xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 2c6e6db4)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
75 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
76 unsigned long ia64_cycles_per_usec;
77 struct ia64_boot_param *ia64_boot_param;
78 struct screen_info screen_info;
79 unsigned long vga_console_iobase;
80 unsigned long vga_console_membase;
81 
82 static struct resource data_resource = {
83 	.name	= "Kernel data",
84 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
85 };
86 
87 static struct resource code_resource = {
88 	.name	= "Kernel code",
89 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
90 };
91 
92 static struct resource bss_resource = {
93 	.name	= "Kernel bss",
94 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
95 };
96 
97 unsigned long ia64_max_cacheline_size;
98 
99 int dma_get_cache_alignment(void)
100 {
101         return ia64_max_cacheline_size;
102 }
103 EXPORT_SYMBOL(dma_get_cache_alignment);
104 
105 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
106 EXPORT_SYMBOL(ia64_iobase);
107 struct io_space io_space[MAX_IO_SPACES];
108 EXPORT_SYMBOL(io_space);
109 unsigned int num_io_spaces;
110 
111 /*
112  * "flush_icache_range()" needs to know what processor dependent stride size to use
113  * when it makes i-cache(s) coherent with d-caches.
114  */
115 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
116 unsigned long ia64_i_cache_stride_shift = ~0;
117 
118 /*
119  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
120  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
121  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
122  * address of the second buffer must be aligned to (merge_mask+1) in order to be
123  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
124  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
125  * page-size of 2^64.
126  */
127 unsigned long ia64_max_iommu_merge_mask = ~0UL;
128 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
129 
130 /*
131  * We use a special marker for the end of memory and it uses the extra (+1) slot
132  */
133 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
134 int num_rsvd_regions __initdata;
135 
136 
137 /*
138  * Filter incoming memory segments based on the primitive map created from the boot
139  * parameters. Segments contained in the map are removed from the memory ranges. A
140  * caller-specified function is called with the memory ranges that remain after filtering.
141  * This routine does not assume the incoming segments are sorted.
142  */
143 int __init
144 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
145 {
146 	unsigned long range_start, range_end, prev_start;
147 	void (*func)(unsigned long, unsigned long, int);
148 	int i;
149 
150 #if IGNORE_PFN0
151 	if (start == PAGE_OFFSET) {
152 		printk(KERN_WARNING "warning: skipping physical page 0\n");
153 		start += PAGE_SIZE;
154 		if (start >= end) return 0;
155 	}
156 #endif
157 	/*
158 	 * lowest possible address(walker uses virtual)
159 	 */
160 	prev_start = PAGE_OFFSET;
161 	func = arg;
162 
163 	for (i = 0; i < num_rsvd_regions; ++i) {
164 		range_start = max(start, prev_start);
165 		range_end   = min(end, rsvd_region[i].start);
166 
167 		if (range_start < range_end)
168 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
169 
170 		/* nothing more available in this segment */
171 		if (range_end == end) return 0;
172 
173 		prev_start = rsvd_region[i].end;
174 	}
175 	/* end of memory marker allows full processing inside loop body */
176 	return 0;
177 }
178 
179 static void __init
180 sort_regions (struct rsvd_region *rsvd_region, int max)
181 {
182 	int j;
183 
184 	/* simple bubble sorting */
185 	while (max--) {
186 		for (j = 0; j < max; ++j) {
187 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
188 				struct rsvd_region tmp;
189 				tmp = rsvd_region[j];
190 				rsvd_region[j] = rsvd_region[j + 1];
191 				rsvd_region[j + 1] = tmp;
192 			}
193 		}
194 	}
195 }
196 
197 /*
198  * Request address space for all standard resources
199  */
200 static int __init register_memory(void)
201 {
202 	code_resource.start = ia64_tpa(_text);
203 	code_resource.end   = ia64_tpa(_etext) - 1;
