xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 198e2f18)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/config.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 
29 #include <linux/acpi.h>
30 #include <linux/bootmem.h>
31 #include <linux/console.h>
32 #include <linux/delay.h>
33 #include <linux/kernel.h>
34 #include <linux/reboot.h>
35 #include <linux/sched.h>
36 #include <linux/seq_file.h>
37 #include <linux/string.h>
38 #include <linux/threads.h>
39 #include <linux/tty.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/platform.h>
45 #include <linux/pm.h>
46 #include <linux/cpufreq.h>
47 
48 #include <asm/ia32.h>
49 #include <asm/machvec.h>
50 #include <asm/mca.h>
51 #include <asm/meminit.h>
52 #include <asm/page.h>
53 #include <asm/patch.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 #include <asm/sal.h>
57 #include <asm/sections.h>
58 #include <asm/serial.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/system.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
75 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
76 DEFINE_PER_CPU(unsigned long, ia64_phys_stacked_size_p8);
77 unsigned long ia64_cycles_per_usec;
78 struct ia64_boot_param *ia64_boot_param;
79 struct screen_info screen_info;
80 unsigned long vga_console_iobase;
81 unsigned long vga_console_membase;
82 
83 static struct resource data_resource = {
84 	.name	= "Kernel data",
85 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
86 };
87 
88 static struct resource code_resource = {
89 	.name	= "Kernel code",
90 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
91 };
92 extern void efi_initialize_iomem_resources(struct resource *,
93 		struct resource *);
94 extern char _text[], _end[], _etext[];
95 
96 unsigned long ia64_max_cacheline_size;
97 
98 int dma_get_cache_alignment(void)
99 {
100         return ia64_max_cacheline_size;
101 }
102 EXPORT_SYMBOL(dma_get_cache_alignment);
103 
104 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
105 EXPORT_SYMBOL(ia64_iobase);
106 struct io_space io_space[MAX_IO_SPACES];
107 EXPORT_SYMBOL(io_space);
108 unsigned int num_io_spaces;
109 
110 /*
111  * "flush_icache_range()" needs to know what processor dependent stride size to use
112  * when it makes i-cache(s) coherent with d-caches.
113  */
114 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
115 unsigned long ia64_i_cache_stride_shift = ~0;
116 
117 /*
118  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
119  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
120  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
121  * address of the second buffer must be aligned to (merge_mask+1) in order to be
122  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
123  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
124  * page-size of 2^64.
125  */
126 unsigned long ia64_max_iommu_merge_mask = ~0UL;
127 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
128 
129 /*
130  * We use a special marker for the end of memory and it uses the extra (+1) slot
131  */
132 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1];
133 int num_rsvd_regions;
134 
135 
136 /*
137  * Filter incoming memory segments based on the primitive map created from the boot
138  * parameters. Segments contained in the map are removed from the memory ranges. A
139  * caller-specified function is called with the memory ranges that remain after filtering.
140  * This routine does not assume the incoming segments are sorted.
141  */
142 int
143 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
144 {
145 	unsigned long range_start, range_end, prev_start;
146 	void (*func)(unsigned long, unsigned long, int);
147 	int i;
148 
149 #if IGNORE_PFN0
150 	if (start == PAGE_OFFSET) {
151 		printk(KERN_WARNING "warning: skipping physical page 0\n");
152 		start += PAGE_SIZE;
153 		if (start >= end) return 0;
154 	}
155 #endif
156 	/*
157 	 * lowest possible address(walker uses virtual)
158 	 */
159 	prev_start = PAGE_OFFSET;
160 	func = arg;
161 
162 	for (i = 0; i < num_rsvd_regions; ++i) {
163 		range_start = max(start, prev_start);
164 		range_end   = min(end, rsvd_region[i].start);
165 
166 		if (range_start < range_end)
167 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
168 
169 		/* nothing more available in this segment */
170 		if (range_end == end) return 0;
171 
172 		prev_start = rsvd_region[i].end;
173 	}
174 	/* end of memory marker allows full processing inside loop body */
175 	return 0;
176 }
177 
178 static void
179 sort_regions (struct rsvd_region *rsvd_region, int max)
180 {
181 	int j;
182 
183 	/* simple bubble sorting */
184 	while (max--) {
185 		for (j = 0; j < max; ++j) {
186 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
187 				struct rsvd_region tmp;
188 				tmp = rsvd_region[j];
189 				rsvd_region[j] = rsvd_region[j + 1];
190 				rsvd_region[j + 1] = tmp;
191 			}
192 		}
193 	}
194 }
195 
196 /*
197  * Request address space for all standard resources
198  */
199 static int __init register_memory(void)
200 {
201 	code_resource.start = ia64_tpa(_text);
202 	code_resource.end   = ia64_tpa(_etext) - 1;
203 	data_resource.start = ia64_tpa(_etext);
204 	data_resource.end   = ia64_tpa(_end) - 1;
205 	efi_initialize_iomem_resources(&code_resource, &data_resource);
206 
207 	return 0;
208 }
209 
210 __initcall(register_memory);
211 
212 /**
213  * reserve_memory - setup reserved memory areas
214  *
215  * Setup the reserved memory areas set aside for the boot parameters,
216  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
217  * see include/asm-ia64/meminit.h if you need to define more.
