xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 113134fc)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 
94 static struct resource bss_resource = {
95 	.name	= "Kernel bss",
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98 extern char _text[], _end[], _etext[], _edata[], _bss[];
99 
100 unsigned long ia64_max_cacheline_size;
101 
102 int dma_get_cache_alignment(void)
103 {
104         return ia64_max_cacheline_size;
105 }
106 EXPORT_SYMBOL(dma_get_cache_alignment);
107 
108 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
109 EXPORT_SYMBOL(ia64_iobase);
110 struct io_space io_space[MAX_IO_SPACES];
111 EXPORT_SYMBOL(io_space);
112 unsigned int num_io_spaces;
113 
114 /*
115  * "flush_icache_range()" needs to know what processor dependent stride size to use
116  * when it makes i-cache(s) coherent with d-caches.
117  */
118 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
119 unsigned long ia64_i_cache_stride_shift = ~0;
120 
121 /*
122  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
123  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125  * address of the second buffer must be aligned to (merge_mask+1) in order to be
126  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
127  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128  * page-size of 2^64.
129  */
130 unsigned long ia64_max_iommu_merge_mask = ~0UL;
131 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132 
133 /*
134  * We use a special marker for the end of memory and it uses the extra (+1) slot
135  */
136 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137 int num_rsvd_regions __initdata;
138 
139 
140 /*
141  * Filter incoming memory segments based on the primitive map created from the boot
142  * parameters. Segments contained in the map are removed from the memory ranges. A
143  * caller-specified function is called with the memory ranges that remain after filtering.
144  * This routine does not assume the incoming segments are sorted.
145  */
146 int __init
147 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
148 {
149 	unsigned long range_start, range_end, prev_start;
150 	void (*func)(unsigned long, unsigned long, int);
151 	int i;
152 
153 #if IGNORE_PFN0
154 	if (start == PAGE_OFFSET) {
155 		printk(KERN_WARNING "warning: skipping physical page 0\n");
156 		start += PAGE_SIZE;
157 		if (start >= end) return 0;
158 	}
159 #endif
160 	/*
161 	 * lowest possible address(walker uses virtual)
162 	 */
163 	prev_start = PAGE_OFFSET;
164 	func = arg;
165 
166 	for (i = 0; i < num_rsvd_regions; ++i) {
167 		range_start = max(start, prev_start);
168 		range_end   = min(end, rsvd_region[i].start);
169 
170 		if (range_start < range_end)
171 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
172 
173 		/* nothing more available in this segment */
174 		if (range_end == end) return 0;
175 
176 		prev_start = rsvd_region[i].end;
177 	}
178 	/* end of memory marker allows full processing inside loop body */
179 	return 0;
180 }
181 
182 static void __init
183 sort_regions (struct rsvd_region *rsvd_region, int max)
184 {
185 	int j;
186 
187 	/* simple bubble sorting */
188 	while (max--) {
189 		for (j = 0; j < max; ++j) {
190 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
191 				struct rsvd_region tmp;
192 				tmp = rsvd_region[j];
193 				rsvd_region[j] = rsvd_region[j + 1];
194 				rsvd_region[j + 1] = tmp;
195 			}
196 		}
197 	}
198 }
199 
200 /*
201  * Request address space for all standard resources
202  */
203 static int __init register_memory(void)
204 {
205 	code_resource.start = ia64_tpa(_text);
206 	code_resource.end   = ia64_tpa(_etext) - 1;
207 	data_resource.start = ia64_tpa(_etext);
208 	data_resource.end   = ia64_tpa(_edata) - 1;
209 	bss_resource.start  = ia64_tpa(_bss);
210 	bss_resource.end    = ia64_tpa(_end) - 1;
211 	efi_initialize_iomem_resources(&code_resource, &data_resource,
212 			&bss_resource);
213 