204 	data_resource.start = ia64_tpa(_etext);
205 	data_resource.end   = ia64_tpa(_edata) - 1;
206 	bss_resource.start  = ia64_tpa(__bss_start);
207 	bss_resource.end    = ia64_tpa(_end) - 1;
208 	efi_initialize_iomem_resources(&code_resource, &data_resource,
209 			&bss_resource);
210 
211 	return 0;
212 }
213 
214 __initcall(register_memory);
215 
216 
217 #ifdef CONFIG_KEXEC
218 static void __init setup_crashkernel(unsigned long total, int *n)
219 {
220 	unsigned long long base = 0, size = 0;
221 	int ret;
222 
223 	ret = parse_crashkernel(boot_command_line, total,
224 			&size, &base);
225 	if (ret == 0 && size > 0) {
226 		if (!base) {
227 			sort_regions(rsvd_region, *n);
228 			base = kdump_find_rsvd_region(size,
229 					rsvd_region, *n);
230 		}
231 		if (base != ~0UL) {
232 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
233 					"for crashkernel (System RAM: %ldMB)\n",
234 					(unsigned long)(size >> 20),
235 					(unsigned long)(base >> 20),
236 					(unsigned long)(total >> 20));
237 			rsvd_region[*n].start =
238 				(unsigned long)__va(base);
239 			rsvd_region[*n].end =
240 				(unsigned long)__va(base + size);
241 			(*n)++;
242 			crashk_res.start = base;
243 			crashk_res.end = base + size - 1;
244 		}
245 	}
246 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
247 	efi_memmap_res.end = efi_memmap_res.start +
248 		ia64_boot_param->efi_memmap_size;
249 	boot_param_res.start = __pa(ia64_boot_param);
250 	boot_param_res.end = boot_param_res.start +
251 		sizeof(*ia64_boot_param);
252 }
253 #else
254 static inline void __init setup_crashkernel(unsigned long total, int *n)
255 {}
256 #endif
257 
258 /**
259  * reserve_memory - setup reserved memory areas
260  *
261  * Setup the reserved memory areas set aside for the boot parameters,
262  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
263  * see include/asm-ia64/meminit.h if you need to define more.
264  */
265 void __init
266 reserve_memory (void)
267 {
268 	int n = 0;
269 	unsigned long total_memory;
270 
271 	/*
272 	 * none of the entries in this table overlap
273 	 */
274 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
275 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
276 	n++;
277 
278 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
279 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
280 	n++;
281 
282 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
283 	rsvd_region[n].end   = (rsvd_region[n].start
284 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
285 	n++;
286 
287 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
288 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
289 	n++;
290 
291 #ifdef CONFIG_BLK_DEV_INITRD
292 	if (ia64_boot_param->initrd_start) {
293 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
294 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
295 		n++;
296 	}
297 #endif
298 
299 #ifdef CONFIG_PROC_VMCORE
300 	if (reserve_elfcorehdr(&rsvd_region[n].start,
301 			       &rsvd_region[n].end) == 0)
302 		n++;
303 #endif
304 
305 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
306 	n++;
307 
308 	setup_crashkernel(total_memory, &n);
309 
310 	/* end of memory marker */
311 	rsvd_region[n].start = ~0UL;
312 	rsvd_region[n].end   = ~0UL;
313 	n++;
314 
315 	num_rsvd_regions = n;
316 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
317 
318 	sort_regions(rsvd_region, num_rsvd_regions);
319 }
320 
321 
322 /**
323  * find_initrd - get initrd parameters from the boot parameter structure
324  *
325  * Grab the initrd start and end from the boot parameter struct given us by
326  * the boot loader.
327  */
328 void __init
329 find_initrd (void)
330 {
331 #ifdef CONFIG_BLK_DEV_INITRD
332 	if (ia64_boot_param->initrd_start) {
333 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
334 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
335 
336 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
337 		       initrd_start, ia64_boot_param->initrd_size);
338 	}
339 #endif
340 }
341 
342 static void __init
343 io_port_init (void)
344 {
345 	unsigned long phys_iobase;
346 
347 	/*
348 	 * Set `iobase' based on the EFI memory map or, failing that, the
349 	 * value firmware left in ar.k0.
