xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 6ab3d562)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/tty.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 
47 #include <asm/ia32.h>
48 #include <asm/machvec.h>
49 #include <asm/mca.h>
50 #include <asm/meminit.h>
51 #include <asm/page.h>
52 #include <asm/patch.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55 #include <asm/sal.h>
56 #include <asm/sections.h>
57 #include <asm/serial.h>
58 #include <asm/setup.h>
59 #include <asm/smp.h>
60 #include <asm/system.h>
61 #include <asm/unistd.h>
62 #include <asm/system.h>
63 
64 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
65 # error "struct cpuinfo_ia64 too big!"
66 #endif
67 
68 #ifdef CONFIG_SMP
69 unsigned long __per_cpu_offset[NR_CPUS];
70 EXPORT_SYMBOL(__per_cpu_offset);
71 #endif
72 
73 extern void ia64_setup_printk_clock(void);
74 
75 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
77 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 extern void efi_initialize_iomem_resources(struct resource *,
94 		struct resource *);
95 extern char _text[], _end[], _etext[];
96 
97 unsigned long ia64_max_cacheline_size;
98 
99 int dma_get_cache_alignment(void)
100 {
101         return ia64_max_cacheline_size;
102 }
103 EXPORT_SYMBOL(dma_get_cache_alignment);
104 
105 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110 
111 /*
112  * "flush_icache_range()" needs to know what processor dependent stride size to use
113  * when it makes i-cache(s) coherent with d-caches.
114  */
115 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117 
118 /*
119  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
120  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
121  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
122  * address of the second buffer must be aligned to (merge_mask+1) in order to be
123  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
124  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
125  * page-size of 2^64.
126  */
127 unsigned long ia64_max_iommu_merge_mask = ~0UL;
128 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129 
130 /*
131  * We use a special marker for the end of memory and it uses the extra (+1) slot
132  */
133 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134 int num_rsvd_regions __initdata;
135 
136 
137 /*
138  * Filter incoming memory segments based on the primitive map created from the boot
139  * parameters. Segments contained in the map are removed from the memory ranges. A
140  * caller-specified function is called with the memory ranges that remain after filtering.
141  * This routine does not assume the incoming segments are sorted.
142  */
143 int __init
144 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 {
146 	unsigned long range_start, range_end, prev_start;
147 	void (*func)(unsigned long, unsigned long, int);
148 	int i;
149 
150 #if IGNORE_PFN0
151 	if (start == PAGE_OFFSET) {
152 		printk(KERN_WARNING "warning: skipping physical page 0\n");
153 		start += PAGE_SIZE;
154 		if (start >= end) return 0;
155 	}
156 #endif
157 	/*
158 	 * lowest possible address(walker uses virtual)
159 	 */
160 	prev_start = PAGE_OFFSET;
161 	func = arg;
162 
163 	for (i = 0; i < num_rsvd_regions; ++i) {
164 		range_start = max(start, prev_start);
165 		range_end   = min(end, rsvd_region[i].start);
166 
167 		if (range_start < range_end)
168 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 
170 		/* nothing more available in this segment */
171 		if (range_end == end) return 0;
172 
173 		prev_start = rsvd_region[i].end;
174 	}
175 	/* end of memory marker allows full processing inside loop body */
176 	return 0;
177 }
178 
179 static void __init
180 sort_regions (struct rsvd_region *rsvd_region, int max)
181 {
182 	int j;
183 
184 	/* simple bubble sorting */
185 	while (max--) {
186 		for (j = 0; j < max; ++j) {
187 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
188 				struct rsvd_region tmp;
189 				tmp = rsvd_region[j];
190 				rsvd_region[j] = rsvd_region[j + 1];
191 				rsvd_region[j + 1] = tmp;
192 			}
193 		}
194 	}
195 }
196 
197 /*
198  * Request address space for all standard resources
199  */
200 static int __init register_memory(void)
201 {
202 	code_resource.start = ia64_tpa(_text);
203 	code_resource.end   = ia64_tpa(_etext) - 1;
204 	data_resource.start = ia64_tpa(_etext);
205 	data_resource.end   = ia64_tpa(_end) - 1;
206 	efi_initialize_iomem_resources(&code_resource, &data_resource);
207 
208 	return 0;
209 }
210 
211 __initcall(register_memory);
212 
213 /**
214  * reserve_memory - setup reserved memory areas
215  *
216  * Setup the reserved memory areas set aside for the boot parameters,
217  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
218  * see include/asm-ia64/meminit.h if you need to define more.
