1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * Stephane Eranian <eranian@hpl.hp.com> 7 * Copyright (C) 2000, 2004 Intel Corp 8 * Rohit Seth <rohit.seth@intel.com> 9 * Suresh Siddha <suresh.b.siddha@intel.com> 10 * Gordon Jin <gordon.jin@intel.com> 11 * Copyright (C) 1999 VA Linux Systems 12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> 13 * 14 * 12/26/04 S.Siddha, G.Jin, R.Seth 15 * Add multi-threading and multi-core detection 16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). 17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map 18 * 03/31/00 R.Seth cpu_initialized and current->processor fixes 19 * 02/04/00 D.Mosberger some more get_cpuinfo fixes... 20 * 02/01/00 R.Seth fixed get_cpuinfo for SMP 21 * 01/07/99 S.Eranian added the support for command line argument 22 * 06/24/99 W.Drummond added boot_cpu_data. 23 * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()" 24 */ 25 #include <linux/module.h> 26 #include <linux/init.h> 27 28 #include <linux/acpi.h> 29 #include <linux/bootmem.h> 30 #include <linux/console.h> 31 #include <linux/delay.h> 32 #include <linux/kernel.h> 33 #include <linux/reboot.h> 34 #include <linux/sched.h> 35 #include <linux/seq_file.h> 36 #include <linux/string.h> 37 #include <linux/threads.h> 38 #include <linux/screen_info.h> 39 #include <linux/dmi.h> 40 #include <linux/serial.h> 41 #include <linux/serial_core.h> 42 #include <linux/efi.h> 43 #include <linux/initrd.h> 44 #include <linux/pm.h> 45 #include <linux/cpufreq.h> 46 #include <linux/kexec.h> 47 #include <linux/crash_dump.h> 48 49 #include <asm/machvec.h> 50 #include <asm/mca.h> 51 #include <asm/meminit.h> 52 #include <asm/page.h> 53 #include <asm/paravirt.h> 54 #include <asm/paravirt_patch.h> 55 #include <asm/patch.h> 56 #include <asm/pgtable.h> 57 #include <asm/processor.h> 58 #include <asm/sal.h> 59 #include <asm/sections.h> 60 #include <asm/setup.h> 61 #include <asm/smp.h> 62 #include <asm/tlbflush.h> 63 #include <asm/unistd.h> 64 #include <asm/hpsim.h> 65 66 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) 67 # error "struct cpuinfo_ia64 too big!" 68 #endif 69 70 #ifdef CONFIG_SMP 71 unsigned long __per_cpu_offset[NR_CPUS]; 72 EXPORT_SYMBOL(__per_cpu_offset); 73 #endif 74 75 DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); 76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); 77 unsigned long ia64_cycles_per_usec; 78 struct ia64_boot_param *ia64_boot_param; 79 struct screen_info screen_info; 80 unsigned long vga_console_iobase; 81 unsigned long vga_console_membase; 82 83 static struct resource data_resource = { 84 .name = "Kernel data", 85 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 86 }; 87 88 static struct resource code_resource = { 89 .name = "Kernel code", 90 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 91 }; 92 93 static struct resource bss_resource = { 94 .name = "Kernel bss", 95 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 96 }; 97 98 unsigned long ia64_max_cacheline_size; 99 100 unsigned long ia64_iobase; /* virtual address for I/O accesses */ 101 EXPORT_SYMBOL(ia64_iobase); 102 struct io_space io_space[MAX_IO_SPACES]; 103 EXPORT_SYMBOL(io_space); 104 unsigned int num_io_spaces; 105 106 /* 107 * "flush_icache_range()" needs to know what processor dependent stride size to use 108 * when it makes i-cache(s) coherent with d-caches. 109 */ 110 #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */ 111 unsigned long ia64_i_cache_stride_shift = ~0; 112 /* 113 * "clflush_cache_range()" needs to know what processor dependent stride size to 114 * use when it flushes cache lines including both d-cache and i-cache. 115 */ 116 /* Safest way to go: 32 bytes by 32 bytes */ 117 #define CACHE_STRIDE_SHIFT 5 118 unsigned long ia64_cache_stride_shift = ~0; 119 120 /* 121 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1). This 122 * mask specifies a mask of address bits that must be 0 in order for two buffers to be 123 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start 124 * address of the second buffer must be aligned to (merge_mask+1) in order to be 125 * mergeable). By default, we assume there is no I/O MMU which can merge physically 126 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu 127 * page-size of 2^64. 