350 	 *
351 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
352 	 * the port's virtual address, so ia32_load_state() loads it with a
353 	 * user virtual address.  But in ia64 mode, glibc uses the
354 	 * *physical* address in ar.k0 to mmap the appropriate area from
355 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
356 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
357 	 *
358 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
359 	 * any of the I/O port spaces and are done via MMIO using the
360 	 * virtual mmio_base from the appropriate io_space[].
361 	 */
362 	phys_iobase = efi_get_iobase();
363 	if (!phys_iobase) {
364 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
365 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
366 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
367 	}
368 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
369 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
370 
371 	/* setup legacy IO port space */
372 	io_space[0].mmio_base = ia64_iobase;
373 	io_space[0].sparse = 1;
374 	num_io_spaces = 1;
375 }
376 
377 /**
378  * early_console_setup - setup debugging console
379  *
380  * Consoles started here require little enough setup that we can start using
381  * them very early in the boot process, either right after the machine
382  * vector initialization, or even before if the drivers can detect their hw.
383  *
384  * Returns non-zero if a console couldn't be setup.
385  */
386 static inline int __init
387 early_console_setup (char *cmdline)
388 {
389 	int earlycons = 0;
390 
391 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
392 	{
393 		extern int sn_serial_console_early_setup(void);
394 		if (!sn_serial_console_early_setup())
395 			earlycons++;
396 	}
397 #endif
398 #ifdef CONFIG_EFI_PCDP
399 	if (!efi_setup_pcdp_console(cmdline))
400 		earlycons++;
401 #endif
402 	if (!simcons_register())
403 		earlycons++;
404 
405 	return (earlycons) ? 0 : -1;
406 }
407 
408 static inline void
409 mark_bsp_online (void)
410 {
411 #ifdef CONFIG_SMP
412 	/* If we register an early console, allow CPU 0 to printk */
413 	cpu_set(smp_processor_id(), cpu_online_map);
414 #endif
415 }
416 
417 static __initdata int nomca;
418 static __init int setup_nomca(char *s)
419 {
420 	nomca = 1;
421 	return 0;
422 }
423 early_param("nomca", setup_nomca);
424 
425 #ifdef CONFIG_PROC_VMCORE
426 /* elfcorehdr= specifies the location of elf core header
427  * stored by the crashed kernel.
428  */
429 static int __init parse_elfcorehdr(char *arg)
430 {
431 	if (!arg)
432 		return -EINVAL;
433 
434         elfcorehdr_addr = memparse(arg, &arg);
435 	return 0;
436 }
437 early_param("elfcorehdr", parse_elfcorehdr);
438 
439 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
440 {
441 	unsigned long length;
442 
443 	/* We get the address using the kernel command line,
444 	 * but the size is extracted from the EFI tables.
445 	 * Both address and size are required for reservation
446 	 * to work properly.
447 	 */
448 
449 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
450 		return -EINVAL;
451 
452 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
453 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
454 		return -EINVAL;
455 	}
456 
457 	*start = (unsigned long)__va(elfcorehdr_addr);
458 	*end = *start + length;
459 	return 0;
460 }
461 
462 #endif /* CONFIG_PROC_VMCORE */
463 
464 void __init
465 setup_arch (char **cmdline_p)
466 {
467 	unw_init();
468 
469 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
470 
471 	*cmdline_p = __va(ia64_boot_param->command_line);
472 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
473 
474 	efi_init();
475 	io_port_init();
476 
477 #ifdef CONFIG_IA64_GENERIC
478 	/* machvec needs to be parsed from the command line
479 	 * before parse_early_param() is called to ensure
480 	 * that ia64_mv is initialised before any command line
481 	 * settings may cause console setup to occur
482 	 */
483 	machvec_init_from_cmdline(*cmdline_p);
484 #endif
485 
486 	parse_early_param();
487 
488 	if (early_console_setup(*cmdline_p) == 0)
489 		mark_bsp_online();
490 
491 #ifdef CONFIG_ACPI
492 	/* Initialize the ACPI boot-time table parser */
493 	acpi_table_init();
494 # ifdef CONFIG_ACPI_NUMA
495 	acpi_numa_init();
496 	per_cpu_scan_finalize((cpus_weight(early_cpu_possible_map) == 0 ?