214 	return 0;
215 }
216 
217 __initcall(register_memory);
218 
219 
220 #ifdef CONFIG_KEXEC
221 static void __init setup_crashkernel(unsigned long total, int *n)
222 {
223 	unsigned long long base = 0, size = 0;
224 	int ret;
225 
226 	ret = parse_crashkernel(boot_command_line, total,
227 			&size, &base);
228 	if (ret == 0 && size > 0) {
229 		if (!base) {
230 			sort_regions(rsvd_region, *n);
231 			base = kdump_find_rsvd_region(size,
232 					rsvd_region, *n);
233 		}
234 		if (base != ~0UL) {
235 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
236 					"for crashkernel (System RAM: %ldMB)\n",
237 					(unsigned long)(size >> 20),
238 					(unsigned long)(base >> 20),
239 					(unsigned long)(total >> 20));
240 			rsvd_region[*n].start =
241 				(unsigned long)__va(base);
242 			rsvd_region[*n].end =
243 				(unsigned long)__va(base + size);
244 			(*n)++;
245 			crashk_res.start = base;
246 			crashk_res.end = base + size - 1;
247 		}
248 	}
249 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
250 	efi_memmap_res.end = efi_memmap_res.start +
251 		ia64_boot_param->efi_memmap_size;
252 	boot_param_res.start = __pa(ia64_boot_param);
253 	boot_param_res.end = boot_param_res.start +
254 		sizeof(*ia64_boot_param);
255 }
256 #else
257 static inline void __init setup_crashkernel(unsigned long total, int *n)
258 {}
259 #endif
260 
261 /**
262  * reserve_memory - setup reserved memory areas
263  *
264  * Setup the reserved memory areas set aside for the boot parameters,
265  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
266  * see include/asm-ia64/meminit.h if you need to define more.
267  */
268 void __init
269 reserve_memory (void)
270 {
271 	int n = 0;
272 	unsigned long total_memory;
273 
274 	/*
275 	 * none of the entries in this table overlap
276 	 */
277 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
278 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
279 	n++;
280 
281 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
282 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
283 	n++;
284 
285 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
286 	rsvd_region[n].end   = (rsvd_region[n].start
287 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
288 	n++;
289 
290 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
291 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
292 	n++;
293 
294 #ifdef CONFIG_BLK_DEV_INITRD
295 	if (ia64_boot_param->initrd_start) {
296 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
297 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
298 		n++;
299 	}
300 #endif
301 
302 #ifdef CONFIG_PROC_VMCORE
303 	if (reserve_elfcorehdr(&rsvd_region[n].start,
304 			       &rsvd_region[n].end) == 0)
305 		n++;
306 #endif
307 
308 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
309 	n++;
310 
311 	setup_crashkernel(total_memory, &n);
312 
313 	/* end of memory marker */
314 	rsvd_region[n].start = ~0UL;
315 	rsvd_region[n].end   = ~0UL;
316 	n++;
317 
318 	num_rsvd_regions = n;
319 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
320 
321 	sort_regions(rsvd_region, num_rsvd_regions);
322 }
323 
324 
325 /**
326  * find_initrd - get initrd parameters from the boot parameter structure
327  *
328  * Grab the initrd start and end from the boot parameter struct given us by
329  * the boot loader.
330  */
331 void __init
332 find_initrd (void)
333 {
334 #ifdef CONFIG_BLK_DEV_INITRD
335 	if (ia64_boot_param->initrd_start) {
336 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
337 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
338 
339 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
340 		       initrd_start, ia64_boot_param->initrd_size);
341 	}
342 #endif
343 }
344 
345 static void __init
346 io_port_init (void)
347 {
348 	unsigned long phys_iobase;
349 
350 	/*
351 	 * Set `iobase' based on the EFI memory map or, failing that, the
352 	 * value firmware left in ar.k0.