128 */ 129 unsigned long ia64_max_iommu_merge_mask = ~0UL; 130 EXPORT_SYMBOL(ia64_max_iommu_merge_mask); 131 132 /* 133 * We use a special marker for the end of memory and it uses the extra (+1) slot 134 */ 135 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; 136 int num_rsvd_regions __initdata; 137 138 139 /* 140 * Filter incoming memory segments based on the primitive map created from the boot 141 * parameters. Segments contained in the map are removed from the memory ranges. A 142 * caller-specified function is called with the memory ranges that remain after filtering. 143 * This routine does not assume the incoming segments are sorted. 144 */ 145 int __init 146 filter_rsvd_memory (u64 start, u64 end, void *arg) 147 { 148 u64 range_start, range_end, prev_start; 149 void (*func)(unsigned long, unsigned long, int); 150 int i; 151 152 #if IGNORE_PFN0 153 if (start == PAGE_OFFSET) { 154 printk(KERN_WARNING "warning: skipping physical page 0\n"); 155 start += PAGE_SIZE; 156 if (start >= end) return 0; 157 } 158 #endif 159 /* 160 * lowest possible address(walker uses virtual) 161 */ 162 prev_start = PAGE_OFFSET; 163 func = arg; 164 165 for (i = 0; i < num_rsvd_regions; ++i) { 166 range_start = max(start, prev_start); 167 range_end = min(end, rsvd_region[i].start); 168 169 if (range_start < range_end) 170 call_pernode_memory(__pa(range_start), range_end - range_start, func); 171 172 /* nothing more available in this segment */ 173 if (range_end == end) return 0; 174 175 prev_start = rsvd_region[i].end; 176 } 177 /* end of memory marker allows full processing inside loop body */ 178 return 0; 179 } 180 181 /* 182 * Similar to "filter_rsvd_memory()", but the reserved memory ranges 183 * are not filtered out. 184 */ 185 int __init 186 filter_memory(u64 start, u64 end, void *arg) 187 { 188 void (*func)(unsigned long, unsigned long, int); 189 190 #if IGNORE_PFN0 191 if (start == PAGE_OFFSET) { 192 printk(KERN_WARNING "warning: skipping physical page 0\n"); 193 start += PAGE_SIZE; 194 if (start >= end) 195 return 0; 196 } 197 #endif 198 func = arg; 199 if (start < end) 200 call_pernode_memory(__pa(start), end - start, func); 201 return 0; 202 } 203 204 static void __init 205 sort_regions (struct rsvd_region *rsvd_region, int max) 206 { 207 int j; 208 209 /* simple bubble sorting */ 210 while (max--) { 211 for (j = 0; j < max; ++j) { 212 if (rsvd_region[j].start > rsvd_region[j+1].start) { 213 struct rsvd_region tmp; 214 tmp = rsvd_region[j]; 215 rsvd_region[j] = rsvd_region[j + 1]; 216 rsvd_region[j + 1] = tmp; 217 } 218 } 219 } 220 } 221 222 /* merge overlaps */ 223 static int __init 224 merge_regions (struct rsvd_region *rsvd_region, int max) 225 { 226 int i; 227 for (i = 1; i < max; ++i) { 228 if (rsvd_region[i].start >= rsvd_region[i-1].end) 229 continue; 230 if (rsvd_region[i].end > rsvd_region[i-1].end) 231 rsvd_region[i-1].end = rsvd_region[i].end; 232 --max; 233 memmove(&rsvd_region[i], &rsvd_region[i+1], 234 (max - i) * sizeof(struct rsvd_region)); 235 } 236 return max; 237 } 238 239 /* 240 * Request address space for all standard resources 241 */ 242 static int __init register_memory(void) 243 { 244 code_resource.start = ia64_tpa(_text); 245 code_resource.end = ia64_tpa(_etext) - 1; 246 data_resource.start = ia64_tpa(_etext); 247 data_resource.end = ia64_tpa(_edata) - 1; 248 bss_resource.start = ia64_tpa(__bss_start); 249 bss_resource.end = ia64_tpa(_end) - 1; 250 efi_initialize_iomem_resources(&code_resource, &data_resource, 251 &bss_resource); 252 253 return 0; 254 } 255 256 __initcall(register_memory); 257 258 259 #ifdef CONFIG_KEXEC 260 261 /* 262 * This function checks if the reserved crashkernel is allowed on the specific 263 * IA64 machine flavour. Machines without an IO TLB use swiotlb and require 264 * some memory below 4 GB (i.e. in 32 bit area), see the implementation of 265 * lib/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that 266 * in kdump case. See the comment in sba_init() in sba_iommu.c. 267 * 268 * So, the only machvec that really supports loading the kdump kernel 269 * over 4 GB is "sn2". 