xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 244fd545)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/bootmem.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/kernel.h>
34 #include <linux/reboot.h>
35 #include <linux/sched.h>
36 #include <linux/seq_file.h>
37 #include <linux/string.h>
38 #include <linux/threads.h>
39 #include <linux/tty.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/platform.h>
45 #include <linux/pm.h>
46 #include <linux/cpufreq.h>
47 
48 #include <asm/ia32.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/patch.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/sal.h>
57 #include <asm/sections.h>
58 #include <asm/serial.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
79 unsigned long ia64_cycles_per_usec;
80 struct ia64_boot_param *ia64_boot_param;
81 struct screen_info screen_info;
82 unsigned long vga_console_iobase;
83 unsigned long vga_console_membase;
84 
85 static struct resource data_resource = {
86 	.name	= "Kernel data",
87 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
88 };
89 
90 static struct resource code_resource = {
91 	.name	= "Kernel code",
92 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
93 };
94 extern void efi_initialize_iomem_resources(struct resource *,
95 		struct resource *);
96 extern char _text[], _end[], _etext[];
97 
98 unsigned long ia64_max_cacheline_size;
99 
100 int dma_get_cache_alignment(void)
101 {
102         return ia64_max_cacheline_size;
103 }
104 EXPORT_SYMBOL(dma_get_cache_alignment);
105 
106 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
107 EXPORT_SYMBOL(ia64_iobase);
108 struct io_space io_space[MAX_IO_SPACES];
109 EXPORT_SYMBOL(io_space);
110 unsigned int num_io_spaces;
111 
112 /*
113  * "flush_icache_range()" needs to know what processor dependent stride size to use
114  * when it makes i-cache(s) coherent with d-caches.
115  */
116 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
117 unsigned long ia64_i_cache_stride_shift = ~0;
118 
119 /*
120  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
121  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
122  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
123  * address of the second buffer must be aligned to (merge_mask+1) in order to be
124  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
125  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
126  * page-size of 2^64.
127  */
128 unsigned long ia64_max_iommu_merge_mask = ~0UL;
129 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
130 
131 /*
132  * We use a special marker for the end of memory and it uses the extra (+1) slot
133  */
134 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1];
135 int num_rsvd_regions;
136 
137 
138 /*
139  * Filter incoming memory segments based on the primitive map created from the boot
140  * parameters. Segments contained in the map are removed from the memory ranges. A
141  * caller-specified function is called with the memory ranges that remain after filtering.
142  * This routine does not assume the incoming segments are sorted.
143  */
144 int
145 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
146 {
147 	unsigned long range_start, range_end, prev_start;
148 	void (*func)(unsigned long, unsigned long, int);
149 	int i;
150 
151 #if IGNORE_PFN0
152 	if (start == PAGE_OFFSET) {
153 		printk(KERN_WARNING "warning: skipping physical page 0\n");
154 		start += PAGE_SIZE;
155 		if (start >= end) return 0;
156 	}
157 #endif
158 	/*
159 	 * lowest possible address(walker uses virtual)
160 	 */
161 	prev_start = PAGE_OFFSET;
162 	func = arg;
163 
164 	for (i = 0; i < num_rsvd_regions; ++i) {
165 		range_start = max(start, prev_start);
166 		range_end   = min(end, rsvd_region[i].start);
167 
168 		if (range_start < range_end)
169 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
170 
171 		/* nothing more available in this segment */
172 		if (range_end == end) return 0;
173 
174 		prev_start = rsvd_region[i].end;
175 	}
176 	/* end of memory marker allows full processing inside loop body */
177 	return 0;
178 }
179 
180 static void
181 sort_regions (struct rsvd_region *rsvd_region, int max)
182 {
183 	int j;
184 
185 	/* simple bubble sorting */
186 	while (max--) {
187 		for (j = 0; j < max; ++j) {
188 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
189 				struct rsvd_region tmp;
190 				tmp = rsvd_region[j];
191 				rsvd_region[j] = rsvd_region[j + 1];
192 				rsvd_region[j + 1] = tmp;
193 			}
194 		}
195 	}
196 }
197 
198 /*
199  * Request address space for all standard resources
200  */
201 static int __init register_memory(void)
202 {
203 	code_resource.start = ia64_tpa(_text);
204 	code_resource.end   = ia64_tpa(_etext) - 1;
205 	data_resource.start = ia64_tpa(_etext);
206 	data_resource.end   = ia64_tpa(_end) - 1;
207 	efi_initialize_iomem_resources(&code_resource, &data_resource);
208 
209 	return 0;
210 }
211 
212 __initcall(register_memory);
213 
214 /**
215  * reserve_memory - setup reserved memory areas
216  *
217  * Setup the reserved memory areas set aside for the boot parameters,
218  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
219  * see include/asm-ia64/meminit.h if you need to define more.
