xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 1b30859b)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 
64 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
65 # error "struct cpuinfo_ia64 too big!"
66 #endif
67 
68 #ifdef CONFIG_SMP
69 unsigned long __per_cpu_offset[NR_CPUS];
70 EXPORT_SYMBOL(__per_cpu_offset);
71 #endif
72 
73 extern void ia64_setup_printk_clock(void);
74 
75 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
76 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
77 unsigned long ia64_cycles_per_usec;
78 struct ia64_boot_param *ia64_boot_param;
79 struct screen_info screen_info;
80 unsigned long vga_console_iobase;
81 unsigned long vga_console_membase;
82 
83 static struct resource data_resource = {
84 	.name	= "Kernel data",
85 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
86 };
87 
88 static struct resource code_resource = {
89 	.name	= "Kernel code",
90 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
91 };
92 extern char _text[], _end[], _etext[];
93 
94 unsigned long ia64_max_cacheline_size;
95 
96 int dma_get_cache_alignment(void)
97 {
98         return ia64_max_cacheline_size;
99 }
100 EXPORT_SYMBOL(dma_get_cache_alignment);
101 
102 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
103 EXPORT_SYMBOL(ia64_iobase);
104 struct io_space io_space[MAX_IO_SPACES];
105 EXPORT_SYMBOL(io_space);
106 unsigned int num_io_spaces;
107 
108 /*
109  * "flush_icache_range()" needs to know what processor dependent stride size to use
110  * when it makes i-cache(s) coherent with d-caches.
111  */
112 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
113 unsigned long ia64_i_cache_stride_shift = ~0;
114 
115 /*
116  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
117  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
118  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
119  * address of the second buffer must be aligned to (merge_mask+1) in order to be
120  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
121  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
122  * page-size of 2^64.
123  */
124 unsigned long ia64_max_iommu_merge_mask = ~0UL;
125 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
126 
127 /*
128  * We use a special marker for the end of memory and it uses the extra (+1) slot
129  */
130 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
131 int num_rsvd_regions __initdata;
132 
133 
134 /*
135  * Filter incoming memory segments based on the primitive map created from the boot
136  * parameters. Segments contained in the map are removed from the memory ranges. A
137  * caller-specified function is called with the memory ranges that remain after filtering.
138  * This routine does not assume the incoming segments are sorted.
139  */
140 int __init
141 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
142 {
143 	unsigned long range_start, range_end, prev_start;
144 	void (*func)(unsigned long, unsigned long, int);
145 	int i;
146 
147 #if IGNORE_PFN0
148 	if (start == PAGE_OFFSET) {
149 		printk(KERN_WARNING "warning: skipping physical page 0\n");
150 		start += PAGE_SIZE;
151 		if (start >= end) return 0;
152 	}
153 #endif
154 	/*
155 	 * lowest possible address(walker uses virtual)
156 	 */
157 	prev_start = PAGE_OFFSET;
158 	func = arg;
159 
160 	for (i = 0; i < num_rsvd_regions; ++i) {
161 		range_start = max(start, prev_start);
162 		range_end   = min(end, rsvd_region[i].start);
163 
164 		if (range_start < range_end)
165 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
166 
167 		/* nothing more available in this segment */
168 		if (range_end == end) return 0;
169 
170 		prev_start = rsvd_region[i].end;
171 	}
172 	/* end of memory marker allows full processing inside loop body */
173 	return 0;
174 }
175 
176 static void __init
177 sort_regions (struct rsvd_region *rsvd_region, int max)
178 {
179 	int j;
180 
181 	/* simple bubble sorting */
182 	while (max--) {
183 		for (j = 0; j < max; ++j) {
184 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
185 				struct rsvd_region tmp;
186 				tmp = rsvd_region[j];
187 				rsvd_region[j] = rsvd_region[j + 1];
188 				rsvd_region[j + 1] = tmp;
189 			}
190 		}
191 	}
192 }
193 
194 /*
195  * Request address space for all standard resources
196  */
197 static int __init register_memory(void)
198 {
199 	code_resource.start = ia64_tpa(_text);
200 	code_resource.end   = ia64_tpa(_etext) - 1;
201 	data_resource.start = ia64_tpa(_etext);
202 	data_resource.end   = ia64_tpa(_end) - 1;
203 	efi_initialize_iomem_resources(&code_resource, &data_resource);
204 
205 	return 0;
206 }
207 
208 __initcall(register_memory);
209 
210 /**
211  * reserve_memory - setup reserved memory areas
212  *
213  * Setup the reserved memory areas set aside for the boot parameters,
214  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
215  * see include/asm-ia64/meminit.h if you need to define more.