270 */ 271 static int __init check_crashkernel_memory(unsigned long pbase, size_t size) 272 { 273 if (ia64_platform_is("sn2") || ia64_platform_is("uv")) 274 return 1; 275 else 276 return pbase < (1UL << 32); 277 } 278 279 static void __init setup_crashkernel(unsigned long total, int *n) 280 { 281 unsigned long long base = 0, size = 0; 282 int ret; 283 284 ret = parse_crashkernel(boot_command_line, total, 285 &size, &base); 286 if (ret == 0 && size > 0) { 287 if (!base) { 288 sort_regions(rsvd_region, *n); 289 *n = merge_regions(rsvd_region, *n); 290 base = kdump_find_rsvd_region(size, 291 rsvd_region, *n); 292 } 293 294 if (!check_crashkernel_memory(base, size)) { 295 pr_warning("crashkernel: There would be kdump memory " 296 "at %ld GB but this is unusable because it " 297 "must\nbe below 4 GB. Change the memory " 298 "configuration of the machine.\n", 299 (unsigned long)(base >> 30)); 300 return; 301 } 302 303 if (base != ~0UL) { 304 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " 305 "for crashkernel (System RAM: %ldMB)\n", 306 (unsigned long)(size >> 20), 307 (unsigned long)(base >> 20), 308 (unsigned long)(total >> 20)); 309 rsvd_region[*n].start = 310 (unsigned long)__va(base); 311 rsvd_region[*n].end = 312 (unsigned long)__va(base + size); 313 (*n)++; 314 crashk_res.start = base; 315 crashk_res.end = base + size - 1; 316 } 317 } 318 efi_memmap_res.start = ia64_boot_param->efi_memmap; 319 efi_memmap_res.end = efi_memmap_res.start + 320 ia64_boot_param->efi_memmap_size; 321 boot_param_res.start = __pa(ia64_boot_param); 322 boot_param_res.end = boot_param_res.start + 323 sizeof(*ia64_boot_param); 324 } 325 #else 326 static inline void __init setup_crashkernel(unsigned long total, int *n) 327 {} 328 #endif 329 330 /** 331 * reserve_memory - setup reserved memory areas 332 * 333 * Setup the reserved memory areas set aside for the boot parameters, 334 * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined, 335 * see arch/ia64/include/asm/meminit.h if you need to define more. 336 */ 337 void __init 338 reserve_memory (void) 339 { 340 int n = 0; 341 unsigned long total_memory; 342 343 /* 344 * none of the entries in this table overlap 345 */ 346 rsvd_region[n].start = (unsigned long) ia64_boot_param; 347 rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param); 348 n++; 349 350 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); 351 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; 352 n++; 353 354 rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); 355 rsvd_region[n].end = (rsvd_region[n].start 356 + strlen(__va(ia64_boot_param->command_line)) + 1); 357 n++; 358 359 rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); 360 rsvd_region[n].end = (unsigned long) ia64_imva(_end); 361 n++; 362 363 n += paravirt_reserve_memory(&rsvd_region[n]); 364 365 #ifdef CONFIG_BLK_DEV_INITRD 366 if (ia64_boot_param->initrd_start) { 367 rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); 368 rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size; 369 n++; 370 } 371 #endif 372 373 #ifdef CONFIG_CRASH_DUMP 374 if (reserve_elfcorehdr(&rsvd_region[n].start, 375 &rsvd_region[n].end) == 0) 376 n++; 377 #endif 378 379 total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); 380 n++; 381 382 setup_crashkernel(total_memory, &n); 383 384 /* end of memory marker */ 385 rsvd_region[n].start = ~0UL; 386 rsvd_region[n].end = ~0UL; 387 n++; 388 389 num_rsvd_regions = n; 390 BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); 391 392 sort_regions(rsvd_region, num_rsvd_regions); 393 num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions); 394 } 395 396 397 /** 398 * find_initrd - get initrd parameters from the boot parameter structure 399 * 400 * Grab the initrd start and end from the boot parameter struct given us by 401 * the boot loader. 