220  */
221 void
222 reserve_memory (void)
223 {
224 	int n = 0;
225 
226 	/*
227 	 * none of the entries in this table overlap
228 	 */
229 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
230 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
231 	n++;
232 
233 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
234 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
235 	n++;
236 
237 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
238 	rsvd_region[n].end   = (rsvd_region[n].start
239 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
240 	n++;
241 
242 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
243 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
244 	n++;
245 
246 #ifdef CONFIG_BLK_DEV_INITRD
247 	if (ia64_boot_param->initrd_start) {
248 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
249 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
250 		n++;
251 	}
252 #endif
253 
254 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
255 	n++;
256 
257 	/* end of memory marker */
258 	rsvd_region[n].start = ~0UL;
259 	rsvd_region[n].end   = ~0UL;
260 	n++;
261 
262 	num_rsvd_regions = n;
263 
264 	sort_regions(rsvd_region, num_rsvd_regions);
265 }
266 
267 /**
268  * find_initrd - get initrd parameters from the boot parameter structure
269  *
270  * Grab the initrd start and end from the boot parameter struct given us by
271  * the boot loader.
272  */
273 void
274 find_initrd (void)
275 {
276 #ifdef CONFIG_BLK_DEV_INITRD
277 	if (ia64_boot_param->initrd_start) {
278 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
279 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
280 
281 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
282 		       initrd_start, ia64_boot_param->initrd_size);
283 	}
284 #endif
285 }
286 
287 static void __init
288 io_port_init (void)
289 {
290 	unsigned long phys_iobase;
291 
292 	/*
293 	 * Set `iobase' based on the EFI memory map or, failing that, the
294 	 * value firmware left in ar.k0.
295 	 *
296 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
297 	 * the port's virtual address, so ia32_load_state() loads it with a
298 	 * user virtual address.  But in ia64 mode, glibc uses the
299 	 * *physical* address in ar.k0 to mmap the appropriate area from
300 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
301 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
302 	 *
303 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
304 	 * any of the I/O port spaces and are done via MMIO using the
305 	 * virtual mmio_base from the appropriate io_space[].
306 	 */
307 	phys_iobase = efi_get_iobase();
308 	if (!phys_iobase) {
309 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
310 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
311 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
312 	}
313 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
314 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
315 
316 	/* setup legacy IO port space */
317 	io_space[0].mmio_base = ia64_iobase;
318 	io_space[0].sparse = 1;
319 	num_io_spaces = 1;
320 }
321 
322 /**
323  * early_console_setup - setup debugging console
324  *
325  * Consoles started here require little enough setup that we can start using
326  * them very early in the boot process, either right after the machine
327  * vector initialization, or even before if the drivers can detect their hw.
328  *
329  * Returns non-zero if a console couldn't be setup.
