init();	/* initialize the bootstrap CPU */
610 	mmu_context_init();	/* initialize context_id bitmap */
611 
612 #ifdef CONFIG_VT
613 	if (!conswitchp) {
614 # if defined(CONFIG_VGA_CONSOLE)
615 		/*
616 		 * Non-legacy systems may route legacy VGA MMIO range to system
617 		 * memory.  vga_con probes the MMIO hole, so memory looks like
618 		 * a VGA device to it.  The EFI memory map can tell us if it's
619 		 * memory so we can avoid this problem.
620 		 */
621 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
622 			conswitchp = &vga_con;
623 # endif
624 	}
625 #endif
626 
627 	/* enable IA-64 Machine Check Abort Handling unless disabled */
628 	if (!nomca)
629 		ia64_mca_init();
630 
631 	/*
632 	 * Default to /dev/sda2.  This assumes that the EFI partition
633 	 * is physical disk 1 partition 1 and the Linux root disk is
634 	 * physical disk 1 partition 2.
635 	 */
636 	ROOT_DEV = MKDEV(SCSI_DISK0_MAJOR, 2);
637 
638 	if (is_uv_system())
639 		uv_setup(cmdline_p);
640 #ifdef CONFIG_SMP
641 	else
642 		init_smp_config();
643 #endif
644 
645 	screen_info_setup();
646 	paging_init();
647 
648 	clear_sched_clock_stable();
649 }
650 
651 /*
652  * Display cpu info for all CPUs.
653  */
654 static int
655 show_cpuinfo (struct seq_file *m, void *v)
656 {
657 #ifdef CONFIG_SMP
658 #	define lpj	c->loops_per_jiffy
659 #	define cpunum	c->cpu
660 #else
661 #	define lpj	loops_per_jiffy
662 #	define cpunum	0
663 #endif
664 	static struct {
665 		unsigned long mask;
666 		const char *feature_name;
667 	} feature_bits[] = {
668 		{ 1UL << 0, "branchlong" },
669 		{ 1UL << 1, "spontaneous deferral"},
670 		{ 1UL << 2, "16-byte atomic ops" }
671 	};
672 	char features[128], *cp, *sep;
673 	struct cpuinfo_ia64 *c = v;
674 	unsigned long mask;
675 	unsigned long proc_freq;
676 	int i, size;
677 
678 	mask = c->features;
679 
680 	/* build the feature string: */
681 	memcpy(features, "standard", 9);
682 	cp = features;
683 	size = sizeof(features);
684 	sep = "";
685 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
686 		if (mask & feature_bits[i].mask) {
687 			cp += snprintf(cp, size, "%s%s", sep,
688 				       feature_bits[i].feature_name),
689 			sep = ", ";
690 			mask &= ~feature_bits[i].mask;
691 			size = sizeof(features) - (cp - features);
692 		}
693 	}
694 	if (mask && size > 1) {
695 		/* print unknown features as a hex value */
696 		snprintf(cp, size, "%s0x%lx", sep, mask);
697 	}
698 
699 	proc_freq = cpufreq_quick_get(cpunum);
700 	if (!proc_freq)
701 		proc_freq = c->proc_freq / 1000;
702 
703 	seq_printf(m,
704 		   "processor  : %d\n"
705 		   "vendor     : %s\n"
706 		   "arch       : IA-64\n"
707 		   "family     : %u\n"
708 		   "model      : %u\n"
709 		   "model name : %s\n"
710 		   "revision   : %u\n"
711 		   "archrev    : %u\n"
712 		   "features   : %s\n"
713 		   "cpu number : %lu\n"
714 		   "cpu regs   : %u\n"
715 		   "cpu MHz    : %lu.%03lu\n"
716 		   "itc MHz    : %lu.%06lu\n"
717 		   "BogoMIPS   : %lu.%02lu\n",
718 		   cpunum, c->vendor, c->family, c->model,
719 		   c->model_name, c->revision, c->archrev,
720 		   features, c->ppn, c->number,
721 		   proc_freq / 1000, proc_freq % 1000,
722 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
723 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
724 #ifdef CONFIG_SMP
725 	seq_printf(m, "siblings   : %u\n",
726 		   cpumask_weight(&cpu_core_map[cpunum]));
727 	if (c->socket_id != -1)
728 		seq_printf(m, "physical id: %u\n", c->socket_id);
729 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
730 		seq_printf(m,
731 			   "core id    : %u\n"
732 			   "thread id  : %u\n",