216  */
217 void __init
218 reserve_memory (void)
219 {
220 	int n = 0;
221 
222 	/*
223 	 * none of the entries in this table overlap
224 	 */
225 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
226 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
227 	n++;
228 
229 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
230 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
231 	n++;
232 
233 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
234 	rsvd_region[n].end   = (rsvd_region[n].start
235 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
236 	n++;
237 
238 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
239 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
240 	n++;
241 
242 #ifdef CONFIG_BLK_DEV_INITRD
243 	if (ia64_boot_param->initrd_start) {
244 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
245 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
246 		n++;
247 	}
248 #endif
249 
250 #ifdef CONFIG_PROC_VMCORE
251 	if (reserve_elfcorehdr(&rsvd_region[n].start,
252 			       &rsvd_region[n].end) == 0)
253 		n++;
254 #endif
255 
256 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
257 	n++;
258 
259 #ifdef CONFIG_KEXEC
260 	/* crashkernel=size@offset specifies the size to reserve for a crash
261 	 * kernel. If offset is 0, then it is determined automatically.
262 	 * By reserving this memory we guarantee that linux never set's it
263 	 * up as a DMA target.Useful for holding code to do something
264 	 * appropriate after a kernel panic.
265 	 */
266 	{
267 		char *from = strstr(boot_command_line, "crashkernel=");
268 		unsigned long base, size;
269 		if (from) {
270 			size = memparse(from + 12, &from);
271 			if (*from == '@')
272 				base = memparse(from+1, &from);
273 			else
274 				base = 0;
275 			if (size) {
276 				if (!base) {
277 					sort_regions(rsvd_region, n);
278 					base = kdump_find_rsvd_region(size,
279 							      	rsvd_region, n);
280 					}
281 				if (base != ~0UL) {
282 					rsvd_region[n].start =
283 						(unsigned long)__va(base);
284 					rsvd_region[n].end =
285 						(unsigned long)__va(base + size);
286 					n++;
287 					crashk_res.start = base;
288 					crashk_res.end = base + size - 1;
289 				}
290 			}
291 		}
292 		efi_memmap_res.start = ia64_boot_param->efi_memmap;
293                 efi_memmap_res.end = efi_memmap_res.start +
294                         ia64_boot_param->efi_memmap_size;
295                 boot_param_res.start = __pa(ia64_boot_param);
296                 boot_param_res.end = boot_param_res.start +
297                         sizeof(*ia64_boot_param);
298 	}
299 #endif
300 	/* end of memory marker */
301 	rsvd_region[n].start = ~0UL;
302 	rsvd_region[n].end   = ~0UL;
303 	n++;
304 
305 	num_rsvd_regions = n;
306 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
307 
308 	sort_regions(rsvd_region, num_rsvd_regions);
309 }
310 
311 
312 /**
313  * find_initrd - get initrd parameters from the boot parameter structure
314  *
315  * Grab the initrd start and end from the boot parameter struct given us by
316  * the boot loader.
317  */
318 void __init
319 find_initrd (void)
320 {
321 #ifdef CONFIG_BLK_DEV_INITRD
322 	if (ia64_boot_param->initrd_start) {
323 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
324 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
325 
326 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
327 		       initrd_start, ia64_boot_param->initrd_size);
328 	}
329 #endif
330 }
331 
332 static void __init
333 io_port_init (void)
334 {
335 	unsigned long phys_iobase;
336 
337 	/*
338 	 * Set `iobase' based on the EFI memory map or, failing that, the
339 	 * value firmware left in ar.k0.