402 */ 403 void __init 404 find_initrd (void) 405 { 406 #ifdef CONFIG_BLK_DEV_INITRD 407 if (ia64_boot_param->initrd_start) { 408 initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); 409 initrd_end = initrd_start+ia64_boot_param->initrd_size; 410 411 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n", 412 initrd_start, ia64_boot_param->initrd_size); 413 } 414 #endif 415 } 416 417 static void __init 418 io_port_init (void) 419 { 420 unsigned long phys_iobase; 421 422 /* 423 * Set `iobase' based on the EFI memory map or, failing that, the 424 * value firmware left in ar.k0. 425 * 426 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute 427 * the port's virtual address, so ia32_load_state() loads it with a 428 * user virtual address. But in ia64 mode, glibc uses the 429 * *physical* address in ar.k0 to mmap the appropriate area from 430 * /dev/mem, and the inX()/outX() interfaces use MMIO. In both 431 * cases, user-mode can only use the legacy 0-64K I/O port space. 432 * 433 * ar.k0 is not involved in kernel I/O port accesses, which can use 434 * any of the I/O port spaces and are done via MMIO using the 435 * virtual mmio_base from the appropriate io_space[]. 436 */ 437 phys_iobase = efi_get_iobase(); 438 if (!phys_iobase) { 439 phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); 440 printk(KERN_INFO "No I/O port range found in EFI memory map, " 441 "falling back to AR.KR0 (0x%lx)\n", phys_iobase); 442 } 443 ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); 444 ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); 445 446 /* setup legacy IO port space */ 447 io_space[0].mmio_base = ia64_iobase; 448 io_space[0].sparse = 1; 449 num_io_spaces = 1; 450 } 451 452 /** 453 * early_console_setup - setup debugging console 454 * 455 * Consoles started here require little enough setup that we can start using 456 * them very early in the boot process, either right after the machine 457 * vector initialization, or even before if the drivers can detect their hw. 458 * 459 * Returns non-zero if a console couldn't be setup. 460 */ 461 static inline int __init 462 early_console_setup (char *cmdline) 463 { 464 int earlycons = 0; 465 466 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE 467 { 468 extern int sn_serial_console_early_setup(void); 469 if (!sn_serial_console_early_setup()) 470 earlycons++; 471 } 472 #endif 473 #ifdef CONFIG_EFI_PCDP 474 if (!efi_setup_pcdp_console(cmdline)) 475 earlycons++; 476 #endif 477 if (!simcons_register()) 478 earlycons++; 479 480 return (earlycons) ? 0 : -1; 481 } 482 483 static inline void 484 mark_bsp_online (void) 485 { 486 #ifdef CONFIG_SMP 487 /* If we register an early console, allow CPU 0 to printk */ 488 set_cpu_online(smp_processor_id(), true); 489 #endif 490 } 491 492 static __initdata int nomca; 493 static __init int setup_nomca(char *s) 494 { 495 nomca = 1; 496 return 0; 497 } 498 early_param("nomca", setup_nomca); 499 500 #ifdef CONFIG_CRASH_DUMP 501 int __init reserve_elfcorehdr(u64 *start, u64 *end) 502 { 503 u64 length; 504 505 /* We get the address using the kernel command line, 506 * but the size is extracted from the EFI tables. 507 * Both address and size are required for reservation 508 * to work properly. 