330  */
331 static inline int __init
332 early_console_setup (char *cmdline)
333 {
334 	int earlycons = 0;
335 
336 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
337 	{
338 		extern int sn_serial_console_early_setup(void);
339 		if (!sn_serial_console_early_setup())
340 			earlycons++;
341 	}
342 #endif
343 #ifdef CONFIG_EFI_PCDP
344 	if (!efi_setup_pcdp_console(cmdline))
345 		earlycons++;
346 #endif
347 #ifdef CONFIG_SERIAL_8250_CONSOLE
348 	if (!early_serial_console_init(cmdline))
349 		earlycons++;
350 #endif
351 
352 	return (earlycons) ? 0 : -1;
353 }
354 
355 static inline void
356 mark_bsp_online (void)
357 {
358 #ifdef CONFIG_SMP
359 	/* If we register an early console, allow CPU 0 to printk */
360 	cpu_set(smp_processor_id(), cpu_online_map);
361 #endif
362 }
363 
364 #ifdef CONFIG_SMP
365 static void __init
366 check_for_logical_procs (void)
367 {
368 	pal_logical_to_physical_t info;
369 	s64 status;
370 
371 	status = ia64_pal_logical_to_phys(0, &info);
372 	if (status == -1) {
373 		printk(KERN_INFO "No logical to physical processor mapping "
374 		       "available\n");
375 		return;
376 	}
377 	if (status) {
378 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
379 		       status);
380 		return;
381 	}
382 	/*
383 	 * Total number of siblings that BSP has.  Though not all of them
384 	 * may have booted successfully. The correct number of siblings
385 	 * booted is in info.overview_num_log.
386 	 */
387 	smp_num_siblings = info.overview_tpc;
388 	smp_num_cpucores = info.overview_cpp;
389 }
390 #endif
391 
392 void __init
393 setup_arch (char **cmdline_p)
394 {
395 	unw_init();
396 
397 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
398 
399 	*cmdline_p = __va(ia64_boot_param->command_line);
400 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
401 
402 	efi_init();
403 	io_port_init();
404 
405 #ifdef CONFIG_IA64_GENERIC
406 	{
407 		const char *mvec_name = strstr (*cmdline_p, "machvec=");
408 		char str[64];
409 
410 		if (mvec_name) {
411 			const char *end;
412 			size_t len;
413 
414 			mvec_name += 8;
415 			end = strchr (mvec_name, ' ');
416 			if (end)
417 				len = end - mvec_name;
418 			else
419 				len = strlen (mvec_name);
420 			len = min(len, sizeof (str) - 1);
421 			strncpy (str, mvec_name, len);
422 			str[len] = '\0';
423 			mvec_name = str;
424 		} else
425 			mvec_name = acpi_get_sysname();
426 		machvec_init(mvec_name);
427 	}
428 #endif
429 
430 	if (early_console_setup(*cmdline_p) == 0)
431 		mark_bsp_online();
432 
433 	parse_early_param();
434 #ifdef CONFIG_ACPI
435 	/* Initialize the ACPI boot-time table parser */
436 	acpi_table_init();
437 # ifdef CONFIG_ACPI_NUMA
438 	acpi_numa_init();
439 # endif
440 #else
441 # ifdef CONFIG_SMP
442 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
443 # endif
444 #endif /* CONFIG_APCI_BOOT */
445 
446 	find_memory();
447 
448 	/* process SAL system table: */
449 	ia64_sal_init(efi.sal_systab);
450 
451 	ia64_setup_printk_clock();
452 
453 #ifdef CONFIG_SMP
454 	cpu_physical_id(0) = hard_smp_processor_id();
455 
456 	cpu_set(0, cpu_sibling_map[0]);
457 	cpu_set(0, cpu_core_map[0]);
458 
459 	check_for_logical_procs();
460 	if (smp_num_cpucores > 1)
461 		printk(KERN_INFO
462 		       "cpu package is Multi-Core capable: number of cores=%d\n",
463 		       smp_num_cpucores);
464 	if (smp_num_siblings > 1)
465 		printk(KERN_INFO
466 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
467 		       smp_num_siblings);
468 #endif
469 
470 	cpu_init();	/* initialize the bootstrap CPU */
471 	mmu_context_init();	/* initialize context_id bitmap */
472 
473 #ifdef CONFIG_ACPI
474 	acpi_boot_init();
475 #endif
476 
477 #ifdef CONFIG_VT
478 	if (!conswitchp) {
479 # if defined(CONFIG_DUMMY_CONSOLE)
480 		conswitchp = &dummy_con;
481 # endif
482 # if defined(CONFIG_VGA_CONSOLE)
483 		/*
484 		 * Non-legacy systems may route legacy VGA MMIO range to system
485 		 * memory.  vga_con probes the MMIO hole, so memory looks like
486 		 * a VGA device to it.  The EFI memory map can tell us if it's
487 		 * memory so we can avoid this problem.