340 	 *
341 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
342 	 * the port's virtual address, so ia32_load_state() loads it with a
343 	 * user virtual address.  But in ia64 mode, glibc uses the
344 	 * *physical* address in ar.k0 to mmap the appropriate area from
345 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
346 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
347 	 *
348 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
349 	 * any of the I/O port spaces and are done via MMIO using the
350 	 * virtual mmio_base from the appropriate io_space[].
351 	 */
352 	phys_iobase = efi_get_iobase();
353 	if (!phys_iobase) {
354 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
355 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
356 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
357 	}
358 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
359 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
360 
361 	/* setup legacy IO port space */
362 	io_space[0].mmio_base = ia64_iobase;
363 	io_space[0].sparse = 1;
364 	num_io_spaces = 1;
365 }
366 
367 /**
368  * early_console_setup - setup debugging console
369  *
370  * Consoles started here require little enough setup that we can start using
371  * them very early in the boot process, either right after the machine
372  * vector initialization, or even before if the drivers can detect their hw.
373  *
374  * Returns non-zero if a console couldn't be setup.
375  */
376 static inline int __init
377 early_console_setup (char *cmdline)
378 {
379 	int earlycons = 0;
380 
381 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
382 	{
383 		extern int sn_serial_console_early_setup(void);
384 		if (!sn_serial_console_early_setup())
385 			earlycons++;
386 	}
387 #endif
388 #ifdef CONFIG_EFI_PCDP
389 	if (!efi_setup_pcdp_console(cmdline))
390 		earlycons++;
391 #endif
392 
393 	return (earlycons) ? 0 : -1;
394 }
395 
396 static inline void
397 mark_bsp_online (void)
398 {
399 #ifdef CONFIG_SMP
400 	/* If we register an early console, allow CPU 0 to printk */
401 	cpu_set(smp_processor_id(), cpu_online_map);
402 #endif
403 }
404 
405 #ifdef CONFIG_SMP
406 static void __init
407 check_for_logical_procs (void)
408 {
409 	pal_logical_to_physical_t info;
410 	s64 status;
411 
412 	status = ia64_pal_logical_to_phys(0, &info);
413 	if (status == -1) {
414 		printk(KERN_INFO "No logical to physical processor mapping "
415 		       "available\n");
416 		return;
417 	}
418 	if (status) {
419 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
420 		       status);
421 		return;
422 	}
423 	/*
424 	 * Total number of siblings that BSP has.  Though not all of them
425 	 * may have booted successfully. The correct number of siblings
426 	 * booted is in info.overview_num_log.
427 	 */
428 	smp_num_siblings = info.overview_tpc;
429 	smp_num_cpucores = info.overview_cpp;
430 }
431 #endif
432 
433 static __initdata int nomca;
434 static __init int setup_nomca(char *s)
435 {
436 	nomca = 1;
437 	return 0;
438 }
439 early_param("nomca", setup_nomca);
440 
441 #ifdef CONFIG_PROC_VMCORE
442 /* elfcorehdr= specifies the location of elf core header
443  * stored by the crashed kernel.
444  */
445 static int __init parse_elfcorehdr(char *arg)
446 {
447 	if (!arg)
448 		return -EINVAL;
449 
450         elfcorehdr_addr = memparse(arg, &arg);
451 	return 0;
452 }
453 early_param("elfcorehdr", parse_elfcorehdr);
454 
455 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
456 {
457 	unsigned long length;
458 
459 	/* We get the address using the kernel command line,
460 	 * but the size is extracted from the EFI tables.
461 	 * Both address and size are required for reservation
462 	 * to work properly.
