xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 5eb1d63f)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/bootmem.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/kernel.h>
34 #include <linux/reboot.h>
35 #include <linux/sched.h>
36 #include <linux/seq_file.h>
37 #include <linux/string.h>
38 #include <linux/threads.h>
39 #include <linux/tty.h>
40 #include <linux/dmi.h>
41 #include <linux/serial.h>
42 #include <linux/serial_core.h>
43 #include <linux/efi.h>
44 #include <linux/initrd.h>
45 #include <linux/pm.h>
46 #include <linux/cpufreq.h>
47 
48 #include <asm/ia32.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/patch.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/sal.h>
57 #include <asm/sections.h>
58 #include <asm/serial.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84 
85 static struct resource data_resource = {
86 	.name	= "Kernel data",
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
88 };
89 
90 static struct resource code_resource = {
91 	.name	= "Kernel code",
92 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
93 };
94 extern void efi_initialize_iomem_resources(struct resource *,
95 		struct resource *);
96 extern char _text[], _end[], _etext[];
97 
98 unsigned long ia64_max_cacheline_size;
99 
100 int dma_get_cache_alignment(void)
101 {
102         return ia64_max_cacheline_size;
103 }
104 EXPORT_SYMBOL(dma_get_cache_alignment);
105 
106 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
111 
112 /*
113  * "flush_icache_range()" needs to know what processor dependent stride size to use
114  * when it makes i-cache(s) coherent with d-caches.
115  */
116 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
118 
119 /*
120  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
121  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
122  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
123  * address of the second buffer must be aligned to (merge_mask+1) in order to be
124  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
125  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126  * page-size of 2^64.
127  */
128 unsigned long ia64_max_iommu_merge_mask = ~0UL;
129 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130 
131 /*
132  * We use a special marker for the end of memory and it uses the extra (+1) slot
133  */
134 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
135 int num_rsvd_regions __initdata;
136 
137 
138 /*
139  * Filter incoming memory segments based on the primitive map created from the boot
140  * parameters. Segments contained in the map are removed from the memory ranges. A
141  * caller-specified function is called with the memory ranges that remain after filtering.
142  * This routine does not assume the incoming segments are sorted.
143  */
144 int __init
145 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
146 {
147 	unsigned long range_start, range_end, prev_start;
148 	void (*func)(unsigned long, unsigned long, int);
149 	int i;
150 
151 #if IGNORE_PFN0
152 	if (start == PAGE_OFFSET) {
153 		printk(KERN_WARNING "warning: skipping physical page 0\n");
154 		start += PAGE_SIZE;
155 		if (start >= end) return 0;
156 	}
157 #endif
158 	/*
159 	 * lowest possible address(walker uses virtual)
160 	 */
161 	prev_start = PAGE_OFFSET;
162 	func = arg;
163 
164 	for (i = 0; i < num_rsvd_regions; ++i) {
165 		range_start = max(start, prev_start);
166 		range_end   = min(end, rsvd_region[i].start);
167 
168 		if (range_start < range_end)
169 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
170 
171 		/* nothing more available in this segment */
172 		if (range_end == end) return 0;
173 
174 		prev_start = rsvd_region[i].end;
175 	}
176 	/* end of memory marker allows full processing inside loop body */
177 	return 0;
178 }
179 
180 static void __init
181 sort_regions (struct rsvd_region *rsvd_region, int max)
182 {
183 	int j;
184 
185 	/* simple bubble sorting */
186 	while (max--) {
187 		for (j = 0; j < max; ++j) {
188 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
189 				struct rsvd_region tmp;
190 				tmp = rsvd_region[j];
191 				rsvd_region[j] = rsvd_region[j + 1];
192 				rsvd_region[j + 1] = tmp;
193 			}
194 		}
195 	}
196 }
197 
198 /*
199  * Request address space for all standard resources
200  */
201 static int __init register_memory(void)
202 {
203 	code_resource.start = ia64_tpa(_text);
204 	code_resource.end   = ia64_tpa(_etext) - 1;
205 	data_resource.start = ia64_tpa(_etext);
206 	data_resource.end   = ia64_tpa(_end) - 1;
207 	efi_initialize_iomem_resources(&code_resource, &data_resource);
208 
209 	return 0;
210 }
211 
212 __initcall(register_memory);
213 
214 /**
215  * reserve_memory - setup reserved memory areas
216  *
217  * Setup the reserved memory areas set aside for the boot parameters,
218  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
219  * see include/asm-ia64/meminit.h if you need to define more.