488 		 */
489 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
490 			conswitchp = &vga_con;
491 # endif
492 	}
493 #endif
494 
495 	/* enable IA-64 Machine Check Abort Handling unless disabled */
496 	if (!strstr(saved_command_line, "nomca"))
497 		ia64_mca_init();
498 
499 	platform_setup(cmdline_p);
500 	paging_init();
501 }
502 
503 /*
504  * Display cpu info for all cpu's.
505  */
506 static int
507 show_cpuinfo (struct seq_file *m, void *v)
508 {
509 #ifdef CONFIG_SMP
510 #	define lpj	c->loops_per_jiffy
511 #	define cpunum	c->cpu
512 #else
513 #	define lpj	loops_per_jiffy
514 #	define cpunum	0
515 #endif
516 	static struct {
517 		unsigned long mask;
518 		const char *feature_name;
519 	} feature_bits[] = {
520 		{ 1UL << 0, "branchlong" },
521 		{ 1UL << 1, "spontaneous deferral"},
522 		{ 1UL << 2, "16-byte atomic ops" }
523 	};
524 	char family[32], features[128], *cp, sep;
525 	struct cpuinfo_ia64 *c = v;
526 	unsigned long mask;
527 	unsigned long proc_freq;
528 	int i;
529 
530 	mask = c->features;
531 
532 	switch (c->family) {
533 	      case 0x07:	memcpy(family, "Itanium", 8); break;
534 	      case 0x1f:	memcpy(family, "Itanium 2", 10); break;
535 	      default:		sprintf(family, "%u", c->family); break;
536 	}
537 
538 	/* build the feature string: */
539 	memcpy(features, " standard", 10);
540 	cp = features;
541 	sep = 0;
542 	for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
543 		if (mask & feature_bits[i].mask) {
544 			if (sep)
545 				*cp++ = sep;
546 			sep = ',';
547 			*cp++ = ' ';
548 			strcpy(cp, feature_bits[i].feature_name);
549 			cp += strlen(feature_bits[i].feature_name);
550 			mask &= ~feature_bits[i].mask;
551 		}
552 	}
553 	if (mask) {
554 		/* print unknown features as a hex value: */
555 		if (sep)
556 			*cp++ = sep;
557 		sprintf(cp, " 0x%lx", mask);
558 	}
559 
560 	proc_freq = cpufreq_quick_get(cpunum);
561 	if (!proc_freq)
562 		proc_freq = c->proc_freq / 1000;
563 
564 	seq_printf(m,
565 		   "processor  : %d\n"
566 		   "vendor     : %s\n"
567 		   "arch       : IA-64\n"
568 		   "family     : %s\n"
569 		   "model      : %u\n"
570 		   "revision   : %u\n"
571 		   "archrev    : %u\n"
572 		   "features   :%s\n"	/* don't change this---it _is_ right! */
573 		   "cpu number : %lu\n"
574 		   "cpu regs   : %u\n"
575 		   "cpu MHz    : %lu.%06lu\n"
576 		   "itc MHz    : %lu.%06lu\n"
577 		   "BogoMIPS   : %lu.%02lu\n",
578 		   cpunum, c->vendor, family, c->model, c->revision, c->archrev,
579 		   features, c->ppn, c->number,
580 		   proc_freq / 1000, proc_freq % 1000,
581 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
582 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
583 #ifdef CONFIG_SMP
584 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
585 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
586 		seq_printf(m,
587 		   	   "physical id: %u\n"
588 		   	   "core id    : %u\n"
589 		   	   "thread id  : %u\n",
590 		   	   c->socket_id, c->core_id, c->thread_id);
591 #endif
592 	seq_printf(m,"\n");
593 
594 	return 0;
595 }
596 
597 static void *
598 c_start (struct seq_file *m, loff_t *pos)
599 {
600 #ifdef CONFIG_SMP
601 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
602 		++*pos;
603 #endif
604 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
605 }
606 
607 static void *
608 c_next (struct seq_file *m, void *v, loff_t *pos)
609 {
610 	++*pos;
611 	return c_start(m, pos);
612 }
613 
614 static void
615 c_stop (struct seq_file *m, void *v)
616 {
617 }
618 
619 struct seq_operations cpuinfo_op = {
620 	.start =	c_start,
621 	.next =		c_next,
622 	.stop =		c_stop,
623 	.show =		show_cpuinfo
624 };
625 
626 static void __cpuinit
627 identify_cpu (struct cpuinfo_ia64 *c)
628 {
629 	union {
630 		unsigned long bits[5];
631 		struct {
632 			/* id 0 & 1: */
633 			char vendor[16];
634 
635 			/* id 2 */
636 			u64 ppn;		/* processor serial number */
637 
638 			/* id 3: */