463 	 */
464 
465 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
466 		return -EINVAL;
467 
468 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
469 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
470 		return -EINVAL;
471 	}
472 
473 	*start = (unsigned long)__va(elfcorehdr_addr);
474 	*end = *start + length;
475 	return 0;
476 }
477 
478 #endif /* CONFIG_PROC_VMCORE */
479 
480 void __init
481 setup_arch (char **cmdline_p)
482 {
483 	unw_init();
484 
485 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
486 
487 	*cmdline_p = __va(ia64_boot_param->command_line);
488 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
489 
490 	efi_init();
491 	io_port_init();
492 
493 #ifdef CONFIG_IA64_GENERIC
494 	/* machvec needs to be parsed from the command line
495 	 * before parse_early_param() is called to ensure
496 	 * that ia64_mv is initialised before any command line
497 	 * settings may cause console setup to occur
498 	 */
499 	machvec_init_from_cmdline(*cmdline_p);
500 #endif
501 
502 	parse_early_param();
503 
504 	if (early_console_setup(*cmdline_p) == 0)
505 		mark_bsp_online();
506 
507 #ifdef CONFIG_ACPI
508 	/* Initialize the ACPI boot-time table parser */
509 	acpi_table_init();
510 # ifdef CONFIG_ACPI_NUMA
511 	acpi_numa_init();
512 # endif
513 #else
514 # ifdef CONFIG_SMP
515 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
516 # endif
517 #endif /* CONFIG_APCI_BOOT */
518 
519 	find_memory();
520 
521 	/* process SAL system table: */
522 	ia64_sal_init(__va(efi.sal_systab));
523 
524 	ia64_setup_printk_clock();
525 
526 #ifdef CONFIG_SMP
527 	cpu_physical_id(0) = hard_smp_processor_id();
528 
529 	cpu_set(0, cpu_sibling_map[0]);
530 	cpu_set(0, cpu_core_map[0]);
531 
532 	check_for_logical_procs();
533 	if (smp_num_cpucores > 1)
534 		printk(KERN_INFO
535 		       "cpu package is Multi-Core capable: number of cores=%d\n",
536 		       smp_num_cpucores);
537 	if (smp_num_siblings > 1)
538 		printk(KERN_INFO
539 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
540 		       smp_num_siblings);
541 #endif
542 
543 	cpu_init();	/* initialize the bootstrap CPU */
544 	mmu_context_init();	/* initialize context_id bitmap */
545 
546 	check_sal_cache_flush();
547 
548 #ifdef CONFIG_ACPI
549 	acpi_boot_init();
550 #endif
551 
552 #ifdef CONFIG_VT
553 	if (!conswitchp) {
554 # if defined(CONFIG_DUMMY_CONSOLE)
555 		conswitchp = &dummy_con;
556 # endif
557 # if defined(CONFIG_VGA_CONSOLE)
558 		/*
559 		 * Non-legacy systems may route legacy VGA MMIO range to system
560 		 * memory.  vga_con probes the MMIO hole, so memory looks like
561 		 * a VGA device to it.  The EFI memory map can tell us if it's
562 		 * memory so we can avoid this problem.
563 		 */
564 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
565 			conswitchp = &vga_con;
566 # endif
567 	}
568 #endif
569 
570 	/* enable IA-64 Machine Check Abort Handling unless disabled */
571 	if (!nomca)
572 		ia64_mca_init();
573 
574 	platform_setup(cmdline_p);
575 	paging_init();
576 }
577 
578 /*
579  * Display cpu info for all CPUs.