353 	 *
354 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
355 	 * the port's virtual address, so ia32_load_state() loads it with a
356 	 * user virtual address.  But in ia64 mode, glibc uses the
357 	 * *physical* address in ar.k0 to mmap the appropriate area from
358 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
359 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
360 	 *
361 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
362 	 * any of the I/O port spaces and are done via MMIO using the
363 	 * virtual mmio_base from the appropriate io_space[].
364 	 */
365 	phys_iobase = efi_get_iobase();
366 	if (!phys_iobase) {
367 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
368 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
369 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
370 	}
371 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
372 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
373 
374 	/* setup legacy IO port space */
375 	io_space[0].mmio_base = ia64_iobase;
376 	io_space[0].sparse = 1;
377 	num_io_spaces = 1;
378 }
379 
380 /**
381  * early_console_setup - setup debugging console
382  *
383  * Consoles started here require little enough setup that we can start using
384  * them very early in the boot process, either right after the machine
385  * vector initialization, or even before if the drivers can detect their hw.
386  *
387  * Returns non-zero if a console couldn't be setup.
388  */
389 static inline int __init
390 early_console_setup (char *cmdline)
391 {
392 	int earlycons = 0;
393 
394 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
395 	{
396 		extern int sn_serial_console_early_setup(void);
397 		if (!sn_serial_console_early_setup())
398 			earlycons++;
399 	}
400 #endif
401 #ifdef CONFIG_EFI_PCDP
402 	if (!efi_setup_pcdp_console(cmdline))
403 		earlycons++;
404 #endif
405 	if (!simcons_register())
406 		earlycons++;
407 
408 	return (earlycons) ? 0 : -1;
409 }
410 
411 static inline void
412 mark_bsp_online (void)
413 {
414 #ifdef CONFIG_SMP
415 	/* If we register an early console, allow CPU 0 to printk */
416 	cpu_set(smp_processor_id(), cpu_online_map);
417 #endif
418 }
419 
420 static __initdata int nomca;
421 static __init int setup_nomca(char *s)
422 {
423 	nomca = 1;
424 	return 0;
425 }
426 early_param("nomca", setup_nomca);
427 
428 #ifdef CONFIG_PROC_VMCORE
429 /* elfcorehdr= specifies the location of elf core header
430  * stored by the crashed kernel.
431  */
432 static int __init parse_elfcorehdr(char *arg)
433 {
434 	if (!arg)
435 		return -EINVAL;
436 
437         elfcorehdr_addr = memparse(arg, &arg);
438 	return 0;
439 }
440 early_param("elfcorehdr", parse_elfcorehdr);
441 
442 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
443 {
444 	unsigned long length;
445 
446 	/* We get the address using the kernel command line,
447 	 * but the size is extracted from the EFI tables.
448 	 * Both address and size are required for reservation
449 	 * to work properly.