509 */ 510 511 if (!is_vmcore_usable()) 512 return -EINVAL; 513 514 if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) { 515 vmcore_unusable(); 516 return -EINVAL; 517 } 518 519 *start = (unsigned long)__va(elfcorehdr_addr); 520 *end = *start + length; 521 return 0; 522 } 523 524 #endif /* CONFIG_PROC_VMCORE */ 525 526 void __init 527 setup_arch (char **cmdline_p) 528 { 529 unw_init(); 530 531 paravirt_arch_setup_early(); 532 533 ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); 534 paravirt_patch_apply(); 535 536 *cmdline_p = __va(ia64_boot_param->command_line); 537 strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); 538 539 efi_init(); 540 io_port_init(); 541 542 #ifdef CONFIG_IA64_GENERIC 543 /* machvec needs to be parsed from the command line 544 * before parse_early_param() is called to ensure 545 * that ia64_mv is initialised before any command line 546 * settings may cause console setup to occur 547 */ 548 machvec_init_from_cmdline(*cmdline_p); 549 #endif 550 551 parse_early_param(); 552 553 if (early_console_setup(*cmdline_p) == 0) 554 mark_bsp_online(); 555 556 #ifdef CONFIG_ACPI 557 /* Initialize the ACPI boot-time table parser */ 558 acpi_table_init(); 559 early_acpi_boot_init(); 560 # ifdef CONFIG_ACPI_NUMA 561 acpi_numa_init(); 562 # ifdef CONFIG_ACPI_HOTPLUG_CPU 563 prefill_possible_map(); 564 # endif 565 per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ? 566 32 : cpus_weight(early_cpu_possible_map)), 567 additional_cpus > 0 ? additional_cpus : 0); 568 # endif 569 #endif /* CONFIG_APCI_BOOT */ 570 571 #ifdef CONFIG_SMP 572 smp_build_cpu_map(); 573 #endif 574 find_memory(); 575 576 /* process SAL system table: */ 577 ia64_sal_init(__va(efi.sal_systab)); 578 579 #ifdef CONFIG_ITANIUM 580 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); 581 #else 582 { 583 unsigned long num_phys_stacked; 584 585 if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96) 586 ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); 587 } 588 #endif 589 590 #ifdef CONFIG_SMP 591 cpu_physical_id(0) = hard_smp_processor_id(); 592 #endif 593 594 cpu_init(); /* initialize the bootstrap CPU */ 595 mmu_context_init(); /* initialize context_id bitmap */ 596 597 paravirt_banner(); 598 paravirt_arch_setup_console(cmdline_p); 599 600 #ifdef CONFIG_VT 601 if (!conswitchp) { 602 # if defined(CONFIG_DUMMY_CONSOLE) 603 conswitchp = &dummy_con; 604 # endif 605 # if defined(CONFIG_VGA_CONSOLE) 606 /* 607 * Non-legacy systems may route legacy VGA MMIO range to system 608 * memory. vga_con probes the MMIO hole, so memory looks like 609 * a VGA device to it. The EFI memory map can tell us if it's 610 * memory so we can avoid this problem. 611 */ 612 if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) 613 conswitchp = &vga_con; 614 # endif 615 } 616 #endif 617 618 /* enable IA-64 Machine Check Abort Handling unless disabled */ 619 if (paravirt_arch_setup_nomca()) 620 nomca = 1; 621 if (!nomca) 622 ia64_mca_init(); 623 624 platform_setup(cmdline_p); 625 #ifndef CONFIG_IA64_HP_SIM 626 check_sal_cache_flush(); 627 #endif 628 paging_init(); 629 } 630 631 /* 632 * Display cpu info for all CPUs. 633 */ 634 static int 635 show_cpuinfo (struct seq_file *m, void *v) 636 { 637 #ifdef CONFIG_SMP 638 # define lpj c->loops_per_jiffy 639 # define cpunum c->cpu 640 #else 641 # define lpj loops_per_jiffy 642 # define cpunum 0 643 #endif 644 static struct { 645 unsigned long mask; 646 const char *feature_name; 647 } feature_bits[] = { 648 { 1UL << 0, "branchlong" }, 649 { 1UL << 1, "spontaneous deferral"}, 650 { 1UL << 2, "16-byte atomic ops" } 651 }; 652 char features[128], *cp, *sep; 653 struct cpuinfo_ia64 *c = v; 654 unsigned long mask; 655 unsigned long proc_freq; 656 int i, size; 657 658 mask = c->features; 659 660 /* build the feature string: */ 661 memcpy(features, "standard", 9); 662 cp = features; 663 size = sizeof(features); 664 sep = ""; 665 for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { 666 if (mask & feature_bits[i].mask) { 667 cp += snprintf(cp, size, "%s%s", sep, 668 feature_bits[i].feature_name), 669 sep = ", "; 670 mask &= ~feature_bits[i].mask; 671 size = sizeof(features) - (cp - features); 672 } 673 } 674 if (mask && size > 1) { 675 /* print unknown features as a hex value */ 676 snprintf(cp, size, "%s0x%lx", sep, mask); 677 } 678 679 proc_freq = cpufreq_quick_get(cpunum); 680 if (!proc_freq) 681 proc_freq = c->proc_freq / 1000; 682 683 seq_printf(m, 684 "processor : %d\n" 685 "vendor : %s\n" 686 "arch : IA-64\n" 687 "family : %u\n" 688 "model : %u\n" 689 "model name : %s\n" 690 "revision : %u\n" 691 "archrev : %u\n" 692 "features : %s\n" 693 "cpu number : %lu\n" 694 "cpu regs : %u\n" 695 "cpu MHz : %lu.