580  */
581 static int
582 show_cpuinfo (struct seq_file *m, void *v)
583 {
584 #ifdef CONFIG_SMP
585 #	define lpj	c->loops_per_jiffy
586 #	define cpunum	c->cpu
587 #else
588 #	define lpj	loops_per_jiffy
589 #	define cpunum	0
590 #endif
591 	static struct {
592 		unsigned long mask;
593 		const char *feature_name;
594 	} feature_bits[] = {
595 		{ 1UL << 0, "branchlong" },
596 		{ 1UL << 1, "spontaneous deferral"},
597 		{ 1UL << 2, "16-byte atomic ops" }
598 	};
599 	char features[128], *cp, *sep;
600 	struct cpuinfo_ia64 *c = v;
601 	unsigned long mask;
602 	unsigned long proc_freq;
603 	int i, size;
604 
605 	mask = c->features;
606 
607 	/* build the feature string: */
608 	memcpy(features, "standard", 9);
609 	cp = features;
610 	size = sizeof(features);
611 	sep = "";
612 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
613 		if (mask & feature_bits[i].mask) {
614 			cp += snprintf(cp, size, "%s%s", sep,
615 				       feature_bits[i].feature_name),
616 			sep = ", ";
617 			mask &= ~feature_bits[i].mask;
618 			size = sizeof(features) - (cp - features);
619 		}
620 	}
621 	if (mask && size > 1) {
622 		/* print unknown features as a hex value */
623 		snprintf(cp, size, "%s0x%lx", sep, mask);
624 	}
625 
626 	proc_freq = cpufreq_quick_get(cpunum);
627 	if (!proc_freq)
628 		proc_freq = c->proc_freq / 1000;
629 
630 	seq_printf(m,
631 		   "processor  : %d\n"
632 		   "vendor     : %s\n"
633 		   "arch       : IA-64\n"
634 		   "family     : %u\n"
635 		   "model      : %u\n"
636 		   "model name : %s\n"
637 		   "revision   : %u\n"
638 		   "archrev    : %u\n"
639 		   "features   : %s\n"
640 		   "cpu number : %lu\n"
641 		   "cpu regs   : %u\n"
642 		   "cpu MHz    : %lu.%03lu\n"
643 		   "itc MHz    : %lu.%06lu\n"
644 		   "BogoMIPS   : %lu.%02lu\n",
645 		   cpunum, c->vendor, c->family, c->model,
646 		   c->model_name, c->revision, c->archrev,
647 		   features, c->ppn, c->number,
648 		   proc_freq / 1000, proc_freq % 1000,
649 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
650 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
651 #ifdef CONFIG_SMP
652 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
653 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
654 		seq_printf(m,
655 		   	   "physical id: %u\n"
656 		   	   "core id    : %u\n"
657 		   	   "thread id  : %u\n",
658 		   	   c->socket_id, c->core_id, c->thread_id);
659 #endif
660 	seq_printf(m,"\n");
661 
662 	return 0;
663 }
664 
665 static void *
666 c_start (struct seq_file *m, loff_t *pos)
667 {
668 #ifdef CONFIG_SMP
669 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
670 		++*pos;
671 #endif
672 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
673 }
674 
675 static void *
676 c_next (struct seq_file *m, void *v, loff_t *pos)
677 {
678 	++*pos;
679 	return c_start(m, pos);
680 }
681 
682 static void
683 c_stop (struct seq_file *m, void *v)
684 {
685 }
686 
687 struct seq_operations cpuinfo_op = {
688 	.start =	c_start,
689 	.next =		c_next,
690 	.stop =		c_stop,
691 	.show =		show_cpuinfo
692 };
693 
694 #define MAX_BRANDS	8
695 static char brandname[MAX_BRANDS][128];
696 
697 static char * __cpuinit
698 get_model_name(__u8 family, __u8 model)
699 {
700 	static int overflow;
701 	char brand[128];
702 	int i;
703 
704 	memcpy(brand, "Unknown", 8);
705 	if (ia64_pal_get_brand_info(brand)) {
706 		if (family == 0x7)
707 			memcpy(brand, "Merced", 7);
708 		else if (family == 0x1f) switch (model) {
709 			case 0: memcpy(brand, "McKinley", 9); break;
710 			case 1: memcpy(brand, "Madison", 8); break;
711 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
712 		}
713 	}
714 	for (i = 0; i < MAX_BRANDS; i++)
715 		if (strcmp(brandname[i], brand) == 0)
716 			return brandname[i];
717 	for (i = 0; i < MAX_BRANDS; i++)
718 		if (brandname[i][0] == '\0')
719 			return strcpy(brandname[i], brand);
720 	if (overflow++ == 0)
721 		printk(KERN_ERR
722 		       "%s: Table overflow. Some processor model information will be missing\n",
723 		       __FUNCTION__);
724 	return "Unknown";
725 }
726 