219  */
220 void __init
221 reserve_memory (void)
222 {
223 	int n = 0;
224 
225 	/*
226 	 * none of the entries in this table overlap
227 	 */
228 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
229 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
230 	n++;
231 
232 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
233 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
234 	n++;
235 
236 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
237 	rsvd_region[n].end   = (rsvd_region[n].start
238 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
239 	n++;
240 
241 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
242 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
243 	n++;
244 
245 #ifdef CONFIG_BLK_DEV_INITRD
246 	if (ia64_boot_param->initrd_start) {
247 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
248 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
249 		n++;
250 	}
251 #endif
252 
253 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
254 	n++;
255 
256 	/* end of memory marker */
257 	rsvd_region[n].start = ~0UL;
258 	rsvd_region[n].end   = ~0UL;
259 	n++;
260 
261 	num_rsvd_regions = n;
262 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
263 
264 	sort_regions(rsvd_region, num_rsvd_regions);
265 }
266 
267 /**
268  * find_initrd - get initrd parameters from the boot parameter structure
269  *
270  * Grab the initrd start and end from the boot parameter struct given us by
271  * the boot loader.
272  */
273 void __init
274 find_initrd (void)
275 {
276 #ifdef CONFIG_BLK_DEV_INITRD
277 	if (ia64_boot_param->initrd_start) {
278 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
279 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
280 
281 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
282 		       initrd_start, ia64_boot_param->initrd_size);
283 	}
284 #endif
285 }
286 
287 static void __init
288 io_port_init (void)
289 {
290 	unsigned long phys_iobase;
291 
292 	/*
293 	 * Set `iobase' based on the EFI memory map or, failing that, the
294 	 * value firmware left in ar.k0.
295 	 *
296 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
297 	 * the port's virtual address, so ia32_load_state() loads it with a
298 	 * user virtual address.  But in ia64 mode, glibc uses the
299 	 * *physical* address in ar.k0 to mmap the appropriate area from
300 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
301 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
302 	 *
303 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
304 	 * any of the I/O port spaces and are done via MMIO using the
305 	 * virtual mmio_base from the appropriate io_space[].
306 	 */
307 	phys_iobase = efi_get_iobase();
308 	if (!phys_iobase) {
309 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
310 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
311 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
312 	}
313 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
314 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
315 
316 	/* setup legacy IO port space */
317 	io_space[0].mmio_base = ia64_iobase;
318 	io_space[0].sparse = 1;
319 	num_io_spaces = 1;
320 }
321 
322 /**
323  * early_console_setup - setup debugging console
324  *
325  * Consoles started here require little enough setup that we can start using
326  * them very early in the boot process, either right after the machine
327  * vector initialization, or even before if the drivers can detect their hw.
328  *
329  * Returns non-zero if a console couldn't be setup.
330  */
331 static inline int __init
332 early_console_setup (char *cmdline)
333 {
334 	int earlycons = 0;
335 
336 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
337 	{
338 		extern int sn_serial_console_early_setup(void);
339 		if (!sn_serial_console_early_setup())
340 			earlycons++;
341 	}
342 #endif
343 #ifdef CONFIG_EFI_PCDP
344 	if (!efi_setup_pcdp_console(cmdline))
345 		earlycons++;
346 #endif
347 #ifdef CONFIG_SERIAL_8250_CONSOLE
348 	if (!early_serial_console_init(cmdline))
349 		earlycons++;
350 #endif
351 
352 	return (earlycons) ? 0 : -1;
353 }
354 
355 static inline void
356 mark_bsp_online (void)
357 {
358 #ifdef CONFIG_SMP
359 	/* If we register an early console, allow CPU 0 to printk */
360 	cpu_set(smp_processor_id(), cpu_online_map);
361 #endif
362 }
363 
364 #ifdef CONFIG_SMP
365 static void __init
366 check_for_logical_procs (void)
367 {
368 	pal_logical_to_physical_t info;
369 	s64 status;
370 
371 	status = ia64_pal_logical_to_phys(0, &info);
372 	if (status == -1) {
373 		printk(KERN_INFO "No logical to physical processor mapping "
374 		       "available\n");
375 		return;
376 	}
377 	if (status) {
378 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
379 		       status);
380 		return;
381 	}
382 	/*
383 	 * Total number of siblings that BSP has.  Though not all of them
384 	 * may have booted successfully. The correct number of siblings
385 	 * booted is in info.overview_num_log.