639 			unsigned number		:  8;
640 			unsigned revision	:  8;
641 			unsigned model		:  8;
642 			unsigned family		:  8;
643 			unsigned archrev	:  8;
644 			unsigned reserved	: 24;
645 
646 			/* id 4: */
647 			u64 features;
648 		} field;
649 	} cpuid;
650 	pal_vm_info_1_u_t vm1;
651 	pal_vm_info_2_u_t vm2;
652 	pal_status_t status;
653 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
654 	int i;
655 
656 	for (i = 0; i < 5; ++i)
657 		cpuid.bits[i] = ia64_get_cpuid(i);
658 
659 	memcpy(c->vendor, cpuid.field.vendor, 16);
660 #ifdef CONFIG_SMP
661 	c->cpu = smp_processor_id();
662 
663 	/* below default values will be overwritten  by identify_siblings()
664 	 * for Multi-Threading/Multi-Core capable cpu's
665 	 */
666 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
667 	c->socket_id = -1;
668 
669 	identify_siblings(c);
670 #endif
671 	c->ppn = cpuid.field.ppn;
672 	c->number = cpuid.field.number;
673 	c->revision = cpuid.field.revision;
674 	c->model = cpuid.field.model;
675 	c->family = cpuid.field.family;
676 	c->archrev = cpuid.field.archrev;
677 	c->features = cpuid.field.features;
678 
679 	status = ia64_pal_vm_summary(&vm1, &vm2);
680 	if (status == PAL_STATUS_SUCCESS) {
681 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
682 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
683 	}
684 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
685 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
686 }
687 
688 void
689 setup_per_cpu_areas (void)
690 {
691 	/* start_kernel() requires this... */
692 #ifdef CONFIG_ACPI_HOTPLUG_CPU
693 	prefill_possible_map();
694 #endif
695 }
696 
697 /*
698  * Calculate the max. cache line size.
699  *
700  * In addition, the minimum of the i-cache stride sizes is calculated for
701  * "flush_icache_range()".
702  */
703 static void __cpuinit
704 get_max_cacheline_size (void)
705 {
706 	unsigned long line_size, max = 1;
707 	unsigned int cache_size = 0;
708 	u64 l, levels, unique_caches;
709         pal_cache_config_info_t cci;
710         s64 status;
711 
712         status = ia64_pal_cache_summary(&levels, &unique_caches);
713         if (status != 0) {
714                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
715                        __FUNCTION__, status);
716                 max = SMP_CACHE_BYTES;
717 		/* Safest setup for "flush_icache_range()" */
718 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
719 		goto out;
720         }
721 
722 	for (l = 0; l < levels; ++l) {
723 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
724 						    &cci);
725 		if (status != 0) {
726 			printk(KERN_ERR
727 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
728 			       __FUNCTION__, l, status);
729 			max = SMP_CACHE_BYTES;
730 			/* The safest setup for "flush_icache_range()" */
731 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
732 			cci.pcci_unified = 1;
733 		}
734 		line_size = 1 << cci.pcci_line_size;
735 		if (line_size > max)
736 			max = line_size;
737 		if (cache_size < cci.pcci_cache_size)
738 			cache_size = cci.pcci_cache_size;
739 		if (!cci.pcci_unified) {
740 			status = ia64_pal_cache_config_info(l,
741 						    /* cache_type (instruction)= */ 1,
742 						    &cci);
743 			if (status != 0) {
744 				printk(KERN_ERR
745 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
746 					__FUNCTION__, l, status);
747 				/* The safest setup for "flush_icache_range()" */
748 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
749 			}
750 		}
751 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
752 			ia64_i_cache_stride_shift = cci.pcci_stride;
753 	}
754   out:
755 #ifdef CONFIG_SMP
756 	max_cache_size = max(max_cache_size, cache_size);
757 #endif
758 	if (max > ia64_max_cacheline_size)
759 		ia64_max_cacheline_size = max;
760 }
761 
762 /*
763  * cpu_init() initializes state that is per-CPU.  This function acts
764  * as a 'CPU state barrier', nothing should get across.