727 static void __cpuinit
728 identify_cpu (struct cpuinfo_ia64 *c)
729 {
730 	union {
731 		unsigned long bits[5];
732 		struct {
733 			/* id 0 & 1: */
734 			char vendor[16];
735 
736 			/* id 2 */
737 			u64 ppn;		/* processor serial number */
738 
739 			/* id 3: */
740 			unsigned number		:  8;
741 			unsigned revision	:  8;
742 			unsigned model		:  8;
743 			unsigned family		:  8;
744 			unsigned archrev	:  8;
745 			unsigned reserved	: 24;
746 
747 			/* id 4: */
748 			u64 features;
749 		} field;
750 	} cpuid;
751 	pal_vm_info_1_u_t vm1;
752 	pal_vm_info_2_u_t vm2;
753 	pal_status_t status;
754 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
755 	int i;
756 	for (i = 0; i < 5; ++i)
757 		cpuid.bits[i] = ia64_get_cpuid(i);
758 
759 	memcpy(c->vendor, cpuid.field.vendor, 16);
760 #ifdef CONFIG_SMP
761 	c->cpu = smp_processor_id();
762 
763 	/* below default values will be overwritten  by identify_siblings()
764 	 * for Multi-Threading/Multi-Core capable CPUs
765 	 */
766 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
767 	c->socket_id = -1;
768 
769 	identify_siblings(c);
770 #endif
771 	c->ppn = cpuid.field.ppn;
772 	c->number = cpuid.field.number;
773 	c->revision = cpuid.field.revision;
774 	c->model = cpuid.field.model;
775 	c->family = cpuid.field.family;
776 	c->archrev = cpuid.field.archrev;
777 	c->features = cpuid.field.features;
778 	c->model_name = get_model_name(c->family, c->model);
779 
780 	status = ia64_pal_vm_summary(&vm1, &vm2);
781 	if (status == PAL_STATUS_SUCCESS) {
782 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
783 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
784 	}
785 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
786 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
787 }
788 
789 void __init
790 setup_per_cpu_areas (void)
791 {
792 	/* start_kernel() requires this... */
793 #ifdef CONFIG_ACPI_HOTPLUG_CPU
794 	prefill_possible_map();
795 #endif
796 }
797 
798 /*
799  * Calculate the max. cache line size.
800  *
801  * In addition, the minimum of the i-cache stride sizes is calculated for
802  * "flush_icache_range()".
803  */
804 static void __cpuinit
805 get_max_cacheline_size (void)
806 {
807 	unsigned long line_size, max = 1;
808 	u64 l, levels, unique_caches;
809         pal_cache_config_info_t cci;
810         s64 status;
811 
812         status = ia64_pal_cache_summary(&levels, &unique_caches);
813         if (status != 0) {
814                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
815                        __FUNCTION__, status);
816                 max = SMP_CACHE_BYTES;
817 		/* Safest setup for "flush_icache_range()" */
818 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
819 		goto out;
820         }
821 
822 	for (l = 0; l < levels; ++l) {
823 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
824 						    &cci);
825 		if (status != 0) {
826 			printk(KERN_ERR
827 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
828 			       __FUNCTION__, l, status);
829 			max = SMP_CACHE_BYTES;
830 			/* The safest setup for "flush_icache_range()" */
831 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
832 			cci.pcci_unified = 1;
833 		}
834 		line_size = 1 << cci.pcci_line_size;
835 		if (line_size > max)
836 			max = line_size;
837 		if (!cci.pcci_unified) {
838 			status = ia64_pal_cache_config_info(l,
839 						    /* cache_type (instruction)= */ 1,
840 						    &cci);
841 			if (status != 0) {
842 				printk(KERN_ERR
843 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
844 					__FUNCTION__, l, status);
845 				/* The safest setup for "flush_icache_range()" */
846 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
847 			}
848 		}
849 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
850 			ia64_i_cache_stride_shift = cci.pcci_stride;
851 	}
852   out:
853 	if (max > ia64_max_cacheline_size)
854 		ia64_max_cacheline_size = max;
855 }
856 
857 /*
858  * cpu_init() initializes state that is per-CPU.  This function acts
859  * as a 'CPU state barrier', nothing should get across.