%03lu\n" 696 "itc MHz : %lu.%06lu\n" 697 "BogoMIPS : %lu.%02lu\n", 698 cpunum, c->vendor, c->family, c->model, 699 c->model_name, c->revision, c->archrev, 700 features, c->ppn, c->number, 701 proc_freq / 1000, proc_freq % 1000, 702 c->itc_freq / 1000000, c->itc_freq % 1000000, 703 lpj*HZ/500000, (lpj*HZ/5000) % 100); 704 #ifdef CONFIG_SMP 705 seq_printf(m, "siblings : %u\n", cpus_weight(cpu_core_map[cpunum])); 706 if (c->socket_id != -1) 707 seq_printf(m, "physical id: %u\n", c->socket_id); 708 if (c->threads_per_core > 1 || c->cores_per_socket > 1) 709 seq_printf(m, 710 "core id : %u\n" 711 "thread id : %u\n", 712 c->core_id, c->thread_id); 713 #endif 714 seq_printf(m,"\n"); 715 716 return 0; 717 } 718 719 static void * 720 c_start (struct seq_file *m, loff_t *pos) 721 { 722 #ifdef CONFIG_SMP 723 while (*pos < nr_cpu_ids && !cpu_online(*pos)) 724 ++*pos; 725 #endif 726 return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL; 727 } 728 729 static void * 730 c_next (struct seq_file *m, void *v, loff_t *pos) 731 { 732 ++*pos; 733 return c_start(m, pos); 734 } 735 736 static void 737 c_stop (struct seq_file *m, void *v) 738 { 739 } 740 741 const struct seq_operations cpuinfo_op = { 742 .start = c_start, 743 .next = c_next, 744 .stop = c_stop, 745 .show = show_cpuinfo 746 }; 747 748 #define MAX_BRANDS 8 749 static char brandname[MAX_BRANDS][128]; 750 751 static char * 752 get_model_name(__u8 family, __u8 model) 753 { 754 static int overflow; 755 char brand[128]; 756 int i; 757 758 memcpy(brand, "Unknown", 8); 759 if (ia64_pal_get_brand_info(brand)) { 760 if (family == 0x7) 761 memcpy(brand, "Merced", 7); 762 else if (family == 0x1f) switch (model) { 763 case 0: memcpy(brand, "McKinley", 9); break; 764 case 1: memcpy(brand, "Madison", 8); break; 765 case 2: memcpy(brand, "Madison up to 9M cache", 23); break; 766 } 767 } 768 for (i = 0; i < MAX_BRANDS; i++) 769 if (strcmp(brandname[i], brand) == 0) 770 return brandname[i]; 771 for (i = 0; i < MAX_BRANDS; i++) 772 if (brandname[i][0] == '\0') 773 return strcpy(brandname[i], brand); 774 if (overflow++ == 0) 775 printk(KERN_ERR 776 "%s: Table overflow. Some processor model information will be missing\n", 777 __func__); 778 return "Unknown"; 779 } 780 781 static void 782 identify_cpu (struct cpuinfo_ia64 *c) 783 { 784 union { 785 unsigned long bits[5]; 786 struct { 787 /* id 0 & 1: */ 788 char vendor[16]; 789 790 /* id 2 */ 791 u64 ppn; /* processor serial number */ 792 793 /* id 3: */ 794 unsigned number : 8; 795 unsigned revision : 8; 796 unsigned model : 8; 797 unsigned family : 8; 798 unsigned archrev : 8; 799 unsigned reserved : 24; 800 801 /* id 4: */ 802 u64 features; 803 } field; 804 } cpuid; 805 pal_vm_info_1_u_t vm1; 806 pal_vm_info_2_u_t vm2; 807 pal_status_t status; 808 unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ 809 int i; 810 for (i = 0; i < 5; ++i) 811 cpuid.bits[i] = ia64_get_cpuid(i); 812 813 memcpy(c->vendor, cpuid.field.vendor, 16); 814 #ifdef CONFIG_SMP 815 c->cpu = smp_processor_id(); 816 817 /* below default values will be overwritten by identify_siblings() 818 * for Multi-Threading/Multi-Core capable CPUs 819 */ 820 c->threads_per_core = c->cores_per_socket = c->num_log = 1; 821 c->socket_id = -1; 822 823 identify_siblings(c); 824 825 if (c->threads_per_core > smp_num_siblings) 826 smp_num_siblings = c->threads_per_core; 827 #endif 828 c->ppn = cpuid.field.ppn; 829 c->number = cpuid.field.number; 830 c->revision = cpuid.field.revision; 831 c->model = cpuid.field.model; 832 c->family = cpuid.field.family; 833 c->archrev = cpuid.field.archrev; 834 