218  */
219 void
220 reserve_memory (void)
221 {
222 	int n = 0;
223 
224 	/*
225 	 * none of the entries in this table overlap
226 	 */
227 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
228 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
229 	n++;
230 
231 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
232 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
233 	n++;
234 
235 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
236 	rsvd_region[n].end   = (rsvd_region[n].start
237 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
238 	n++;
239 
240 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
241 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
242 	n++;
243 
244 #ifdef CONFIG_BLK_DEV_INITRD
245 	if (ia64_boot_param->initrd_start) {
246 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
247 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
248 		n++;
249 	}
250 #endif
251 
252 	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
253 	n++;
254 
255 	/* end of memory marker */
256 	rsvd_region[n].start = ~0UL;
257 	rsvd_region[n].end   = ~0UL;
258 	n++;
259 
260 	num_rsvd_regions = n;
261 
262 	sort_regions(rsvd_region, num_rsvd_regions);
263 }
264 
265 /**
266  * find_initrd - get initrd parameters from the boot parameter structure
267  *
268  * Grab the initrd start and end from the boot parameter struct given us by
269  * the boot loader.
270  */
271 void
272 find_initrd (void)
273 {
274 #ifdef CONFIG_BLK_DEV_INITRD
275 	if (ia64_boot_param->initrd_start) {
276 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
277 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
278 
279 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
280 		       initrd_start, ia64_boot_param->initrd_size);
281 	}
282 #endif
283 }
284 
285 static void __init
286 io_port_init (void)
287 {
288 	unsigned long phys_iobase;
289 
290 	/*
291 	 * Set `iobase' based on the EFI memory map or, failing that, the
292 	 * value firmware left in ar.k0.
293 	 *
294 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
295 	 * the port's virtual address, so ia32_load_state() loads it with a
296 	 * user virtual address.  But in ia64 mode, glibc uses the
297 	 * *physical* address in ar.k0 to mmap the appropriate area from
298 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
299 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
300 	 *
301 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
302 	 * any of the I/O port spaces and are done via MMIO using the
303 	 * virtual mmio_base from the appropriate io_space[].
304 	 */
305 	phys_iobase = efi_get_iobase();
306 	if (!phys_iobase) {
307 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
308 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
309 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
310 	}
311 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
312 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
313 
314 	/* setup legacy IO port space */
315 	io_space[0].mmio_base = ia64_iobase;
316 	io_space[0].sparse = 1;
317 	num_io_spaces = 1;
318 }
319 
320 /**
321  * early_console_setup - setup debugging console
322  *
323  * Consoles started here require little enough setup that we can start using
324  * them very early in the boot process, either right after the machine
325  * vector initialization, or even before if the drivers can detect their hw.
326  *
327  * Returns non-zero if a console couldn't be setup.