386 	 */
387 	smp_num_siblings = info.overview_tpc;
388 	smp_num_cpucores = info.overview_cpp;
389 }
390 #endif
391 
392 static __initdata int nomca;
393 static __init int setup_nomca(char *s)
394 {
395 	nomca = 1;
396 	return 0;
397 }
398 early_param("nomca", setup_nomca);
399 
400 void __init
401 setup_arch (char **cmdline_p)
402 {
403 	unw_init();
404 
405 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
406 
407 	*cmdline_p = __va(ia64_boot_param->command_line);
408 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
409 
410 	efi_init();
411 	io_port_init();
412 
413 	parse_early_param();
414 
415 #ifdef CONFIG_IA64_GENERIC
416 	machvec_init(NULL);
417 #endif
418 
419 	if (early_console_setup(*cmdline_p) == 0)
420 		mark_bsp_online();
421 
422 #ifdef CONFIG_ACPI
423 	/* Initialize the ACPI boot-time table parser */
424 	acpi_table_init();
425 # ifdef CONFIG_ACPI_NUMA
426 	acpi_numa_init();
427 # endif
428 #else
429 # ifdef CONFIG_SMP
430 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
431 # endif
432 #endif /* CONFIG_APCI_BOOT */
433 
434 	find_memory();
435 
436 	/* process SAL system table: */
437 	ia64_sal_init(__va(efi.sal_systab));
438 
439 	ia64_setup_printk_clock();
440 
441 #ifdef CONFIG_SMP
442 	cpu_physical_id(0) = hard_smp_processor_id();
443 
444 	cpu_set(0, cpu_sibling_map[0]);
445 	cpu_set(0, cpu_core_map[0]);
446 
447 	check_for_logical_procs();
448 	if (smp_num_cpucores > 1)
449 		printk(KERN_INFO
450 		       "cpu package is Multi-Core capable: number of cores=%d\n",
451 		       smp_num_cpucores);
452 	if (smp_num_siblings > 1)
453 		printk(KERN_INFO
454 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
455 		       smp_num_siblings);
456 #endif
457 
458 	cpu_init();	/* initialize the bootstrap CPU */
459 	mmu_context_init();	/* initialize context_id bitmap */
460 
461 #ifdef CONFIG_ACPI
462 	acpi_boot_init();
463 #endif
464 
465 #ifdef CONFIG_VT
466 	if (!conswitchp) {
467 # if defined(CONFIG_DUMMY_CONSOLE)
468 		conswitchp = &dummy_con;
469 # endif
470 # if defined(CONFIG_VGA_CONSOLE)
471 		/*
472 		 * Non-legacy systems may route legacy VGA MMIO range to system
473 		 * memory.  vga_con probes the MMIO hole, so memory looks like
474 		 * a VGA device to it.  The EFI memory map can tell us if it's
475 		 * memory so we can avoid this problem.
476 		 */
477 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
478 			conswitchp = &vga_con;
479 # endif
480 	}
481 #endif
482 
483 	/* enable IA-64 Machine Check Abort Handling unless disabled */
484 	if (!nomca)
485 		ia64_mca_init();
486 
487 	platform_setup(cmdline_p);
488 	paging_init();
489 }
490 
491 /*
492  * Display cpu info for all cpu's.