c->features = cpuid.field.features; 835 c->model_name = get_model_name(c->family, c->model); 836 837 status = ia64_pal_vm_summary(&vm1, &vm2); 838 if (status == PAL_STATUS_SUCCESS) { 839 impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; 840 phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; 841 } 842 c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); 843 c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); 844 } 845 846 /* 847 * Do the following calculations: 848 * 849 * 1. the max. cache line size. 850 * 2. the minimum of the i-cache stride sizes for "flush_icache_range()". 851 * 3. the minimum of the cache stride sizes for "clflush_cache_range()". 852 */ 853 static void 854 get_cache_info(void) 855 { 856 unsigned long line_size, max = 1; 857 unsigned long l, levels, unique_caches; 858 pal_cache_config_info_t cci; 859 long status; 860 861 status = ia64_pal_cache_summary(&levels, &unique_caches); 862 if (status != 0) { 863 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", 864 __func__, status); 865 max = SMP_CACHE_BYTES; 866 /* Safest setup for "flush_icache_range()" */ 867 ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; 868 /* Safest setup for "clflush_cache_range()" */ 869 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; 870 goto out; 871 } 872 873 for (l = 0; l < levels; ++l) { 874 /* cache_type (data_or_unified)=2 */ 875 status = ia64_pal_cache_config_info(l, 2, &cci); 876 if (status != 0) { 877 printk(KERN_ERR "%s: ia64_pal_cache_config_info" 878 "(l=%lu, 2) failed (status=%ld)\n", 879 __func__, l, status); 880 max = SMP_CACHE_BYTES; 881 /* The safest setup for "flush_icache_range()" */ 882 cci.pcci_stride = I_CACHE_STRIDE_SHIFT; 883 /* The safest setup for "clflush_cache_range()" */ 884 ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; 885 cci.pcci_unified = 1; 886 } else { 887 if (cci.pcci_stride < ia64_cache_stride_shift) 888 ia64_cache_stride_shift = cci.pcci_stride; 889 890 line_size = 1 << cci.pcci_line_size; 891 if (line_size > max) 892 max = line_size; 893 } 894 895 if (!cci.pcci_unified) { 896 /* cache_type (instruction)=1*/ 897 status = ia64_pal_cache_config_info(l, 1, &cci); 898 if (status != 0) { 899 printk(KERN_ERR "%s: ia64_pal_cache_config_info" 900 "(l=%lu, 1) failed (status=%ld)\n", 901 __func__, l, status); 902 /* The safest setup for flush_icache_range() */ 903 cci.pcci_stride = I_CACHE_STRIDE_SHIFT; 904 } 905 } 906 if (cci.pcci_stride < ia64_i_cache_stride_shift) 907 ia64_i_cache_stride_shift = cci.pcci_stride; 908 } 909 out: 910 if (max > ia64_max_cacheline_size) 911 ia64_max_cacheline_size = max; 912 } 913 914 /* 915 * cpu_init() initializes state that is per-CPU. This function acts 916 * as a 'CPU state barrier', nothing should get across. 917 */ 918 void 919 cpu_init (void) 920 { 921 extern void ia64_mmu_init(void *); 922 static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; 923 unsigned long num_phys_stacked; 924 pal_vm_info_2_u_t vmi; 925 unsigned int max_ctx; 926 struct cpuinfo_ia64 *cpu_info; 927 void *cpu_data; 928 929 cpu_data = per_cpu_init(); 930 #ifdef CONFIG_SMP 931 /* 932 * insert boot cpu into sibling and core mapes 933 * (must be done after per_cpu area is setup) 934 */ 935 if (smp_processor_id() == 0) { 936 cpu_set(0, per_cpu(cpu_sibling_map, 0)); 937 cpu_set(0, cpu_core_map[0]); 938 } else { 939 /* 940 * Set ar.k3 so that assembly code in MCA handler can compute 941 * physical addresses of per cpu variables with a simple: 942 * phys = ar.k3 + &per_cpu_var 943 * and the alt-dtlb-miss handler can set per-cpu mapping into 944 * the TLB when needed. head.S already did this for cpu0. 945 */ 946 ia64_set_kr(IA64_KR_PER_CPU_DATA, 947 ia64_tpa(cpu_data) - (long) __per_cpu_start); 948 } 949 #endif 950 951 get_cache_info(); 952 953 /* 954 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called 955 * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it 956 * depends on the data returned by identify_cpu(). We break the dependency by 957 * accessing cpu_data() through the canonical per-CPU address. 