xref: /openbmc/linux/arch/ia64/kernel/setup.c (revision 00bf4098)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *	Stephane Eranian <eranian@hpl.hp.com>
7  * Copyright (C) 2000, 2004 Intel Corp
8  * 	Rohit Seth <rohit.seth@intel.com>
9  * 	Suresh Siddha <suresh.b.siddha@intel.com>
10  * 	Gordon Jin <gordon.jin@intel.com>
11  * Copyright (C) 1999 VA Linux Systems
12  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13  *
14  * 12/26/04 S.Siddha, G.Jin, R.Seth
15  *			Add multi-threading and multi-core detection
16  * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17  * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18  * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19  * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20  * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21  * 01/07/99 S.Eranian	added the support for command line argument
22  * 06/24/99 W.Drummond	added boot_cpu_data.
23  * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24  */
25 #include <linux/module.h>
26 #include <linux/init.h>
27 
28 #include <linux/acpi.h>
29 #include <linux/bootmem.h>
30 #include <linux/console.h>
31 #include <linux/delay.h>
32 #include <linux/kernel.h>
33 #include <linux/reboot.h>
34 #include <linux/sched.h>
35 #include <linux/seq_file.h>
36 #include <linux/string.h>
37 #include <linux/threads.h>
38 #include <linux/screen_info.h>
39 #include <linux/dmi.h>
40 #include <linux/serial.h>
41 #include <linux/serial_core.h>
42 #include <linux/efi.h>
43 #include <linux/initrd.h>
44 #include <linux/pm.h>
45 #include <linux/cpufreq.h>
46 #include <linux/kexec.h>
47 #include <linux/crash_dump.h>
48 
49 #include <asm/ia32.h>
50 #include <asm/machvec.h>
51 #include <asm/mca.h>
52 #include <asm/meminit.h>
53 #include <asm/page.h>
54 #include <asm/patch.h>
55 #include <asm/pgtable.h>
56 #include <asm/processor.h>
57 #include <asm/sal.h>
58 #include <asm/sections.h>
59 #include <asm/setup.h>
60 #include <asm/smp.h>
61 #include <asm/system.h>
62 #include <asm/unistd.h>
63 #include <asm/hpsim.h>
64 
65 #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66 # error "struct cpuinfo_ia64 too big!"
67 #endif
68 
69 #ifdef CONFIG_SMP
70 unsigned long __per_cpu_offset[NR_CPUS];
71 EXPORT_SYMBOL(__per_cpu_offset);
72 #endif
73 
74 extern void ia64_setup_printk_clock(void);
75 
76 DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77 DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78 unsigned long ia64_cycles_per_usec;
79 struct ia64_boot_param *ia64_boot_param;
80 struct screen_info screen_info;
81 unsigned long vga_console_iobase;
82 unsigned long vga_console_membase;
83 
84 static struct resource data_resource = {
85 	.name	= "Kernel data",
86 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87 };
88 
89 static struct resource code_resource = {
90 	.name	= "Kernel code",
91 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92 };
93 
94 static struct resource bss_resource = {
95 	.name	= "Kernel bss",
96 	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
97 };
98 extern char _text[], _end[], _etext[], _edata[], _bss[];
99 
100 unsigned long ia64_max_cacheline_size;
101 
102 int dma_get_cache_alignment(void)
103 {
104         return ia64_max_cacheline_size;
105 }
106 EXPORT_SYMBOL(dma_get_cache_alignment);
107 
108 unsigned long ia64_iobase;	/* virtual address for I/O accesses */
109 EXPORT_SYMBOL(ia64_iobase);
110 struct io_space io_space[MAX_IO_SPACES];
111 EXPORT_SYMBOL(io_space);
112 unsigned int num_io_spaces;
113 
114 /*
115  * "flush_icache_range()" needs to know what processor dependent stride size to use
116  * when it makes i-cache(s) coherent with d-caches.
117  */
118 #define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
119 unsigned long ia64_i_cache_stride_shift = ~0;
120 
121 /*
122  * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
123  * mask specifies a mask of address bits that must be 0 in order for two buffers to be
124  * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
125  * address of the second buffer must be aligned to (merge_mask+1) in order to be
126  * mergeable).  By default, we assume there is no I/O MMU which can merge physically
127  * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
128  * page-size of 2^64.
129  */
130 unsigned long ia64_max_iommu_merge_mask = ~0UL;
131 EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
132 
133 /*
134  * We use a special marker for the end of memory and it uses the extra (+1) slot
135  */
136 struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
137 int num_rsvd_regions __initdata;
138 
139 
140 /*
141  * Filter incoming memory segments based on the primitive map created from the boot
142  * parameters. Segments contained in the map are removed from the memory ranges. A
143  * caller-specified function is called with the memory ranges that remain after filtering.