860  */
861 void __cpuinit
862 cpu_init (void)
863 {
864 	extern void __cpuinit ia64_mmu_init (void *);
865 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
866 	unsigned long num_phys_stacked;
867 	pal_vm_info_2_u_t vmi;
868 	unsigned int max_ctx;
869 	struct cpuinfo_ia64 *cpu_info;
870 	void *cpu_data;
871 
872 	cpu_data = per_cpu_init();
873 
874 	/*
875 	 * We set ar.k3 so that assembly code in MCA handler can compute
876 	 * physical addresses of per cpu variables with a simple:
877 	 *   phys = ar.k3 + &per_cpu_var
878 	 */
879 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
880 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
881 
882 	get_max_cacheline_size();
883 
884 	/*
885 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
886 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
887 	 * depends on the data returned by identify_cpu().  We break the dependency by
888 	 * accessing cpu_data() through the canonical per-CPU address.
889 	 */
890 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
891 	identify_cpu(cpu_info);
892 
893 #ifdef CONFIG_MCKINLEY
894 	{
895 #		define FEATURE_SET 16
896 		struct ia64_pal_retval iprv;
897 
898 		if (cpu_info->family == 0x1f) {
899 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
900 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
901 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
902 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
903 		}
904 	}
905 #endif
906 
907 	/* Clear the stack memory reserved for pt_regs: */
908 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
909 
910 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
911 
912 	/*
913 	 * Initialize the page-table base register to a global
914 	 * directory with all zeroes.  This ensure that we can handle
915 	 * TLB-misses to user address-space even before we created the
916 	 * first user address-space.  This may happen, e.g., due to
917 	 * aggressive use of lfetch.fault.
918 	 */
919 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
920 
921 	/*
922 	 * Initialize default control register to defer speculative faults except
923 	 * for those arising from TLB misses, which are not deferred.  The
924 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
925 	 * the kernel must have recovery code for all speculative accesses).  Turn on
926 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
927 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
928 	 * be fine).
929 	 */
930 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
931 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
932 	atomic_inc(&init_mm.mm_count);
933 	current->active_mm = &init_mm;
934 	if (current->mm)
935 		BUG();
936 
937 	ia64_mmu_init(ia64_imva(cpu_data));
938 	ia64_mca_cpu_init(ia64_imva(cpu_data));
939 
940 #ifdef CONFIG_IA32_SUPPORT
941 	ia32_cpu_init();
942 #endif
943 
944 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
945 	ia64_set_itc(0);
946 
947 	/* disable all local interrupt sources: */
948 	ia64_set_itv(1 << 16);
949 	ia64_set_lrr0(1 << 16);
950 	ia64_set_lrr1(1 << 16);
951 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
952 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
953 
954 	/* clear TPR & XTP to enable all interrupt classes: */
955 	ia64_setreg(_IA64_REG_CR_TPR, 0);
956 #ifdef CONFIG_SMP
957 	normal_xtp();
958 #endif
959 
960 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
961 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
962 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
963 	else {
964 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
965 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
966 	}
967 	while (max_ctx < ia64_ctx.max_ctx) {
968 		unsigned int old = ia64_ctx.max_ctx;
969 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
970 			break;
971 	}
972 
973 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
974 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
975 		       "stacked regs\n");
976 		num_phys_stacked = 96;
977 	}
978 	/* size of physical stacked register partition plus 8 bytes: */
979 	if (num_phys_stacked > max_num_phys_stacked) {
980 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
981 		max_num_phys_stacked = num_phys_stacked;
982 	}
983 	platform_cpu_init();
984 	pm_idle = default_idle;
985 }
986 
987 void __init
988 check_bugs (void)
989 {
990 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
991 			       (unsigned long) __end___mckinley_e9_bundles);
992 }
993 
994 static int __init run_dmi_scan(void)
995 {
996 	dmi_scan_machine();
997 	return 0;
998 }
999 core_initcall(run_dmi_scan);
1000