220  */
221 void __init
222 reserve_memory (void)
223 {
224 	int n = 0;
225 
226 	/*
227 	 * none of the entries in this table overlap
228 	 */
229 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
230 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 	n++;
232 
233 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
234 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 	n++;
236 
237 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
238 	rsvd_region[n].end   = (rsvd_region[n].start
239 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
240 	n++;
241 
242 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
243 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
244 	n++;
245 
246 #ifdef CONFIG_BLK_DEV_INITRD
247 	if (ia64_boot_param->initrd_start) {
248 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
249 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
250 		n++;
251 	}
252 #endif
253 
254 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
255 	n++;
256 
257 	/* end of memory marker */
258 	rsvd_region[n].start = ~0UL;
259 	rsvd_region[n].end   = ~0UL;
260 	n++;
261 
262 	num_rsvd_regions = n;
263 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
264 
265 	sort_regions(rsvd_region, num_rsvd_regions);
266 }
267 
268 /**
269  * find_initrd - get initrd parameters from the boot parameter structure
270  *
271  * Grab the initrd start and end from the boot parameter struct given us by
272  * the boot loader.
273  */
274 void __init
275 find_initrd (void)
276 {
277 #ifdef CONFIG_BLK_DEV_INITRD
278 	if (ia64_boot_param->initrd_start) {
279 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
280 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
281 
282 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
283 		       initrd_start, ia64_boot_param->initrd_size);
284 	}
285 #endif
286 }
287 
288 static void __init
289 io_port_init (void)
290 {
291 	unsigned long phys_iobase;
292 
293 	/*
294 	 * Set `iobase' based on the EFI memory map or, failing that, the
295 	 * value firmware left in ar.k0.
296 	 *
297 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
298 	 * the port's virtual address, so ia32_load_state() loads it with a
299 	 * user virtual address.  But in ia64 mode, glibc uses the
300 	 * *physical* address in ar.k0 to mmap the appropriate area from
301 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
302 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
303 	 *
304 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
305 	 * any of the I/O port spaces and are done via MMIO using the
306 	 * virtual mmio_base from the appropriate io_space[].
307 	 */
308 	phys_iobase = efi_get_iobase();
309 	if (!phys_iobase) {
310 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
311 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
312 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
313 	}
314 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
315 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
316 
317 	/* setup legacy IO port space */
318 	io_space[0].mmio_base = ia64_iobase;
319 	io_space[0].sparse = 1;
320 	num_io_spaces = 1;
321 }
322 
323 /**
324  * early_console_setup - setup debugging console
325  *
326  * Consoles started here require little enough setup that we can start using
327  * them very early in the boot process, either right after the machine
328  * vector initialization, or even before if the drivers can detect their hw.
329  *
330  * Returns non-zero if a console couldn't be setup.
331  */
332 static inline int __init
333 early_console_setup (char *cmdline)
334 {
335 	int earlycons = 0;
336 
337 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
338 	{
339 		extern int sn_serial_console_early_setup(void);
340 		if (!sn_serial_console_early_setup())
341 			earlycons++;
342 	}
343 #endif
344 #ifdef CONFIG_EFI_PCDP
345 	if (!efi_setup_pcdp_console(cmdline))
346 		earlycons++;
347 #endif
348 #ifdef CONFIG_SERIAL_8250_CONSOLE
349 	if (!early_serial_console_init(cmdline))
350 		earlycons++;
351 #endif
352 
353 	return (earlycons) ? 0 : -1;
354 }
355 
356 static inline void
357 mark_bsp_online (void)
358 {
359 #ifdef CONFIG_SMP
360 	/* If we register an early console, allow CPU 0 to printk */
361 	cpu_set(smp_processor_id(), cpu_online_map);
362 #endif
363 }
364 
365 #ifdef CONFIG_SMP
366 static void __init
367 check_for_logical_procs (void)
368 {
369 	pal_logical_to_physical_t info;
370 	s64 status;
371 
372 	status = ia64_pal_logical_to_phys(0, &info);
373 	if (status == -1) {
374 		printk(KERN_INFO "No logical to physical processor mapping "
375 		       "available\n");
376 		return;
377 	}
378 	if (status) {
379 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
380 		       status);
381 		return;
382 	}
383 	/*
384 	 * Total number of siblings that BSP has.  Though not all of them
385 	 * may have booted successfully. The correct number of siblings
386 	 * booted is in info.overview_num_log.