765  */
766 void __cpuinit
767 cpu_init (void)
768 {
769 	extern void __cpuinit ia64_mmu_init (void *);
770 	unsigned long num_phys_stacked;
771 	pal_vm_info_2_u_t vmi;
772 	unsigned int max_ctx;
773 	struct cpuinfo_ia64 *cpu_info;
774 	void *cpu_data;
775 
776 	cpu_data = per_cpu_init();
777 
778 	/*
779 	 * We set ar.k3 so that assembly code in MCA handler can compute
780 	 * physical addresses of per cpu variables with a simple:
781 	 *   phys = ar.k3 + &per_cpu_var
782 	 */
783 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
784 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
785 
786 	get_max_cacheline_size();
787 
788 	/*
789 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
790 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
791 	 * depends on the data returned by identify_cpu().  We break the dependency by
792 	 * accessing cpu_data() through the canonical per-CPU address.
793 	 */
794 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
795 	identify_cpu(cpu_info);
796 
797 #ifdef CONFIG_MCKINLEY
798 	{
799 #		define FEATURE_SET 16
800 		struct ia64_pal_retval iprv;
801 
802 		if (cpu_info->family == 0x1f) {
803 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
804 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
805 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
806 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
807 		}
808 	}
809 #endif
810 
811 	/* Clear the stack memory reserved for pt_regs: */
812 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
813 
814 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
815 
816 	/*
817 	 * Initialize the page-table base register to a global
818 	 * directory with all zeroes.  This ensure that we can handle
819 	 * TLB-misses to user address-space even before we created the
820 	 * first user address-space.  This may happen, e.g., due to
821 	 * aggressive use of lfetch.fault.
822 	 */
823 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
824 
825 	/*
826 	 * Initialize default control register to defer speculative faults except
827 	 * for those arising from TLB misses, which are not deferred.  The
828 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
829 	 * the kernel must have recovery code for all speculative accesses).  Turn on
830 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
831 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
832 	 * be fine).
833 	 */
834 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
835 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
836 	atomic_inc(&init_mm.mm_count);
837 	current->active_mm = &init_mm;
838 	if (current->mm)
839 		BUG();
840 
841 	ia64_mmu_init(ia64_imva(cpu_data));
842 	ia64_mca_cpu_init(ia64_imva(cpu_data));
843 
844 #ifdef CONFIG_IA32_SUPPORT
845 	ia32_cpu_init();
846 #endif
847 
848 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
849 	ia64_set_itc(0);
850 
851 	/* disable all local interrupt sources: */
852 	ia64_set_itv(1 << 16);
853 	ia64_set_lrr0(1 << 16);
854 	ia64_set_lrr1(1 << 16);
855 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
856 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
857 
858 	/* clear TPR & XTP to enable all interrupt classes: */
859 	ia64_setreg(_IA64_REG_CR_TPR, 0);
860 #ifdef CONFIG_SMP
861 	normal_xtp();
862 #endif
863 
864 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
865 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
866 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
867 	else {
868 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
869 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
870 	}
871 	while (max_ctx < ia64_ctx.max_ctx) {
872 		unsigned int old = ia64_ctx.max_ctx;
873 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
874 			break;
875 	}
876 
877 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
878 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
879 		       "stacked regs\n");
880 		num_phys_stacked = 96;
881 	}
882 	/* size of physical stacked register partition plus 8 bytes: */
883 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
884 	platform_cpu_init();
885 	pm_idle = default_idle;
886 }
887 
888 /*
889  * On SMP systems, when the scheduler does migration-cost autodetection,
890  * it needs a way to flush as much of the CPU's caches as possible.
891  */
892 void sched_cacheflush(void)
893 {
894 	ia64_sal_cache_flush(3);
895 }
896 
897 void __init
898 check_bugs (void)
899 {
900 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
901 			       (unsigned long) __end___mckinley_e9_bundles);
902 }
903