450 	 */
451 
452 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
453 		return -EINVAL;
454 
455 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
456 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
457 		return -EINVAL;
458 	}
459 
460 	*start = (unsigned long)__va(elfcorehdr_addr);
461 	*end = *start + length;
462 	return 0;
463 }
464 
465 #endif /* CONFIG_PROC_VMCORE */
466 
467 void __init
468 setup_arch (char **cmdline_p)
469 {
470 	unw_init();
471 
472 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
473 
474 	*cmdline_p = __va(ia64_boot_param->command_line);
475 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
476 
477 	efi_init();
478 	io_port_init();
479 
480 #ifdef CONFIG_IA64_GENERIC
481 	/* machvec needs to be parsed from the command line
482 	 * before parse_early_param() is called to ensure
483 	 * that ia64_mv is initialised before any command line
484 	 * settings may cause console setup to occur
485 	 */
486 	machvec_init_from_cmdline(*cmdline_p);
487 #endif
488 
489 	parse_early_param();
490 
491 	if (early_console_setup(*cmdline_p) == 0)
492 		mark_bsp_online();
493 
494 #ifdef CONFIG_ACPI
495 	/* Initialize the ACPI boot-time table parser */
496 	acpi_table_init();
497 # ifdef CONFIG_ACPI_NUMA
498 	acpi_numa_init();
499 # endif
500 #else
501 # ifdef CONFIG_SMP
502 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
503 # endif
504 #endif /* CONFIG_APCI_BOOT */
505 
506 	find_memory();
507 
508 	/* process SAL system table: */
509 	ia64_sal_init(__va(efi.sal_systab));
510 
511 	ia64_setup_printk_clock();
512 
513 #ifdef CONFIG_SMP
514 	cpu_physical_id(0) = hard_smp_processor_id();
515 #endif
516 
517 	cpu_init();	/* initialize the bootstrap CPU */
518 	mmu_context_init();	/* initialize context_id bitmap */
519 
520 	check_sal_cache_flush();
521 
522 #ifdef CONFIG_ACPI
523 	acpi_boot_init();
524 #endif
525 
526 #ifdef CONFIG_VT
527 	if (!conswitchp) {
528 # if defined(CONFIG_DUMMY_CONSOLE)
529 		conswitchp = &dummy_con;
530 # endif
531 # if defined(CONFIG_VGA_CONSOLE)
532 		/*
533 		 * Non-legacy systems may route legacy VGA MMIO range to system
534 		 * memory.  vga_con probes the MMIO hole, so memory looks like
535 		 * a VGA device to it.  The EFI memory map can tell us if it's
536 		 * memory so we can avoid this problem.
537 		 */
538 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
539 			conswitchp = &vga_con;
540 # endif
541 	}
542 #endif
543 
544 	/* enable IA-64 Machine Check Abort Handling unless disabled */
545 	if (!nomca)
546 		ia64_mca_init();
547 
548 	platform_setup(cmdline_p);
549 	paging_init();
550 }
551 
552 /*
553  * Display cpu info for all CPUs.
554  */
555 static int
556 show_cpuinfo (struct seq_file *m, void *v)
557 {
558 #ifdef CONFIG_SMP
559 #	define lpj	c->loops_per_jiffy
560 #	define cpunum	c->cpu
561 #else
562 #	define lpj	loops_per_jiffy
563 #	define cpunum	0
564 #endif
565 	static struct {
566 		unsigned long mask;
567 		const char *feature_name;
568 	} feature_bits[] = {
569 		{ 1UL << 0, "branchlong" },
570 		{ 1UL << 1, "spontaneous deferral"},
571 		{ 1UL << 2, "16-byte atomic ops" }
572 	};
573 	char features[128], *cp, *sep;
574 	struct cpuinfo_ia64 *c = v;
575 	unsigned long mask;
576 	unsigned long proc_freq;
577 	int i, size;
578 
579 	mask = c->features;
580 
581 	/* build the feature string: */
582 	memcpy(features, "standard", 9);
583 	cp = features;
584 	size = sizeof(features);
585 	sep = "";
586 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
587 		if (mask & feature_bits[i].mask) {
588 			cp += snprintf(cp, size, "%s%s", sep,
589 				       feature_bits[i].feature_name),