497 		32 : cpus_weight(early_cpu_possible_map)), additional_cpus);
498 # endif
499 #else
500 # ifdef CONFIG_SMP
501 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
502 # endif
503 #endif /* CONFIG_APCI_BOOT */
504 
505 	find_memory();
506 
507 	/* process SAL system table: */
508 	ia64_sal_init(__va(efi.sal_systab));
509 
510 #ifdef CONFIG_SMP
511 	cpu_physical_id(0) = hard_smp_processor_id();
512 #endif
513 
514 	cpu_init();	/* initialize the bootstrap CPU */
515 	mmu_context_init();	/* initialize context_id bitmap */
516 
517 	check_sal_cache_flush();
518 
519 #ifdef CONFIG_ACPI
520 	acpi_boot_init();
521 #endif
522 
523 #ifdef CONFIG_VT
524 	if (!conswitchp) {
525 # if defined(CONFIG_DUMMY_CONSOLE)
526 		conswitchp = &dummy_con;
527 # endif
528 # if defined(CONFIG_VGA_CONSOLE)
529 		/*
530 		 * Non-legacy systems may route legacy VGA MMIO range to system
531 		 * memory.  vga_con probes the MMIO hole, so memory looks like
532 		 * a VGA device to it.  The EFI memory map can tell us if it's
533 		 * memory so we can avoid this problem.
534 		 */
535 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
536 			conswitchp = &vga_con;
537 # endif
538 	}
539 #endif
540 
541 	/* enable IA-64 Machine Check Abort Handling unless disabled */
542 	if (!nomca)
543 		ia64_mca_init();
544 
545 	platform_setup(cmdline_p);
546 	paging_init();
547 }
548 
549 /*
550  * Display cpu info for all CPUs.
551  */
552 static int
553 show_cpuinfo (struct seq_file *m, void *v)
554 {
555 #ifdef CONFIG_SMP
556 #	define lpj	c->loops_per_jiffy
557 #	define cpunum	c->cpu
558 #else
559 #	define lpj	loops_per_jiffy
560 #	define cpunum	0
561 #endif
562 	static struct {
563 		unsigned long mask;
564 		const char *feature_name;
565 	} feature_bits[] = {
566 		{ 1UL << 0, "branchlong" },
567 		{ 1UL << 1, "spontaneous deferral"},
568 		{ 1UL << 2, "16-byte atomic ops" }
569 	};
570 	char features[128], *cp, *sep;
571 	struct cpuinfo_ia64 *c = v;
572 	unsigned long mask;
573 	unsigned long proc_freq;
574 	int i, size;
575 
576 	mask = c->features;
577 
578 	/* build the feature string: */
579 	memcpy(features, "standard", 9);
580 	cp = features;
581 	size = sizeof(features);
582 	sep = "";
583 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
584 		if (mask & feature_bits[i].mask) {
585 			cp += snprintf(cp, size, "%s%s", sep,
586 				       feature_bits[i].feature_name),
587 			sep = ", ";
588 			mask &= ~feature_bits[i].mask;
589 			size = sizeof(features) - (cp - features);
590 		}
591 	}
592 	if (mask && size > 1) {
593 		/* print unknown features as a hex value */
594 		snprintf(cp, size, "%s0x%lx", sep, mask);
595 	}
596 
597 	proc_freq = cpufreq_quick_get(cpunum);
598 	if (!proc_freq)
599 		proc_freq = c->proc_freq / 1000;
600 
601 	seq_printf(m,
602 		   "processor  : %d\n"
603 		   "vendor     : %s\n"
604 		   "arch       : IA-64\n"
605 		   "family     : %u\n"
606 		   "model      : %u\n"
607 		   "model name : %s\n"
608 		   "revision   : %u\n"
609 		   "archrev    : %u\n"
610 		   "features   : %s\n"
611 		   "cpu number : %lu\n"
612 		   "cpu regs   : %u\n"
613 		   "cpu MHz    : %lu.%03lu\n"
614 		   "itc MHz    : %lu.%06lu\n"
615 		   "BogoMIPS   : %lu.%02lu\n",