733 			   c->core_id, c->thread_id);
734 #endif
735 	seq_printf(m,"\n");
736 
737 	return 0;
738 }
739 
740 static void *
741 c_start (struct seq_file *m, loff_t *pos)
742 {
743 #ifdef CONFIG_SMP
744 	while (*pos < nr_cpu_ids && !cpu_online(*pos))
745 		++*pos;
746 #endif
747 	return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL;
748 }
749 
750 static void *
751 c_next (struct seq_file *m, void *v, loff_t *pos)
752 {
753 	++*pos;
754 	return c_start(m, pos);
755 }
756 
757 static void
758 c_stop (struct seq_file *m, void *v)
759 {
760 }
761 
762 const struct seq_operations cpuinfo_op = {
763 	.start =	c_start,
764 	.next =		c_next,
765 	.stop =		c_stop,
766 	.show =		show_cpuinfo
767 };
768 
769 #define MAX_BRANDS	8
770 static char brandname[MAX_BRANDS][128];
771 
772 static char *
773 get_model_name(__u8 family, __u8 model)
774 {
775 	static int overflow;
776 	char brand[128];
777 	int i;
778 
779 	memcpy(brand, "Unknown", 8);
780 	if (ia64_pal_get_brand_info(brand)) {
781 		if (family == 0x7)
782 			memcpy(brand, "Merced", 7);
783 		else if (family == 0x1f) switch (model) {
784 			case 0: memcpy(brand, "McKinley", 9); break;
785 			case 1: memcpy(brand, "Madison", 8); break;
786 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
787 		}
788 	}
789 	for (i = 0; i < MAX_BRANDS; i++)
790 		if (strcmp(brandname[i], brand) == 0)
791 			return brandname[i];
792 	for (i = 0; i < MAX_BRANDS; i++)
793 		if (brandname[i][0] == '\0')
794 			return strcpy(brandname[i], brand);
795 	if (overflow++ == 0)
796 		printk(KERN_ERR
797 		       "%s: Table overflow. Some processor model information will be missing\n",
798 		       __func__);
799 	return "Unknown";
800 }
801 
802 static void
803 identify_cpu (struct cpuinfo_ia64 *c)
804 {
805 	union {
806 		unsigned long bits[5];
807 		struct {
808 			/* id 0 & 1: */
809 			char vendor[16];
810 
811 			/* id 2 */
812 			u64 ppn;		/* processor serial number */
813 
814 			/* id 3: */
815 			unsigned number		:  8;
816 			unsigned revision	:  8;
817 			unsigned model		:  8;
818 			unsigned family		:  8;
819 			unsigned archrev	:  8;
820 			unsigned reserved	: 24;
821 
822 			/* id 4: */
823 			u64 features;
824 		} field;
825 	} cpuid;
826 	pal_vm_info_1_u_t vm1;
827 	pal_vm_info_2_u_t vm2;
828 	pal_status_t status;
829 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
830 	int i;
831 	for (i = 0; i < 5; ++i)
832 		cpuid.bits[i] = ia64_get_cpuid(i);
833 
834 	memcpy(c->vendor, cpuid.field.vendor, 16);
835 #ifdef CONFIG_SMP
836 	c->cpu = smp_processor_id();
837 
838 	/* below default values will be overwritten  by identify_siblings()
839 	 * for Multi-Threading/Multi-Core capable CPUs
840 	 */
841 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
842 	c->socket_id = -1;
843 
844 	identify_siblings(c);
845 
846 	if (c->threads_per_core > smp_num_siblings)
847 		smp_num_siblings = c->threads_per_core;
848 #endif
849 	c->ppn = cpuid.field.ppn;
850 	c->number = cpuid.field.number;
851 	c->revision = cpuid.field.revision;
852 	c->model = cpuid.field.model;
853 	c->family = cpuid.field.family;
854 	c->archrev = cpuid.field.archrev;
855 	c->features = cpuid.field.features;
856 	c->model_name = get_model_name(c->family, c->model);
857 
858 	status = ia64_pal_vm_summary(&vm1, &vm2);
859 	if (status == PAL_STATUS_SUCCESS) {
860 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
861 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
862 	}
863 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
864 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
865 }
866 
867 /*
868  * Do the following calculations:
869  *
870  * 1. the max. cache line size.