328  */
329 static inline int __init
330 early_console_setup (char *cmdline)
331 {
332 	int earlycons = 0;
333 
334 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
335 	{
336 		extern int sn_serial_console_early_setup(void);
337 		if (!sn_serial_console_early_setup())
338 			earlycons++;
339 	}
340 #endif
341 #ifdef CONFIG_EFI_PCDP
342 	if (!efi_setup_pcdp_console(cmdline))
343 		earlycons++;
344 #endif
345 #ifdef CONFIG_SERIAL_8250_CONSOLE
346 	if (!early_serial_console_init(cmdline))
347 		earlycons++;
348 #endif
349 
350 	return (earlycons) ? 0 : -1;
351 }
352 
353 static inline void
354 mark_bsp_online (void)
355 {
356 #ifdef CONFIG_SMP
357 	/* If we register an early console, allow CPU 0 to printk */
358 	cpu_set(smp_processor_id(), cpu_online_map);
359 #endif
360 }
361 
362 #ifdef CONFIG_SMP
363 static void
364 check_for_logical_procs (void)
365 {
366 	pal_logical_to_physical_t info;
367 	s64 status;
368 
369 	status = ia64_pal_logical_to_phys(0, &info);
370 	if (status == -1) {
371 		printk(KERN_INFO "No logical to physical processor mapping "
372 		       "available\n");
373 		return;
374 	}
375 	if (status) {
376 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
377 		       status);
378 		return;
379 	}
380 	/*
381 	 * Total number of siblings that BSP has.  Though not all of them
382 	 * may have booted successfully. The correct number of siblings
383 	 * booted is in info.overview_num_log.
384 	 */
385 	smp_num_siblings = info.overview_tpc;
386 	smp_num_cpucores = info.overview_cpp;
387 }
388 #endif
389 
390 void __init
391 setup_arch (char **cmdline_p)
392 {
393 	unw_init();
394 
395 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
396 
397 	*cmdline_p = __va(ia64_boot_param->command_line);
398 	strlcpy(saved_command_line, *cmdline_p, COMMAND_LINE_SIZE);
399 
400 	efi_init();
401 	io_port_init();
402 
403 #ifdef CONFIG_IA64_GENERIC
404 	{
405 		const char *mvec_name = strstr (*cmdline_p, "machvec=");
406 		char str[64];
407 
408 		if (mvec_name) {
409 			const char *end;
410 			size_t len;
411 
412 			mvec_name += 8;
413 			end = strchr (mvec_name, ' ');
414 			if (end)
415 				len = end - mvec_name;
416 			else
417 				len = strlen (mvec_name);
418 			len = min(len, sizeof (str) - 1);
419 			strncpy (str, mvec_name, len);
420 			str[len] = '\0';
421 			mvec_name = str;
422 		} else
423 			mvec_name = acpi_get_sysname();
424 		machvec_init(mvec_name);
425 	}
426 #endif
427 
428 	if (early_console_setup(*cmdline_p) == 0)
429 		mark_bsp_online();
430 
431 #ifdef CONFIG_ACPI
432 	/* Initialize the ACPI boot-time table parser */
433 	acpi_table_init();
434 # ifdef CONFIG_ACPI_NUMA
435 	acpi_numa_init();
436 # endif
437 #else
438 # ifdef CONFIG_SMP
439 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
440 # endif
441 #endif /* CONFIG_APCI_BOOT */
442 
443 	find_memory();
444 
445 	/* process SAL system table: */
446 	ia64_sal_init(efi.sal_systab);
447 
448 #ifdef CONFIG_SMP
449 	cpu_physical_id(0) = hard_smp_processor_id();
450 
451 	cpu_set(0, cpu_sibling_map[0]);
452 	cpu_set(0, cpu_core_map[0]);
453 
454 	check_for_logical_procs();
455 	if (smp_num_cpucores > 1)
456 		printk(KERN_INFO
457 		       "cpu package is Multi-Core capable: number of cores=%d\n",
458 		       smp_num_cpucores);
459 	if (smp_num_siblings > 1)
460 		printk(KERN_INFO
461 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
462 		       smp_num_siblings);
463 #endif
464 
465 	cpu_init();	/* initialize the bootstrap CPU */
466 	mmu_context_init();	/* initialize context_id bitmap */
467 
468 #ifdef CONFIG_ACPI
469 	acpi_boot_init();
470 #endif
471 
472 #ifdef CONFIG_VT
473 	if (!conswitchp) {
474 # if defined(CONFIG_DUMMY_CONSOLE)
475 		conswitchp = &dummy_con;
476 # endif
477 # if defined(CONFIG_VGA_CONSOLE)
478 		/*
479 		 * Non-legacy systems may route legacy VGA MMIO range to system
480 		 * memory.  vga_con probes the MMIO hole, so memory looks like
481 		 * a VGA device to it.  The EFI memory map can tell us if it's
482 		 * memory so we can avoid this problem.