616 		   cpunum, c->vendor, c->family, c->model,
617 		   c->model_name, c->revision, c->archrev,
618 		   features, c->ppn, c->number,
619 		   proc_freq / 1000, proc_freq % 1000,
620 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
621 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
622 #ifdef CONFIG_SMP
623 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
624 	if (c->socket_id != -1)
625 		seq_printf(m, "physical id: %u\n", c->socket_id);
626 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
627 		seq_printf(m,
628 			   "core id    : %u\n"
629 			   "thread id  : %u\n",
630 			   c->core_id, c->thread_id);
631 #endif
632 	seq_printf(m,"\n");
633 
634 	return 0;
635 }
636 
637 static void *
638 c_start (struct seq_file *m, loff_t *pos)
639 {
640 #ifdef CONFIG_SMP
641 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
642 		++*pos;
643 #endif
644 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
645 }
646 
647 static void *
648 c_next (struct seq_file *m, void *v, loff_t *pos)
649 {
650 	++*pos;
651 	return c_start(m, pos);
652 }
653 
654 static void
655 c_stop (struct seq_file *m, void *v)
656 {
657 }
658 
659 const struct seq_operations cpuinfo_op = {
660 	.start =	c_start,
661 	.next =		c_next,
662 	.stop =		c_stop,
663 	.show =		show_cpuinfo
664 };
665 
666 #define MAX_BRANDS	8
667 static char brandname[MAX_BRANDS][128];
668 
669 static char * __cpuinit
670 get_model_name(__u8 family, __u8 model)
671 {
672 	static int overflow;
673 	char brand[128];
674 	int i;
675 
676 	memcpy(brand, "Unknown", 8);
677 	if (ia64_pal_get_brand_info(brand)) {
678 		if (family == 0x7)
679 			memcpy(brand, "Merced", 7);
680 		else if (family == 0x1f) switch (model) {
681 			case 0: memcpy(brand, "McKinley", 9); break;
682 			case 1: memcpy(brand, "Madison", 8); break;
683 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
684 		}
685 	}
686 	for (i = 0; i < MAX_BRANDS; i++)
687 		if (strcmp(brandname[i], brand) == 0)
688 			return brandname[i];
689 	for (i = 0; i < MAX_BRANDS; i++)
690 		if (brandname[i][0] == '\0')
691 			return strcpy(brandname[i], brand);
692 	if (overflow++ == 0)
693 		printk(KERN_ERR
694 		       "%s: Table overflow. Some processor model information will be missing\n",
695 		       __func__);
696 	return "Unknown";
697 }
698 
699 static void __cpuinit
700 identify_cpu (struct cpuinfo_ia64 *c)
701 {
702 	union {
703 		unsigned long bits[5];
704 		struct {
705 			/* id 0 & 1: */
706 			char vendor[16];
707 
708 			/* id 2 */
709 			u64 ppn;		/* processor serial number */
710 
711 			/* id 3: */
712 			unsigned number		:  8;
713 			unsigned revision	:  8;
714 			unsigned model		:  8;
715 			unsigned family		:  8;
716 			unsigned archrev	:  8;
717 			unsigned reserved	: 24;
718 
719 			/* id 4: */
720 			u64 features;
721 		} field;
722 	} cpuid;
723 	pal_vm_info_1_u_t vm1;
724 	pal_vm_info_2_u_t vm2;
725 	pal_status_t status;
726 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
727 	int i;
728 	for (i = 0; i < 5; ++i)
729 		cpuid.bits[i] = ia64_get_cpuid(i);
730 
731 	memcpy(c->vendor, cpuid.field.vendor, 16);
732 #ifdef CONFIG_SMP
733 	c->cpu = smp_processor_id();
734 
735 	/* below default values will be overwritten  by identify_siblings()