387 	 */
388 	smp_num_siblings = info.overview_tpc;
389 	smp_num_cpucores = info.overview_cpp;
390 }
391 #endif
392 
393 static __initdata int nomca;
394 static __init int setup_nomca(char *s)
395 {
396 	nomca = 1;
397 	return 0;
398 }
399 early_param("nomca", setup_nomca);
400 
401 void __init
402 setup_arch (char **cmdline_p)
403 {
404 	unw_init();
405 
406 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
407 
408 	*cmdline_p = __va(ia64_boot_param->command_line);
409 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
410 
411 	efi_init();
412 	io_port_init();
413 
414 	parse_early_param();
415 
416 #ifdef CONFIG_IA64_GENERIC
417 	machvec_init(NULL);
418 #endif
419 
420 	if (early_console_setup(*cmdline_p) == 0)
421 		mark_bsp_online();
422 
423 #ifdef CONFIG_ACPI
424 	/* Initialize the ACPI boot-time table parser */
425 	acpi_table_init();
426 # ifdef CONFIG_ACPI_NUMA
427 	acpi_numa_init();
428 # endif
429 #else
430 # ifdef CONFIG_SMP
431 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
432 # endif
433 #endif /* CONFIG_APCI_BOOT */
434 
435 	find_memory();
436 
437 	/* process SAL system table: */
438 	ia64_sal_init(__va(efi.sal_systab));
439 
440 	ia64_setup_printk_clock();
441 
442 #ifdef CONFIG_SMP
443 	cpu_physical_id(0) = hard_smp_processor_id();
444 
445 	cpu_set(0, cpu_sibling_map[0]);
446 	cpu_set(0, cpu_core_map[0]);
447 
448 	check_for_logical_procs();
449 	if (smp_num_cpucores > 1)
450 		printk(KERN_INFO
451 		       "cpu package is Multi-Core capable: number of cores=%d\n",
452 		       smp_num_cpucores);
453 	if (smp_num_siblings > 1)
454 		printk(KERN_INFO
455 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
456 		       smp_num_siblings);
457 #endif
458 
459 	cpu_init();	/* initialize the bootstrap CPU */
460 	mmu_context_init();	/* initialize context_id bitmap */
461 
462 #ifdef CONFIG_ACPI
463 	acpi_boot_init();
464 #endif
465 
466 #ifdef CONFIG_VT
467 	if (!conswitchp) {
468 # if defined(CONFIG_DUMMY_CONSOLE)
469 		conswitchp = &dummy_con;
470 # endif
471 # if defined(CONFIG_VGA_CONSOLE)
472 		/*
473 		 * Non-legacy systems may route legacy VGA MMIO range to system
474 		 * memory.  vga_con probes the MMIO hole, so memory looks like
475 		 * a VGA device to it.  The EFI memory map can tell us if it's
476 		 * memory so we can avoid this problem.
477 		 */
478 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
479 			conswitchp = &vga_con;
480 # endif
481 	}
482 #endif
483 
484 	/* enable IA-64 Machine Check Abort Handling unless disabled */
485 	if (!nomca)
486 		ia64_mca_init();
487 
488 	platform_setup(cmdline_p);
489 	paging_init();
490 }
491 
492 /*
493  * Display cpu info for all cpu's.