590 			sep = ", ";
591 			mask &= ~feature_bits[i].mask;
592 			size = sizeof(features) - (cp - features);
593 		}
594 	}
595 	if (mask && size > 1) {
596 		/* print unknown features as a hex value */
597 		snprintf(cp, size, "%s0x%lx", sep, mask);
598 	}
599 
600 	proc_freq = cpufreq_quick_get(cpunum);
601 	if (!proc_freq)
602 		proc_freq = c->proc_freq / 1000;
603 
604 	seq_printf(m,
605 		   "processor  : %d\n"
606 		   "vendor     : %s\n"
607 		   "arch       : IA-64\n"
608 		   "family     : %u\n"
609 		   "model      : %u\n"
610 		   "model name : %s\n"
611 		   "revision   : %u\n"
612 		   "archrev    : %u\n"
613 		   "features   : %s\n"
614 		   "cpu number : %lu\n"
615 		   "cpu regs   : %u\n"
616 		   "cpu MHz    : %lu.%03lu\n"
617 		   "itc MHz    : %lu.%06lu\n"
618 		   "BogoMIPS   : %lu.%02lu\n",
619 		   cpunum, c->vendor, c->family, c->model,
620 		   c->model_name, c->revision, c->archrev,
621 		   features, c->ppn, c->number,
622 		   proc_freq / 1000, proc_freq % 1000,
623 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
624 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
625 #ifdef CONFIG_SMP
626 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
627 	if (c->socket_id != -1)
628 		seq_printf(m, "physical id: %u\n", c->socket_id);
629 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
630 		seq_printf(m,
631 			   "core id    : %u\n"
632 			   "thread id  : %u\n",
633 			   c->core_id, c->thread_id);
634 #endif
635 	seq_printf(m,"\n");
636 
637 	return 0;
638 }
639 
640 static void *
641 c_start (struct seq_file *m, loff_t *pos)
642 {
643 #ifdef CONFIG_SMP
644 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
645 		++*pos;
646 #endif
647 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
648 }
649 
650 static void *
651 c_next (struct seq_file *m, void *v, loff_t *pos)
652 {
653 	++*pos;
654 	return c_start(m, pos);
655 }
656 
657 static void
658 c_stop (struct seq_file *m, void *v)
659 {
660 }
661 
662 struct seq_operations cpuinfo_op = {
663 	.start =	c_start,
664 	.next =		c_next,
665 	.stop =		c_stop,
666 	.show =		show_cpuinfo
667 };
668 
669 #define MAX_BRANDS	8
670 static char brandname[MAX_BRANDS][128];
671 
672 static char * __cpuinit
673 get_model_name(__u8 family, __u8 model)
674 {
675 	static int overflow;
676 	char brand[128];
677 	int i;
678 
679 	memcpy(brand, "Unknown", 8);
680 	if (ia64_pal_get_brand_info(brand)) {
681 		if (family == 0x7)
682 			memcpy(brand, "Merced", 7);
683 		else if (family == 0x1f) switch (model) {
684 			case 0: memcpy(brand, "McKinley", 9); break;
685 			case 1: memcpy(brand, "Madison", 8); break;
686 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
687 		}
688 	}
689 	for (i = 0; i < MAX_BRANDS; i++)
690 		if (strcmp(brandname[i], brand) == 0)
691 			return brandname[i];
692 	for (i = 0; i < MAX_BRANDS; i++)
693 		if (brandname[i][0] == '\0')
694 			return strcpy(brandname[i], brand);
695 	if (overflow++ == 0)
696 		printk(KERN_ERR
697 		       "%s: Table overflow. Some processor model information will be missing\n",
698 		       __FUNCTION__);
699 	return "Unknown";
700 }
701 
702 static void __cpuinit
703 identify_cpu (struct cpuinfo_ia64 *c)
704 {
705 	union {
706 		unsigned long bits[5];
707 		struct {
708 			/* id 0 & 1: */
709 			char vendor[16];
710 
711 			/* id 2 */
712 			u64 ppn;		/* processor serial number */
713 
714 			/* id 3: */
715 			unsigned number		:  8;
716 			unsigned revision	:  8;
717 			unsigned model		:  8;
718 			unsigned family		:  8;
719 			unsigned archrev	:  8;
720 			unsigned reserved	: 24;
721 
722 			/* id 4: */
723 			u64 features;
724 		} field;
725 	} cpuid;