483 		 */
484 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
485 			conswitchp = &vga_con;
486 # endif
487 	}
488 #endif
489 
490 	/* enable IA-64 Machine Check Abort Handling unless disabled */
491 	if (!strstr(saved_command_line, "nomca"))
492 		ia64_mca_init();
493 
494 	platform_setup(cmdline_p);
495 	paging_init();
496 }
497 
498 /*
499  * Display cpu info for all cpu's.
500  */
501 static int
502 show_cpuinfo (struct seq_file *m, void *v)
503 {
504 #ifdef CONFIG_SMP
505 #	define lpj	c->loops_per_jiffy
506 #	define cpunum	c->cpu
507 #else
508 #	define lpj	loops_per_jiffy
509 #	define cpunum	0
510 #endif
511 	static struct {
512 		unsigned long mask;
513 		const char *feature_name;
514 	} feature_bits[] = {
515 		{ 1UL << 0, "branchlong" },
516 		{ 1UL << 1, "spontaneous deferral"},
517 		{ 1UL << 2, "16-byte atomic ops" }
518 	};
519 	char family[32], features[128], *cp, sep;
520 	struct cpuinfo_ia64 *c = v;
521 	unsigned long mask;
522 	unsigned long proc_freq;
523 	int i;
524 
525 	mask = c->features;
526 
527 	switch (c->family) {
528 	      case 0x07:	memcpy(family, "Itanium", 8); break;
529 	      case 0x1f:	memcpy(family, "Itanium 2", 10); break;
530 	      default:		sprintf(family, "%u", c->family); break;
531 	}
532 
533 	/* build the feature string: */
534 	memcpy(features, " standard", 10);
535 	cp = features;
536 	sep = 0;
537 	for (i = 0; i < (int) ARRAY_SIZE(feature_bits); ++i) {
538 		if (mask & feature_bits[i].mask) {
539 			if (sep)
540 				*cp++ = sep;
541 			sep = ',';
542 			*cp++ = ' ';
543 			strcpy(cp, feature_bits[i].feature_name);
544 			cp += strlen(feature_bits[i].feature_name);
545 			mask &= ~feature_bits[i].mask;
546 		}
547 	}
548 	if (mask) {
549 		/* print unknown features as a hex value: */
550 		if (sep)
551 			*cp++ = sep;
552 		sprintf(cp, " 0x%lx", mask);
553 	}
554 
555 	proc_freq = cpufreq_quick_get(cpunum);
556 	if (!proc_freq)
557 		proc_freq = c->proc_freq / 1000;
558 
559 	seq_printf(m,
560 		   "processor  : %d\n"
561 		   "vendor     : %s\n"
562 		   "arch       : IA-64\n"
563 		   "family     : %s\n"
564 		   "model      : %u\n"
565 		   "revision   : %u\n"
566 		   "archrev    : %u\n"
567 		   "features   :%s\n"	/* don't change this---it _is_ right! */
568 		   "cpu number : %lu\n"
569 		   "cpu regs   : %u\n"
570 		   "cpu MHz    : %lu.%06lu\n"
571 		   "itc MHz    : %lu.%06lu\n"
572 		   "BogoMIPS   : %lu.%02lu\n",
573 		   cpunum, c->vendor, family, c->model, c->revision, c->archrev,
574 		   features, c->ppn, c->number,
575 		   proc_freq / 1000, proc_freq % 1000,
576 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
577 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
578 #ifdef CONFIG_SMP
579 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
580 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
581 		seq_printf(m,
582 		   	   "physical id: %u\n"
583 		   	   "core id    : %u\n"
584 		   	   "thread id  : %u\n",
585 		   	   c->socket_id, c->core_id, c->thread_id);
586 #endif
587 	seq_printf(m,"\n");
588 
589 	return 0;
590 }
591 
592 static void *
593 c_start (struct seq_file *m, loff_t *pos)
594 {
595 #ifdef CONFIG_SMP
596 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
597 		++*pos;
598 #endif
599 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
600 }
601 
602 static void *
603 c_next (struct seq_file *m, void *v, loff_t *pos)
604 {
605 	++*pos;
606 	return c_start(m, pos);
607 }
608 
609 static void
610 c_stop (struct seq_file *m, void *v)
611 {
612 }
613 
614 struct seq_operations cpuinfo_op = {
615 	.start =	c_start,
616 	.next =		c_next,
617 	.stop =		c_stop,
618 	.show =		show_cpuinfo
619 };
620 
621 void
622 identify_cpu (struct cpuinfo_ia64 *c)
623 {
624 	union {
625 		unsigned long bits[5];
626 		struct {
627 			/* id 0 & 1: */
628 			char vendor[16];
629 
630 			/* id 2 */
631 			u64 ppn;		/* processor serial number */