494  */
495 static int
496 show_cpuinfo (struct seq_file *m, void *v)
497 {
498 #ifdef CONFIG_SMP
499 #	define lpj	c->loops_per_jiffy
500 #	define cpunum	c->cpu
501 #else
502 #	define lpj	loops_per_jiffy
503 #	define cpunum	0
504 #endif
505 	static struct {
506 		unsigned long mask;
507 		const char *feature_name;
508 	} feature_bits[] = {
509 		{ 1UL << 0, "branchlong" },
510 		{ 1UL << 1, "spontaneous deferral"},
511 		{ 1UL << 2, "16-byte atomic ops" }
512 	};
513 	char family[32], features[128], *cp, sep;
514 	struct cpuinfo_ia64 *c = v;
515 	unsigned long mask;
516 	unsigned long proc_freq;
517 	int i;
518 
519 	mask = c->features;
520 
521 	switch (c->family) {
522 	      case 0x07:	memcpy(family, "Itanium", 8); break;
523 	      case 0x1f:	memcpy(family, "Itanium 2", 10); break;
524 	      default:		sprintf(family, "%u", c->family); break;
525 	}
526 
527 	/* build the feature string: */
528 	memcpy(features, " standard", 10);
529 	cp = features;
530 	sep = 0;
531 	for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
532 		if (mask & feature_bits[i].mask) {
533 			if (sep)
534 				*cp++ = sep;
535 			sep = ',';
536 			*cp++ = ' ';
537 			strcpy(cp, feature_bits[i].feature_name);
538 			cp += strlen(feature_bits[i].feature_name);
539 			mask &= ~feature_bits[i].mask;
540 		}
541 	}
542 	if (mask) {
543 		/* print unknown features as a hex value: */
544 		if (sep)
545 			*cp++ = sep;
546 		sprintf(cp, " 0x%lx", mask);
547 	}
548 
549 	proc_freq = cpufreq_quick_get(cpunum);
550 	if (!proc_freq)
551 		proc_freq = c->proc_freq / 1000;
552 
553 	seq_printf(m,
554 		   "processor  : %d\n"
555 		   "vendor     : %s\n"
556 		   "arch       : IA-64\n"
557 		   "family     : %s\n"
558 		   "model      : %u\n"
559 		   "revision   : %u\n"
560 		   "archrev    : %u\n"
561 		   "features   :%s\n"	/* don't change this---it _is_ right! */
562 		   "cpu number : %lu\n"
563 		   "cpu regs   : %u\n"
564 		   "cpu MHz    : %lu.%06lu\n"
565 		   "itc MHz    : %lu.%06lu\n"
566 		   "BogoMIPS   : %lu.%02lu\n",
567 		   cpunum, c->vendor, family, c->model, c->revision, c->archrev,
568 		   features, c->ppn, c->number,
569 		   proc_freq / 1000, proc_freq % 1000,
570 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
571 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
572 #ifdef CONFIG_SMP
573 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
574 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
575 		seq_printf(m,
576 		   	   "physical id: %u\n"
577 		   	   "core id    : %u\n"
578 		   	   "thread id  : %u\n",
579 		   	   c->socket_id, c->core_id, c->thread_id);
580 #endif
581 	seq_printf(m,"\n");
582 
583 	return 0;
584 }
585 
586 static void *
587 c_start (struct seq_file *m, loff_t *pos)
588 {
589 #ifdef CONFIG_SMP
590 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
591 		++*pos;
592 #endif
593 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
594 }
595 
596 static void *
597 c_next (struct seq_file *m, void *v, loff_t *pos)
598 {
599 	++*pos;
600 	return c_start(m, pos);
601 }
602 
603 static void
604 c_stop (struct seq_file *m, void *v)
605 {
606 }
607 
608 struct seq_operations cpuinfo_op = {
609 	.start =	c_start,
610 	.next =		c_next,
611 	.stop =		c_stop,
612 	.show =		show_cpuinfo
613 };
614 
615 static void __cpuinit
616 identify_cpu (struct cpuinfo_ia64 *c)
617 {
618 	union {
619 		unsigned long bits[5];
620 		struct {
621 			/* id 0 & 1: */
622 			char vendor[16];
623 
624 			/* id 2 */
625 			u64 ppn;		/* processor serial number */
626 
627 			/* id 3: */
628 			unsigned number		:  8;
629 			unsigned revision	:  8;
630 			unsigned model		:  8;
631 			unsigned family		:  8;
632 			unsigned archrev	:  8;
633 			unsigned reserved	: 24;
634 
635 			/* id 4: */