726 	pal_vm_info_1_u_t vm1;
727 	pal_vm_info_2_u_t vm2;
728 	pal_status_t status;
729 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
730 	int i;
731 	for (i = 0; i < 5; ++i)
732 		cpuid.bits[i] = ia64_get_cpuid(i);
733 
734 	memcpy(c->vendor, cpuid.field.vendor, 16);
735 #ifdef CONFIG_SMP
736 	c->cpu = smp_processor_id();
737 
738 	/* below default values will be overwritten  by identify_siblings()
739 	 * for Multi-Threading/Multi-Core capable CPUs
740 	 */
741 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
742 	c->socket_id = -1;
743 
744 	identify_siblings(c);
745 
746 	if (c->threads_per_core > smp_num_siblings)
747 		smp_num_siblings = c->threads_per_core;
748 #endif
749 	c->ppn = cpuid.field.ppn;
750 	c->number = cpuid.field.number;
751 	c->revision = cpuid.field.revision;
752 	c->model = cpuid.field.model;
753 	c->family = cpuid.field.family;
754 	c->archrev = cpuid.field.archrev;
755 	c->features = cpuid.field.features;
756 	c->model_name = get_model_name(c->family, c->model);
757 
758 	status = ia64_pal_vm_summary(&vm1, &vm2);
759 	if (status == PAL_STATUS_SUCCESS) {
760 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
761 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
762 	}
763 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
764 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
765 }
766 
767 void __init
768 setup_per_cpu_areas (void)
769 {
770 	/* start_kernel() requires this... */
771 #ifdef CONFIG_ACPI_HOTPLUG_CPU
772 	prefill_possible_map();
773 #endif
774 }
775 
776 /*
777  * Calculate the max. cache line size.
778  *
779  * In addition, the minimum of the i-cache stride sizes is calculated for
780  * "flush_icache_range()".
781  */
782 static void __cpuinit
783 get_max_cacheline_size (void)
784 {
785 	unsigned long line_size, max = 1;
786 	u64 l, levels, unique_caches;
787         pal_cache_config_info_t cci;
788         s64 status;
789 
790         status = ia64_pal_cache_summary(&levels, &unique_caches);
791         if (status != 0) {
792                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
793                        __FUNCTION__, status);
794                 max = SMP_CACHE_BYTES;
795 		/* Safest setup for "flush_icache_range()" */
796 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
797 		goto out;
798         }
799 
800 	for (l = 0; l < levels; ++l) {
801 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
802 						    &cci);
803 		if (status != 0) {
804 			printk(KERN_ERR
805 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
806 			       __FUNCTION__, l, status);
807 			max = SMP_CACHE_BYTES;
808 			/* The safest setup for "flush_icache_range()" */
809 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
810 			cci.pcci_unified = 1;
811 		}
812 		line_size = 1 << cci.pcci_line_size;
813 		if (line_size > max)
814 			max = line_size;
815 		if (!cci.pcci_unified) {
816 			status = ia64_pal_cache_config_info(l,
817 						    /* cache_type (instruction)= */ 1,
818 						    &cci);
819 			if (status != 0) {
820 				printk(KERN_ERR
821 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
822 					__FUNCTION__, l, status);
823 				/* The safest setup for "flush_icache_range()" */
824 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
825 			}
826 		}
827 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
828 			ia64_i_cache_stride_shift = cci.pcci_stride;
829 	}
830   out:
831 	if (max > ia64_max_cacheline_size)
832 		ia64_max_cacheline_size = max;
833 }
834 
835 /*
836  * cpu_init() initializes state that is per-CPU.  This function acts
837  * as a 'CPU state barrier', nothing should get across.