871  * 2. the minimum of the i-cache stride sizes for "flush_icache_range()".
872  * 3. the minimum of the cache stride sizes for "clflush_cache_range()".
873  */
874 static void
875 get_cache_info(void)
876 {
877 	unsigned long line_size, max = 1;
878 	unsigned long l, levels, unique_caches;
879 	pal_cache_config_info_t cci;
880 	long status;
881 
882         status = ia64_pal_cache_summary(&levels, &unique_caches);
883         if (status != 0) {
884                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
885                        __func__, status);
886                 max = SMP_CACHE_BYTES;
887 		/* Safest setup for "flush_icache_range()" */
888 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
889 		/* Safest setup for "clflush_cache_range()" */
890 		ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
891 		goto out;
892         }
893 
894 	for (l = 0; l < levels; ++l) {
895 		/* cache_type (data_or_unified)=2 */
896 		status = ia64_pal_cache_config_info(l, 2, &cci);
897 		if (status != 0) {
898 			printk(KERN_ERR "%s: ia64_pal_cache_config_info"
899 				"(l=%lu, 2) failed (status=%ld)\n",
900 				__func__, l, status);
901 			max = SMP_CACHE_BYTES;
902 			/* The safest setup for "flush_icache_range()" */
903 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
904 			/* The safest setup for "clflush_cache_range()" */
905 			ia64_cache_stride_shift = CACHE_STRIDE_SHIFT;
906 			cci.pcci_unified = 1;
907 		} else {
908 			if (cci.pcci_stride < ia64_cache_stride_shift)
909 				ia64_cache_stride_shift = cci.pcci_stride;
910 
911 			line_size = 1 << cci.pcci_line_size;
912 			if (line_size > max)
913 				max = line_size;
914 		}
915 
916 		if (!cci.pcci_unified) {
917 			/* cache_type (instruction)=1*/
918 			status = ia64_pal_cache_config_info(l, 1, &cci);
919 			if (status != 0) {
920 				printk(KERN_ERR "%s: ia64_pal_cache_config_info"
921 					"(l=%lu, 1) failed (status=%ld)\n",
922 					__func__, l, status);
923 				/* The safest setup for flush_icache_range() */
924 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
925 			}
926 		}
927 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
928 			ia64_i_cache_stride_shift = cci.pcci_stride;
929 	}
930   out:
931 	if (max > ia64_max_cacheline_size)
932 		ia64_max_cacheline_size = max;
933 }
934 
935 /*
936  * cpu_init() initializes state that is per-CPU.  This function acts
937  * as a 'CPU state barrier', nothing should get across.
938  */
939 void
940 cpu_init (void)
941 {
942 	extern void ia64_mmu_init(void *);
943 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
944 	unsigned long num_phys_stacked;
945 	pal_vm_info_2_u_t vmi;
946 	unsigned int max_ctx;
947 	struct cpuinfo_ia64 *cpu_info;
948 	void *cpu_data;
949 
950 	cpu_data = per_cpu_init();
951 #ifdef CONFIG_SMP
952 	/*
953 	 * insert boot cpu into sibling and core mapes
954 	 * (must be done after per_cpu area is setup)
955 	 */
956 	if (smp_processor_id() == 0) {
957 		cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0));
958 		cpumask_set_cpu(0, &cpu_core_map[0]);
959 	} else {
960 		/*
961 		 * Set ar.k3 so that assembly code in MCA handler can compute
962 		 * physical addresses of per cpu variables with a simple:
963 		 *   phys = ar.k3 + &per_cpu_var
964 		 * and the alt-dtlb-miss handler can set per-cpu mapping into
965 		 * the TLB when needed. head.S already did this for cpu0.