958 */ 959 cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start); 960 identify_cpu(cpu_info); 961 962 #ifdef CONFIG_MCKINLEY 963 { 964 # define FEATURE_SET 16 965 struct ia64_pal_retval iprv; 966 967 if (cpu_info->family == 0x1f) { 968 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); 969 if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) 970 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, 971 (iprv.v1 | 0x80), FEATURE_SET, 0); 972 } 973 } 974 #endif 975 976 /* Clear the stack memory reserved for pt_regs: */ 977 memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); 978 979 ia64_set_kr(IA64_KR_FPU_OWNER, 0); 980 981 /* 982 * Initialize the page-table base register to a global 983 * directory with all zeroes. This ensure that we can handle 984 * TLB-misses to user address-space even before we created the 985 * first user address-space. This may happen, e.g., due to 986 * aggressive use of lfetch.fault. 987 */ 988 ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); 989 990 /* 991 * Initialize default control register to defer speculative faults except 992 * for those arising from TLB misses, which are not deferred. The 993 * kernel MUST NOT depend on a particular setting of these bits (in other words, 994 * the kernel must have recovery code for all speculative accesses). Turn on 995 * dcr.lc as per recommendation by the architecture team. Most IA-32 apps 996 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll 997 * be fine). 998 */ 999 ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR 1000 | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); 1001 atomic_inc(&init_mm.mm_count); 1002 current->active_mm = &init_mm; 1003 BUG_ON(current->mm); 1004 1005 ia64_mmu_init(ia64_imva(cpu_data)); 1006 ia64_mca_cpu_init(ia64_imva(cpu_data)); 1007 1008 /* Clear ITC to eliminate sched_clock() overflows in human time. */ 1009 ia64_set_itc(0); 1010 1011 /* disable all local interrupt sources: */ 1012 ia64_set_itv(1 << 16); 1013 ia64_set_lrr0(1 << 16); 1014 ia64_set_lrr1(1 << 16); 1015 ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); 1016 ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); 1017 1018 /* clear TPR & XTP to enable all interrupt classes: */ 1019 ia64_setreg(_IA64_REG_CR_TPR, 0); 1020 1021 /* Clear any pending interrupts left by SAL/EFI */ 1022 while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) 1023 ia64_eoi(); 1024 1025 #ifdef CONFIG_SMP 1026 normal_xtp(); 1027 #endif 1028 1029 /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ 1030 if (ia64_pal_vm_summary(NULL, &vmi) == 0) { 1031 max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; 1032 setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL); 1033 } else { 1034 printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); 1035 max_ctx = (1U << 15) - 1; /* use architected minimum */ 1036 } 1037 while (max_ctx < ia64_ctx.max_ctx) { 1038 unsigned int old = ia64_ctx.max_ctx; 1039 if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) 1040 break; 1041 } 1042 1043 if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { 1044 printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " 1045 "stacked regs\n"); 1046 num_phys_stacked = 96; 1047 } 1048 /* size of physical stacked register partition plus 8 bytes: */ 1049 if (num_phys_stacked > max_num_phys_stacked) { 1050 ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); 1051 max_num_phys_stacked = num_phys_stacked; 1052 } 1053 platform_cpu_init(); 1054 } 1055 1056 void __init 1057 check_bugs (void) 1058 { 1059 ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, 1060 (unsigned long) __end___mckinley_e9_bundles); 1061 } 1062 1063 static int __init run_dmi_scan(void) 1064 { 1065 dmi_scan_machine(); 1066 dmi_memdev_walk(); 1067 dmi_set_dump_stack_arch_desc(); 1068 return 0; 1069 } 1070 core_initcall(run_dmi_scan); 1071