838  */
839 void __cpuinit
840 cpu_init (void)
841 {
842 	extern void __cpuinit ia64_mmu_init (void *);
843 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
844 	unsigned long num_phys_stacked;
845 	pal_vm_info_2_u_t vmi;
846 	unsigned int max_ctx;
847 	struct cpuinfo_ia64 *cpu_info;
848 	void *cpu_data;
849 
850 	cpu_data = per_cpu_init();
851 #ifdef CONFIG_SMP
852 	/*
853 	 * insert boot cpu into sibling and core mapes
854 	 * (must be done after per_cpu area is setup)
855 	 */
856 	if (smp_processor_id() == 0) {
857 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
858 		cpu_set(0, cpu_core_map[0]);
859 	}
860 #endif
861 
862 	/*
863 	 * We set ar.k3 so that assembly code in MCA handler can compute
864 	 * physical addresses of per cpu variables with a simple:
865 	 *   phys = ar.k3 + &per_cpu_var
866 	 */
867 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
868 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
869 
870 	get_max_cacheline_size();
871 
872 	/*
873 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
874 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
875 	 * depends on the data returned by identify_cpu().  We break the dependency by
876 	 * accessing cpu_data() through the canonical per-CPU address.
877 	 */
878 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
879 	identify_cpu(cpu_info);
880 
881 #ifdef CONFIG_MCKINLEY
882 	{
883 #		define FEATURE_SET 16
884 		struct ia64_pal_retval iprv;
885 
886 		if (cpu_info->family == 0x1f) {
887 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
888 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
889 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
890 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
891 		}
892 	}
893 #endif
894 
895 	/* Clear the stack memory reserved for pt_regs: */
896 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
897 
898 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
899 
900 	/*
901 	 * Initialize the page-table base register to a global
902 	 * directory with all zeroes.  This ensure that we can handle
903 	 * TLB-misses to user address-space even before we created the
904 	 * first user address-space.  This may happen, e.g., due to
905 	 * aggressive use of lfetch.fault.
906 	 */
907 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
908 
909 	/*
910 	 * Initialize default control register to defer speculative faults except
911 	 * for those arising from TLB misses, which are not deferred.  The
912 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
913 	 * the kernel must have recovery code for all speculative accesses).  Turn on
914 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
915 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
916 	 * be fine).
917 	 */
918 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
919 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
920 	atomic_inc(&init_mm.mm_count);
921 	current->active_mm = &init_mm;
922 	if (current->mm)
923 		BUG();
924 
925 	ia64_mmu_init(ia64_imva(cpu_data));
926 	ia64_mca_cpu_init(ia64_imva(cpu_data));
927 
928 #ifdef CONFIG_IA32_SUPPORT
929 	ia32_cpu_init();
930 #endif
931 
932 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
933 	ia64_set_itc(0);
934 
935 	/* disable all local interrupt sources: */
936 	ia64_set_itv(1 << 16);
937 	ia64_set_lrr0(1 << 16);
938 	ia64_set_lrr1(1 << 16);
939 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
940 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
941 
942 	/* clear TPR & XTP to enable all interrupt classes: */
943 	ia64_setreg(_IA64_REG_CR_TPR, 0);
944 
945 	/* Clear any pending interrupts left by SAL/EFI */
946 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
947 		ia64_eoi();
948 
949 #ifdef CONFIG_SMP
950 	normal_xtp();
951 #endif
952 
953 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
954 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
955 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
956 	else {
957 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
958 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
959 	}
960 	while (max_ctx < ia64_ctx.max_ctx) {
961 		unsigned int old = ia64_ctx.max_ctx;
962 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
963 			break;
964 	}
965 
966 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
967 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
968 		       "stacked regs\n");
969 		num_phys_stacked = 96;
970 	}
971 	/* size of physical stacked register partition plus 8 bytes: */
972 	if (num_phys_stacked > max_num_phys_stacked) {
973 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
974 		max_num_phys_stacked = num_phys_stacked;
975 	}
976 	platform_cpu_init();
977 	pm_idle = default_idle;
978 }
979 
980 void __init
981 check_bugs (void)
982 {
983 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
984 			       (unsigned long) __end___mckinley_e9_bundles);
985 }
986 
987 static int __init run_dmi_scan(void)
988 {
989 	dmi_scan_machine();
990 	return 0;
991 }
992 core_initcall(run_dmi_scan);
993