636 			u64 features;
637 		} field;
638 	} cpuid;
639 	pal_vm_info_1_u_t vm1;
640 	pal_vm_info_2_u_t vm2;
641 	pal_status_t status;
642 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
643 	int i;
644 
645 	for (i = 0; i < 5; ++i)
646 		cpuid.bits[i] = ia64_get_cpuid(i);
647 
648 	memcpy(c->vendor, cpuid.field.vendor, 16);
649 #ifdef CONFIG_SMP
650 	c->cpu = smp_processor_id();
651 
652 	/* below default values will be overwritten  by identify_siblings()
653 	 * for Multi-Threading/Multi-Core capable cpu's
654 	 */
655 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
656 	c->socket_id = -1;
657 
658 	identify_siblings(c);
659 #endif
660 	c->ppn = cpuid.field.ppn;
661 	c->number = cpuid.field.number;
662 	c->revision = cpuid.field.revision;
663 	c->model = cpuid.field.model;
664 	c->family = cpuid.field.family;
665 	c->archrev = cpuid.field.archrev;
666 	c->features = cpuid.field.features;
667 
668 	status = ia64_pal_vm_summary(&vm1, &vm2);
669 	if (status == PAL_STATUS_SUCCESS) {
670 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
671 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
672 	}
673 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
674 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
675 }
676 
677 void
678 setup_per_cpu_areas (void)
679 {
680 	/* start_kernel() requires this... */
681 #ifdef CONFIG_ACPI_HOTPLUG_CPU
682 	prefill_possible_map();
683 #endif
684 }
685 
686 /*
687  * Calculate the max. cache line size.
688  *
689  * In addition, the minimum of the i-cache stride sizes is calculated for
690  * "flush_icache_range()".
691  */
692 static void __cpuinit
693 get_max_cacheline_size (void)
694 {
695 	unsigned long line_size, max = 1;
696 	unsigned int cache_size = 0;
697 	u64 l, levels, unique_caches;
698         pal_cache_config_info_t cci;
699         s64 status;
700 
701         status = ia64_pal_cache_summary(&levels, &unique_caches);
702         if (status != 0) {
703                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
704                        __FUNCTION__, status);
705                 max = SMP_CACHE_BYTES;
706 		/* Safest setup for "flush_icache_range()" */
707 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
708 		goto out;
709         }
710 
711 	for (l = 0; l < levels; ++l) {
712 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
713 						    &cci);
714 		if (status != 0) {
715 			printk(KERN_ERR
716 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
717 			       __FUNCTION__, l, status);
718 			max = SMP_CACHE_BYTES;
719 			/* The safest setup for "flush_icache_range()" */
720 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
721 			cci.pcci_unified = 1;
722 		}
723 		line_size = 1 << cci.pcci_line_size;
724 		if (line_size > max)
725 			max = line_size;
726 		if (cache_size < cci.pcci_cache_size)
727 			cache_size = cci.pcci_cache_size;
728 		if (!cci.pcci_unified) {
729 			status = ia64_pal_cache_config_info(l,
730 						    /* cache_type (instruction)= */ 1,
731 						    &cci);
732 			if (status != 0) {
733 				printk(KERN_ERR
734 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
735 					__FUNCTION__, l, status);
736 				/* The safest setup for "flush_icache_range()" */
737 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
738 			}
739 		}
740 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
741 			ia64_i_cache_stride_shift = cci.pcci_stride;
742 	}
743   out:
744 #ifdef CONFIG_SMP
745 	max_cache_size = max(max_cache_size, cache_size);
746 #endif
747 	if (max > ia64_max_cacheline_size)
748 		ia64_max_cacheline_size = max;
749 }
750 
751 /*
752  * cpu_init() initializes state that is per-CPU.  This function acts
753  * as a 'CPU state barrier', nothing should get across.