493  */
494 static int
495 show_cpuinfo (struct seq_file *m, void *v)
496 {
497 #ifdef CONFIG_SMP
498 #	define lpj	c->loops_per_jiffy
499 #	define cpunum	c->cpu
500 #else
501 #	define lpj	loops_per_jiffy
502 #	define cpunum	0
503 #endif
504 	static struct {
505 		unsigned long mask;
506 		const char *feature_name;
507 	} feature_bits[] = {
508 		{ 1UL << 0, "branchlong" },
509 		{ 1UL << 1, "spontaneous deferral"},
510 		{ 1UL << 2, "16-byte atomic ops" }
511 	};
512 	char family[32], features[128], *cp, sep;
513 	struct cpuinfo_ia64 *c = v;
514 	unsigned long mask;
515 	unsigned long proc_freq;
516 	int i;
517 
518 	mask = c->features;
519 
520 	switch (c->family) {
521 	      case 0x07:	memcpy(family, "Itanium", 8); break;
522 	      case 0x1f:	memcpy(family, "Itanium 2", 10); break;
523 	      default:		sprintf(family, "%u", c->family); break;
524 	}
525 
526 	/* build the feature string: */
527 	memcpy(features, " standard", 10);
528 	cp = features;
529 	sep = 0;
530 	for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
531 		if (mask & feature_bits[i].mask) {
532 			if (sep)
533 				*cp++ = sep;
534 			sep = ',';
535 			*cp++ = ' ';
536 			strcpy(cp, feature_bits[i].feature_name);
537 			cp += strlen(feature_bits[i].feature_name);
538 			mask &= ~feature_bits[i].mask;
539 		}
540 	}
541 	if (mask) {
542 		/* print unknown features as a hex value: */
543 		if (sep)
544 			*cp++ = sep;
545 		sprintf(cp, " 0x%lx", mask);
546 	}
547 
548 	proc_freq = cpufreq_quick_get(cpunum);
549 	if (!proc_freq)
550 		proc_freq = c->proc_freq / 1000;
551 
552 	seq_printf(m,
553 		   "processor  : %d\n"
554 		   "vendor     : %s\n"
555 		   "arch       : IA-64\n"
556 		   "family     : %s\n"
557 		   "model      : %u\n"
558 		   "revision   : %u\n"
559 		   "archrev    : %u\n"
560 		   "features   :%s\n"	/* don't change this---it _is_ right! */
561 		   "cpu number : %lu\n"
562 		   "cpu regs   : %u\n"
563 		   "cpu MHz    : %lu.%06lu\n"
564 		   "itc MHz    : %lu.%06lu\n"
565 		   "BogoMIPS   : %lu.%02lu\n",
566 		   cpunum, c->vendor, family, c->model, c->revision, c->archrev,
567 		   features, c->ppn, c->number,
568 		   proc_freq / 1000, proc_freq % 1000,
569 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
570 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
571 #ifdef CONFIG_SMP
572 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
573 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
574 		seq_printf(m,
575 		   	   "physical id: %u\n"
576 		   	   "core id    : %u\n"
577 		   	   "thread id  : %u\n",
578 		   	   c->socket_id, c->core_id, c->thread_id);
579 #endif
580 	seq_printf(m,"\n");
581 
582 	return 0;
583 }
584 
585 static void *
586 c_start (struct seq_file *m, loff_t *pos)
587 {
588 #ifdef CONFIG_SMP
589 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
590 		++*pos;
591 #endif
592 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
593 }
594 
595 static void *
596 c_next (struct seq_file *m, void *v, loff_t *pos)
597 {
598 	++*pos;
599 	return c_start(m, pos);
600 }
601 
602 static void
603 c_stop (struct seq_file *m, void *v)
604 {
605 }
606 
607 struct seq_operations cpuinfo_op = {
608 	.start =	c_start,
609 	.next =		c_next,
610 	.stop =		c_stop,
611 	.show =		show_cpuinfo
612 };
613 
614 static void __cpuinit
615 identify_cpu (struct cpuinfo_ia64 *c)
616 {
617 	union {
618 		unsigned long bits[5];
619 		struct {
620 			/* id 0 & 1: */
621 			char vendor[16];
622 
623 			/* id 2 */
624 			u64 ppn;		/* processor serial number */
625 
626 			/* id 3: */
627 			unsigned number		:  8;
628 			unsigned revision	:  8;
629 			unsigned model		:  8;
630 			unsigned family		:  8;
631 			unsigned archrev	:  8;
632 			unsigned reserved	: 24;
633 
634 			/* id 4: */