966 		 */
967 		ia64_set_kr(IA64_KR_PER_CPU_DATA,
968 			    ia64_tpa(cpu_data) - (long) __per_cpu_start);
969 	}
970 #endif
971 
972 	get_cache_info();
973 
974 	/*
975 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
976 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
977 	 * depends on the data returned by identify_cpu().  We break the dependency by
978 	 * accessing cpu_data() through the canonical per-CPU address.
979 	 */
980 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start);
981 	identify_cpu(cpu_info);
982 
983 #ifdef CONFIG_MCKINLEY
984 	{
985 #		define FEATURE_SET 16
986 		struct ia64_pal_retval iprv;
987 
988 		if (cpu_info->family == 0x1f) {
989 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
990 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
991 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
992 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
993 		}
994 	}
995 #endif
996 
997 	/* Clear the stack memory reserved for pt_regs: */
998 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
999 
1000 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
1001 
1002 	/*
1003 	 * Initialize the page-table base register to a global
1004 	 * directory with all zeroes.  This ensure that we can handle
1005 	 * TLB-misses to user address-space even before we created the
1006 	 * first user address-space.  This may happen, e.g., due to
1007 	 * aggressive use of lfetch.fault.
1008 	 */
1009 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
1010 
1011 	/*
1012 	 * Initialize default control register to defer speculative faults except
1013 	 * for those arising from TLB misses, which are not deferred.  The
1014 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
1015 	 * the kernel must have recovery code for all speculative accesses).  Turn on
1016 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
1017 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
1018 	 * be fine).
1019 	 */
1020 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
1021 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
1022 	mmgrab(&init_mm);
1023 	current->active_mm = &init_mm;
1024 	BUG_ON(current->mm);
1025 
1026 	ia64_mmu_init(ia64_imva(cpu_data));
1027 	ia64_mca_cpu_init(ia64_imva(cpu_data));
1028 
1029 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
1030 	ia64_set_itc(0);
1031 
1032 	/* disable all local interrupt sources: */
1033 	ia64_set_itv(1 << 16);
1034 	ia64_set_lrr0(1 << 16);
1035 	ia64_set_lrr1(1 << 16);
1036 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
1037 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
1038 
1039 	/* clear TPR & XTP to enable all interrupt classes: */
1040 	ia64_setreg(_IA64_REG_CR_TPR, 0);
1041 
1042 	/* Clear any pending interrupts left by SAL/EFI */
1043 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
1044 		ia64_eoi();
1045 
1046 #ifdef CONFIG_SMP
1047 	normal_xtp();
1048 #endif
1049 
1050 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
1051 	if (ia64_pal_vm_summary(NULL, &vmi) == 0) {
1052 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
1053 		setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL);
1054 	} else {
1055 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
1056 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
1057 	}
1058 	while (max_ctx < ia64_ctx.max_ctx) {
1059 		unsigned int old = ia64_ctx.max_ctx;
1060 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
1061 			break;
1062 	}
1063 
1064 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1065 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1066 		       "stacked regs\n");
1067 		num_phys_stacked = 96;
1068 	}
1069 	/* size of physical stacked register partition plus 8 bytes: */
1070 	if (num_phys_stacked > max_num_phys_stacked) {
1071 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1072 		max_num_phys_stacked = num_phys_stacked;
1073 	}
1074 }
1075 
1076 void __init arch_cpu_finalize_init(void)
1077 {
1078 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1079 			       (unsigned long) __end___mckinley_e9_bundles);
1080 }
1081 
1082 static int __init run_dmi_scan(void)
1083 {
1084 	dmi_setup();
1085 	return 0;
1086 }
1087 core_initcall(run_dmi_scan);
1088