754  */
755 void __cpuinit
756 cpu_init (void)
757 {
758 	extern void __cpuinit ia64_mmu_init (void *);
759 	unsigned long num_phys_stacked;
760 	pal_vm_info_2_u_t vmi;
761 	unsigned int max_ctx;
762 	struct cpuinfo_ia64 *cpu_info;
763 	void *cpu_data;
764 
765 	cpu_data = per_cpu_init();
766 
767 	/*
768 	 * We set ar.k3 so that assembly code in MCA handler can compute
769 	 * physical addresses of per cpu variables with a simple:
770 	 *   phys = ar.k3 + &per_cpu_var
771 	 */
772 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
773 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
774 
775 	get_max_cacheline_size();
776 
777 	/*
778 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
779 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
780 	 * depends on the data returned by identify_cpu().  We break the dependency by
781 	 * accessing cpu_data() through the canonical per-CPU address.
782 	 */
783 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
784 	identify_cpu(cpu_info);
785 
786 #ifdef CONFIG_MCKINLEY
787 	{
788 #		define FEATURE_SET 16
789 		struct ia64_pal_retval iprv;
790 
791 		if (cpu_info->family == 0x1f) {
792 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
793 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
794 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
795 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
796 		}
797 	}
798 #endif
799 
800 	/* Clear the stack memory reserved for pt_regs: */
801 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
802 
803 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
804 
805 	/*
806 	 * Initialize the page-table base register to a global
807 	 * directory with all zeroes.  This ensure that we can handle
808 	 * TLB-misses to user address-space even before we created the
809 	 * first user address-space.  This may happen, e.g., due to
810 	 * aggressive use of lfetch.fault.
811 	 */
812 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
813 
814 	/*
815 	 * Initialize default control register to defer speculative faults except
816 	 * for those arising from TLB misses, which are not deferred.  The
817 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
818 	 * the kernel must have recovery code for all speculative accesses).  Turn on
819 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
820 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
821 	 * be fine).
822 	 */
823 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
824 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
825 	atomic_inc(&init_mm.mm_count);
826 	current->active_mm = &init_mm;
827 	if (current->mm)
828 		BUG();
829 
830 	ia64_mmu_init(ia64_imva(cpu_data));
831 	ia64_mca_cpu_init(ia64_imva(cpu_data));
832 
833 #ifdef CONFIG_IA32_SUPPORT
834 	ia32_cpu_init();
835 #endif
836 
837 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
838 	ia64_set_itc(0);
839 
840 	/* disable all local interrupt sources: */
841 	ia64_set_itv(1 << 16);
842 	ia64_set_lrr0(1 << 16);
843 	ia64_set_lrr1(1 << 16);
844 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
845 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
846 
847 	/* clear TPR & XTP to enable all interrupt classes: */
848 	ia64_setreg(_IA64_REG_CR_TPR, 0);
849 #ifdef CONFIG_SMP
850 	normal_xtp();
851 #endif
852 
853 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
854 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
855 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
856 	else {
857 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
858 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
859 	}
860 	while (max_ctx < ia64_ctx.max_ctx) {
861 		unsigned int old = ia64_ctx.max_ctx;
862 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
863 			break;
864 	}
865 
866 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
867 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
868 		       "stacked regs\n");
869 		num_phys_stacked = 96;
870 	}
871 	/* size of physical stacked register partition plus 8 bytes: */
872 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
873 	platform_cpu_init();
874 	pm_idle = default_idle;
875 }
876 
877 /*
878  * On SMP systems, when the scheduler does migration-cost autodetection,
879  * it needs a way to flush as much of the CPU's caches as possible.
880  */
881 void sched_cacheflush(void)
882 {
883 	ia64_sal_cache_flush(3);
884 }
885 
886 void __init
887 check_bugs (void)
888 {
889 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
890 			       (unsigned long) __end___mckinley_e9_bundles);
891 }
892 
893 static int __init run_dmi_scan(void)
894 {
895 	dmi_scan_machine();
896 	return 0;
897 }
898 core_initcall(run_dmi_scan);
899