635 			u64 features;
636 		} field;
637 	} cpuid;
638 	pal_vm_info_1_u_t vm1;
639 	pal_vm_info_2_u_t vm2;
640 	pal_status_t status;
641 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
642 	int i;
643 
644 	for (i = 0; i < 5; ++i)
645 		cpuid.bits[i] = ia64_get_cpuid(i);
646 
647 	memcpy(c->vendor, cpuid.field.vendor, 16);
648 #ifdef CONFIG_SMP
649 	c->cpu = smp_processor_id();
650 
651 	/* below default values will be overwritten  by identify_siblings()
652 	 * for Multi-Threading/Multi-Core capable cpu's
653 	 */
654 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
655 	c->socket_id = -1;
656 
657 	identify_siblings(c);
658 #endif
659 	c->ppn = cpuid.field.ppn;
660 	c->number = cpuid.field.number;
661 	c->revision = cpuid.field.revision;
662 	c->model = cpuid.field.model;
663 	c->family = cpuid.field.family;
664 	c->archrev = cpuid.field.archrev;
665 	c->features = cpuid.field.features;
666 
667 	status = ia64_pal_vm_summary(&vm1, &vm2);
668 	if (status == PAL_STATUS_SUCCESS) {
669 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
670 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
671 	}
672 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
673 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
674 }
675 
676 void
677 setup_per_cpu_areas (void)
678 {
679 	/* start_kernel() requires this... */
680 #ifdef CONFIG_ACPI_HOTPLUG_CPU
681 	prefill_possible_map();
682 #endif
683 }
684 
685 /*
686  * Calculate the max. cache line size.
687  *
688  * In addition, the minimum of the i-cache stride sizes is calculated for
689  * "flush_icache_range()".
690  */
691 static void __cpuinit
692 get_max_cacheline_size (void)
693 {
694 	unsigned long line_size, max = 1;
695 	unsigned int cache_size = 0;
696 	u64 l, levels, unique_caches;
697         pal_cache_config_info_t cci;
698         s64 status;
699 
700         status = ia64_pal_cache_summary(&levels, &unique_caches);
701         if (status != 0) {
702                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
703                        __FUNCTION__, status);
704                 max = SMP_CACHE_BYTES;
705 		/* Safest setup for "flush_icache_range()" */
706 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
707 		goto out;
708         }
709 
710 	for (l = 0; l < levels; ++l) {
711 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
712 						    &cci);
713 		if (status != 0) {
714 			printk(KERN_ERR
715 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
716 			       __FUNCTION__, l, status);
717 			max = SMP_CACHE_BYTES;
718 			/* The safest setup for "flush_icache_range()" */
719 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
720 			cci.pcci_unified = 1;
721 		}
722 		line_size = 1 << cci.pcci_line_size;
723 		if (line_size > max)
724 			max = line_size;
725 		if (cache_size < cci.pcci_cache_size)
726 			cache_size = cci.pcci_cache_size;
727 		if (!cci.pcci_unified) {
728 			status = ia64_pal_cache_config_info(l,
729 						    /* cache_type (instruction)= */ 1,
730 						    &cci);
731 			if (status != 0) {
732 				printk(KERN_ERR
733 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
734 					__FUNCTION__, l, status);
735 				/* The safest setup for "flush_icache_range()" */
736 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
737 			}
738 		}
739 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
740 			ia64_i_cache_stride_shift = cci.pcci_stride;
741 	}
742   out:
743 #ifdef CONFIG_SMP
744 	max_cache_size = max(max_cache_size, cache_size);
745 #endif
746 	if (max > ia64_max_cacheline_size)
747 		ia64_max_cacheline_size = max;
748 }
749 
750 /*
751  * cpu_init() initializes state that is per-CPU.  This function acts
752  * as a 'CPU state barrier', nothing should get across.