632 
633 			/* id 3: */
634 			unsigned number		:  8;
635 			unsigned revision	:  8;
636 			unsigned model		:  8;
637 			unsigned family		:  8;
638 			unsigned archrev	:  8;
639 			unsigned reserved	: 24;
640 
641 			/* id 4: */
642 			u64 features;
643 		} field;
644 	} cpuid;
645 	pal_vm_info_1_u_t vm1;
646 	pal_vm_info_2_u_t vm2;
647 	pal_status_t status;
648 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
649 	int i;
650 
651 	for (i = 0; i < 5; ++i)
652 		cpuid.bits[i] = ia64_get_cpuid(i);
653 
654 	memcpy(c->vendor, cpuid.field.vendor, 16);
655 #ifdef CONFIG_SMP
656 	c->cpu = smp_processor_id();
657 
658 	/* below default values will be overwritten  by identify_siblings()
659 	 * for Multi-Threading/Multi-Core capable cpu's
660 	 */
661 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
662 	c->socket_id = -1;
663 
664 	identify_siblings(c);
665 #endif
666 	c->ppn = cpuid.field.ppn;
667 	c->number = cpuid.field.number;
668 	c->revision = cpuid.field.revision;
669 	c->model = cpuid.field.model;
670 	c->family = cpuid.field.family;
671 	c->archrev = cpuid.field.archrev;
672 	c->features = cpuid.field.features;
673 
674 	status = ia64_pal_vm_summary(&vm1, &vm2);
675 	if (status == PAL_STATUS_SUCCESS) {
676 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
677 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
678 	}
679 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
680 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
681 }
682 
683 void
684 setup_per_cpu_areas (void)
685 {
686 	/* start_kernel() requires this... */
687 }
688 
689 /*
690  * Calculate the max. cache line size.
691  *
692  * In addition, the minimum of the i-cache stride sizes is calculated for
693  * "flush_icache_range()".
694  */
695 static void
696 get_max_cacheline_size (void)
697 {
698 	unsigned long line_size, max = 1;
699 	unsigned int cache_size = 0;
700 	u64 l, levels, unique_caches;
701         pal_cache_config_info_t cci;
702         s64 status;
703 
704         status = ia64_pal_cache_summary(&levels, &unique_caches);
705         if (status != 0) {
706                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
707                        __FUNCTION__, status);
708                 max = SMP_CACHE_BYTES;
709 		/* Safest setup for "flush_icache_range()" */
710 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
711 		goto out;
712         }
713 
714 	for (l = 0; l < levels; ++l) {
715 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
716 						    &cci);
717 		if (status != 0) {
718 			printk(KERN_ERR
719 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
720 			       __FUNCTION__, l, status);
721 			max = SMP_CACHE_BYTES;
722 			/* The safest setup for "flush_icache_range()" */
723 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
724 			cci.pcci_unified = 1;
725 		}
726 		line_size = 1 << cci.pcci_line_size;
727 		if (line_size > max)
728 			max = line_size;
729 		if (cache_size < cci.pcci_cache_size)
730 			cache_size = cci.pcci_cache_size;
731 		if (!cci.pcci_unified) {
732 			status = ia64_pal_cache_config_info(l,
733 						    /* cache_type (instruction)= */ 1,
734 						    &cci);
735 			if (status != 0) {
736 				printk(KERN_ERR
737 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
738 					__FUNCTION__, l, status);
739 				/* The safest setup for "flush_icache_range()" */
740 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
741 			}
742 		}
743 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
744 			ia64_i_cache_stride_shift = cci.pcci_stride;
745 	}
746   out:
747 #ifdef CONFIG_SMP
748 	max_cache_size = max(max_cache_size, cache_size);
749 #endif
750 	if (max > ia64_max_cacheline_size)
751 		ia64_max_cacheline_size = max;
752 }
753 
754 /*
755  * cpu_init() initializes state that is per-CPU.  This function acts
756  * as a 'CPU state barrier', nothing should get across.