736 	 * for Multi-Threading/Multi-Core capable CPUs
737 	 */
738 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
739 	c->socket_id = -1;
740 
741 	identify_siblings(c);
742 
743 	if (c->threads_per_core > smp_num_siblings)
744 		smp_num_siblings = c->threads_per_core;
745 #endif
746 	c->ppn = cpuid.field.ppn;
747 	c->number = cpuid.field.number;
748 	c->revision = cpuid.field.revision;
749 	c->model = cpuid.field.model;
750 	c->family = cpuid.field.family;
751 	c->archrev = cpuid.field.archrev;
752 	c->features = cpuid.field.features;
753 	c->model_name = get_model_name(c->family, c->model);
754 
755 	status = ia64_pal_vm_summary(&vm1, &vm2);
756 	if (status == PAL_STATUS_SUCCESS) {
757 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
758 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
759 	}
760 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
761 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
762 }
763 
764 void __init
765 setup_per_cpu_areas (void)
766 {
767 	/* start_kernel() requires this... */
768 #ifdef CONFIG_ACPI_HOTPLUG_CPU
769 	prefill_possible_map();
770 #endif
771 }
772 
773 /*
774  * Calculate the max. cache line size.
775  *
776  * In addition, the minimum of the i-cache stride sizes is calculated for
777  * "flush_icache_range()".
778  */
779 static void __cpuinit
780 get_max_cacheline_size (void)
781 {
782 	unsigned long line_size, max = 1;
783 	u64 l, levels, unique_caches;
784         pal_cache_config_info_t cci;
785         s64 status;
786 
787         status = ia64_pal_cache_summary(&levels, &unique_caches);
788         if (status != 0) {
789                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
790                        __func__, status);
791                 max = SMP_CACHE_BYTES;
792 		/* Safest setup for "flush_icache_range()" */
793 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
794 		goto out;
795         }
796 
797 	for (l = 0; l < levels; ++l) {
798 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
799 						    &cci);
800 		if (status != 0) {
801 			printk(KERN_ERR
802 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
803 			       __func__, l, status);
804 			max = SMP_CACHE_BYTES;
805 			/* The safest setup for "flush_icache_range()" */
806 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
807 			cci.pcci_unified = 1;
808 		}
809 		line_size = 1 << cci.pcci_line_size;
810 		if (line_size > max)
811 			max = line_size;
812 		if (!cci.pcci_unified) {
813 			status = ia64_pal_cache_config_info(l,
814 						    /* cache_type (instruction)= */ 1,
815 						    &cci);
816 			if (status != 0) {
817 				printk(KERN_ERR
818 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
819 					__func__, l, status);
820 				/* The safest setup for "flush_icache_range()" */
821 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
822 			}
823 		}
824 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
825 			ia64_i_cache_stride_shift = cci.pcci_stride;
826 	}
827   out:
828 	if (max > ia64_max_cacheline_size)
829 		ia64_max_cacheline_size = max;
830 }
831 
832 /*
833  * cpu_init() initializes state that is per-CPU.  This function acts
834  * as a 'CPU state barrier', nothing should get across.