753  */
754 void __cpuinit
755 cpu_init (void)
756 {
757 	extern void __cpuinit ia64_mmu_init (void *);
758 	unsigned long num_phys_stacked;
759 	pal_vm_info_2_u_t vmi;
760 	unsigned int max_ctx;
761 	struct cpuinfo_ia64 *cpu_info;
762 	void *cpu_data;
763 
764 	cpu_data = per_cpu_init();
765 
766 	/*
767 	 * We set ar.k3 so that assembly code in MCA handler can compute
768 	 * physical addresses of per cpu variables with a simple:
769 	 *   phys = ar.k3 + &per_cpu_var
770 	 */
771 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
772 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
773 
774 	get_max_cacheline_size();
775 
776 	/*
777 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
778 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
779 	 * depends on the data returned by identify_cpu().  We break the dependency by
780 	 * accessing cpu_data() through the canonical per-CPU address.
781 	 */
782 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
783 	identify_cpu(cpu_info);
784 
785 #ifdef CONFIG_MCKINLEY
786 	{
787 #		define FEATURE_SET 16
788 		struct ia64_pal_retval iprv;
789 
790 		if (cpu_info->family == 0x1f) {
791 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
792 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
793 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
794 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
795 		}
796 	}
797 #endif
798 
799 	/* Clear the stack memory reserved for pt_regs: */
800 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
801 
802 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
803 
804 	/*
805 	 * Initialize the page-table base register to a global
806 	 * directory with all zeroes.  This ensure that we can handle
807 	 * TLB-misses to user address-space even before we created the
808 	 * first user address-space.  This may happen, e.g., due to
809 	 * aggressive use of lfetch.fault.
810 	 */
811 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
812 
813 	/*
814 	 * Initialize default control register to defer speculative faults except
815 	 * for those arising from TLB misses, which are not deferred.  The
816 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
817 	 * the kernel must have recovery code for all speculative accesses).  Turn on
818 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
819 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
820 	 * be fine).
821 	 */
822 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
823 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
824 	atomic_inc(&init_mm.mm_count);
825 	current->active_mm = &init_mm;
826 	if (current->mm)
827 		BUG();
828 
829 	ia64_mmu_init(ia64_imva(cpu_data));
830 	ia64_mca_cpu_init(ia64_imva(cpu_data));
831 
832 #ifdef CONFIG_IA32_SUPPORT
833 	ia32_cpu_init();
834 #endif
835 
836 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
837 	ia64_set_itc(0);
838 
839 	/* disable all local interrupt sources: */
840 	ia64_set_itv(1 << 16);
841 	ia64_set_lrr0(1 << 16);
842 	ia64_set_lrr1(1 << 16);
843 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
844 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
845 
846 	/* clear TPR & XTP to enable all interrupt classes: */
847 	ia64_setreg(_IA64_REG_CR_TPR, 0);
848 #ifdef CONFIG_SMP
849 	normal_xtp();
850 #endif
851 
852 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
853 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
854 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
855 	else {
856 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
857 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
858 	}
859 	while (max_ctx < ia64_ctx.max_ctx) {
860 		unsigned int old = ia64_ctx.max_ctx;
861 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
862 			break;
863 	}
864 
865 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
866 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
867 		       "stacked regs\n");
868 		num_phys_stacked = 96;
869 	}
870 	/* size of physical stacked register partition plus 8 bytes: */
871 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
872 	platform_cpu_init();
873 	pm_idle = default_idle;
874 }
875 
876 /*
877  * On SMP systems, when the scheduler does migration-cost autodetection,
878  * it needs a way to flush as much of the CPU's caches as possible.
879  */
880 void sched_cacheflush(void)
881 {
882 	ia64_sal_cache_flush(3);
883 }
884 
885 void __init
886 check_bugs (void)
887 {
888 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
889 			       (unsigned long) __end___mckinley_e9_bundles);
890 }
891 
892 static int __init run_dmi_scan(void)
893 {
894 	dmi_scan_machine();
895 	return 0;
896 }
897 core_initcall(run_dmi_scan);
898