757  */
758 void
759 cpu_init (void)
760 {
761 	extern void __devinit ia64_mmu_init (void *);
762 	unsigned long num_phys_stacked;
763 	pal_vm_info_2_u_t vmi;
764 	unsigned int max_ctx;
765 	struct cpuinfo_ia64 *cpu_info;
766 	void *cpu_data;
767 
768 	cpu_data = per_cpu_init();
769 
770 	/*
771 	 * We set ar.k3 so that assembly code in MCA handler can compute
772 	 * physical addresses of per cpu variables with a simple:
773 	 *   phys = ar.k3 + &per_cpu_var
774 	 */
775 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
776 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
777 
778 	get_max_cacheline_size();
779 
780 	/*
781 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
782 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
783 	 * depends on the data returned by identify_cpu().  We break the dependency by
784 	 * accessing cpu_data() through the canonical per-CPU address.
785 	 */
786 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
787 	identify_cpu(cpu_info);
788 
789 #ifdef CONFIG_MCKINLEY
790 	{
791 #		define FEATURE_SET 16
792 		struct ia64_pal_retval iprv;
793 
794 		if (cpu_info->family == 0x1f) {
795 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
796 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
797 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
798 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
799 		}
800 	}
801 #endif
802 
803 	/* Clear the stack memory reserved for pt_regs: */
804 	memset(ia64_task_regs(current), 0, sizeof(struct pt_regs));
805 
806 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
807 
808 	/*
809 	 * Initialize the page-table base register to a global
810 	 * directory with all zeroes.  This ensure that we can handle
811 	 * TLB-misses to user address-space even before we created the
812 	 * first user address-space.  This may happen, e.g., due to
813 	 * aggressive use of lfetch.fault.
814 	 */
815 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
816 
817 	/*
818 	 * Initialize default control register to defer speculative faults except
819 	 * for those arising from TLB misses, which are not deferred.  The
820 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
821 	 * the kernel must have recovery code for all speculative accesses).  Turn on
822 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
823 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
824 	 * be fine).
825 	 */
826 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
827 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
828 	atomic_inc(&init_mm.mm_count);
829 	current->active_mm = &init_mm;
830 	if (current->mm)
831 		BUG();
832 
833 	ia64_mmu_init(ia64_imva(cpu_data));
834 	ia64_mca_cpu_init(ia64_imva(cpu_data));
835 
836 #ifdef CONFIG_IA32_SUPPORT
837 	ia32_cpu_init();
838 #endif
839 
840 	/* Clear ITC to eliminiate sched_clock() overflows in human time.  */
841 	ia64_set_itc(0);
842 
843 	/* disable all local interrupt sources: */
844 	ia64_set_itv(1 << 16);
845 	ia64_set_lrr0(1 << 16);
846 	ia64_set_lrr1(1 << 16);
847 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
848 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
849 
850 	/* clear TPR & XTP to enable all interrupt classes: */
851 	ia64_setreg(_IA64_REG_CR_TPR, 0);
852 #ifdef CONFIG_SMP
853 	normal_xtp();
854 #endif
855 
856 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
857 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
858 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
859 	else {
860 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
861 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
862 	}
863 	while (max_ctx < ia64_ctx.max_ctx) {
864 		unsigned int old = ia64_ctx.max_ctx;
865 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
866 			break;
867 	}
868 
869 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
870 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
871 		       "stacked regs\n");
872 		num_phys_stacked = 96;
873 	}
874 	/* size of physical stacked register partition plus 8 bytes: */
875 	__get_cpu_var(ia64_phys_stacked_size_p8) = num_phys_stacked*8 + 8;
876 	platform_cpu_init();
877 	pm_idle = default_idle;
878 }
879 
880 /*
881  * On SMP systems, when the scheduler does migration-cost autodetection,
882  * it needs a way to flush as much of the CPU's caches as possible.
883  */
884 void sched_cacheflush(void)
885 {
886 	ia64_sal_cache_flush(3);
887 }
888 
889 void
890 check_bugs (void)
891 {
892 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
893 			       (unsigned long) __end___mckinley_e9_bundles);
894 }
895