835  */
836 void __cpuinit
837 cpu_init (void)
838 {
839 	extern void __cpuinit ia64_mmu_init (void *);
840 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
841 	unsigned long num_phys_stacked;
842 	pal_vm_info_2_u_t vmi;
843 	unsigned int max_ctx;
844 	struct cpuinfo_ia64 *cpu_info;
845 	void *cpu_data;
846 
847 	cpu_data = per_cpu_init();
848 #ifdef CONFIG_SMP
849 	/*
850 	 * insert boot cpu into sibling and core mapes
851 	 * (must be done after per_cpu area is setup)
852 	 */
853 	if (smp_processor_id() == 0) {
854 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
855 		cpu_set(0, cpu_core_map[0]);
856 	}
857 #endif
858 
859 	/*
860 	 * We set ar.k3 so that assembly code in MCA handler can compute
861 	 * physical addresses of per cpu variables with a simple:
862 	 *   phys = ar.k3 + &per_cpu_var
863 	 */
864 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
865 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
866 
867 	get_max_cacheline_size();
868 
869 	/*
870 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
871 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
872 	 * depends on the data returned by identify_cpu().  We break the dependency by
873 	 * accessing cpu_data() through the canonical per-CPU address.
874 	 */
875 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
876 	identify_cpu(cpu_info);
877 
878 #ifdef CONFIG_MCKINLEY
879 	{
880 #		define FEATURE_SET 16
881 		struct ia64_pal_retval iprv;
882 
883 		if (cpu_info->family == 0x1f) {
884 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
885 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
886 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
887 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
888 		}
889 	}
890 #endif
891 
892 	/* Clear the stack memory reserved for pt_regs: */
893 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
894 
895 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
896 
897 	/*
898 	 * Initialize the page-table base register to a global
899 	 * directory with all zeroes.  This ensure that we can handle
900 	 * TLB-misses to user address-space even before we created the
901 	 * first user address-space.  This may happen, e.g., due to
902 	 * aggressive use of lfetch.fault.
903 	 */
904 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
905 
906 	/*
907 	 * Initialize default control register to defer speculative faults except
908 	 * for those arising from TLB misses, which are not deferred.  The
909 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
910 	 * the kernel must have recovery code for all speculative accesses).  Turn on
911 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
912 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
913 	 * be fine).
914 	 */
915 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
916 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
917 	atomic_inc(&init_mm.mm_count);
918 	current->active_mm = &init_mm;
919 	if (current->mm)
920 		BUG();
921 
922 	ia64_mmu_init(ia64_imva(cpu_data));
923 	ia64_mca_cpu_init(ia64_imva(cpu_data));
924 
925 #ifdef CONFIG_IA32_SUPPORT
926 	ia32_cpu_init();
927 #endif
928 
929 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
930 	ia64_set_itc(0);
931 
932 	/* disable all local interrupt sources: */
933 	ia64_set_itv(1 << 16);
934 	ia64_set_lrr0(1 << 16);
935 	ia64_set_lrr1(1 << 16);
936 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
937 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
938 
939 	/* clear TPR & XTP to enable all interrupt classes: */
940 	ia64_setreg(_IA64_REG_CR_TPR, 0);
941 
942 	/* Clear any pending interrupts left by SAL/EFI */
943 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
944 		ia64_eoi();
945 
946 #ifdef CONFIG_SMP
947 	normal_xtp();
948 #endif
949 
950 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
951 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
952 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
953 	else {
954 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
955 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
956 	}
957 	while (max_ctx < ia64_ctx.max_ctx) {
958 		unsigned int old = ia64_ctx.max_ctx;
959 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
960 			break;
961 	}
962 
963 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
964 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
965 		       "stacked regs\n");
966 		num_phys_stacked = 96;
967 	}
968 	/* size of physical stacked register partition plus 8 bytes: */
969 	if (num_phys_stacked > max_num_phys_stacked) {
970 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
971 		max_num_phys_stacked = num_phys_stacked;
972 	}
973 	platform_cpu_init();
974 	pm_idle = default_idle;
975 }
976 
977 void __init
978 check_bugs (void)
979 {
980 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
981 			       (unsigned long) __end___mckinley_e9_bundles);
982 }
983 
984 static int __init run_dmi_scan(void)
985 {
986 	dmi_scan_machine();
987 	return 0;
988 }
989 core_initcall(run_dmi_scan);
990