144  * This routine does not assume the incoming segments are sorted.
145  */
146 int __init
147 filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
148 {
149 	unsigned long range_start, range_end, prev_start;
150 	void (*func)(unsigned long, unsigned long, int);
151 	int i;
152 
153 #if IGNORE_PFN0
154 	if (start == PAGE_OFFSET) {
155 		printk(KERN_WARNING "warning: skipping physical page 0\n");
156 		start += PAGE_SIZE;
157 		if (start >= end) return 0;
158 	}
159 #endif
160 	/*
161 	 * lowest possible address(walker uses virtual)
162 	 */
163 	prev_start = PAGE_OFFSET;
164 	func = arg;
165 
166 	for (i = 0; i < num_rsvd_regions; ++i) {
167 		range_start = max(start, prev_start);
168 		range_end   = min(end, rsvd_region[i].start);
169 
170 		if (range_start < range_end)
171 			call_pernode_memory(__pa(range_start), range_end - range_start, func);
172 
173 		/* nothing more available in this segment */
174 		if (range_end == end) return 0;
175 
176 		prev_start = rsvd_region[i].end;
177 	}
178 	/* end of memory marker allows full processing inside loop body */
179 	return 0;
180 }
181 
182 static void __init
183 sort_regions (struct rsvd_region *rsvd_region, int max)
184 {
185 	int j;
186 
187 	/* simple bubble sorting */
188 	while (max--) {
189 		for (j = 0; j < max; ++j) {
190 			if (rsvd_region[j].start > rsvd_region[j+1].start) {
191 				struct rsvd_region tmp;
192 				tmp = rsvd_region[j];
193 				rsvd_region[j] = rsvd_region[j + 1];
194 				rsvd_region[j + 1] = tmp;
195 			}
196 		}
197 	}
198 }
199 
200 /*
201  * Request address space for all standard resources
202  */
203 static int __init register_memory(void)
204 {
205 	code_resource.start = ia64_tpa(_text);
206 	code_resource.end   = ia64_tpa(_etext) - 1;
207 	data_resource.start = ia64_tpa(_etext);
208 	data_resource.end   = ia64_tpa(_edata) - 1;
209 	bss_resource.start  = ia64_tpa(_bss);
210 	bss_resource.end    = ia64_tpa(_end) - 1;
211 	efi_initialize_iomem_resources(&code_resource, &data_resource,
212 			&bss_resource);
213 
214 	return 0;
215 }
216 
217 __initcall(register_memory);
218 
219 
220 #ifdef CONFIG_KEXEC
221 static void __init setup_crashkernel(unsigned long total, int *n)
222 {
223 	unsigned long long base = 0, size = 0;
224 	int ret;
225 
226 	ret = parse_crashkernel(boot_command_line, total,
227 			&size, &base);
228 	if (ret == 0 && size > 0) {
229 		if (!base) {
230 			sort_regions(rsvd_region, *n);
231 			base = kdump_find_rsvd_region(size,
232 					rsvd_region, *n);
233 		}
234 		if (base != ~0UL) {
235 			printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
236 					"for crashkernel (System RAM: %ldMB)\n",
237 					(unsigned long)(size >> 20),
238 					(unsigned long)(base >> 20),
239 					(unsigned long)(total >> 20));
240 			rsvd_region[*n].start =
241 				(unsigned long)__va(base);
242 			rsvd_region[*n].end =
243 				(unsigned long)__va(base + size);
244 			(*n)++;
245 			crashk_res.start = base;
246 			crashk_res.end = base + size - 1;
247 		}
248 	}
249 	efi_memmap_res.start = ia64_boot_param->efi_memmap;
250 	efi_memmap_res.end = efi_memmap_res.start +
251 		ia64_boot_param->efi_memmap_size;
252 	boot_param_res.start = __pa(ia64_boot_param);
253 	boot_param_res.end = boot_param_res.start +
254 		sizeof(*ia64_boot_param);
255 }
256 #else
257 static inline void __init setup_crashkernel(unsigned long total, int *n)
258 {}
259 #endif
260 
261 /**
262  * reserve_memory - setup reserved memory areas
263  *
264  * Setup the reserved memory areas set aside for the boot parameters,
265  * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
266  * see include/asm-ia64/meminit.h if you need to define more.
267  */
268 void __init
269 reserve_memory (void)
270 {
271 	int n = 0;
272 	unsigned long total_memory;
273 
274 	/*
275 	 * none of the entries in this table overlap
276 	 */
277 	rsvd_region[n].start = (unsigned long) ia64_boot_param;
278 	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
279 	n++;
280 
281 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
282 	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
283 	n++;
284 
285 	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
286 	rsvd_region[n].end   = (rsvd_region[n].start
287 				+ strlen(__va(ia64_boot_param->command_line)) + 1);
288 	n++;
289 
290 	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
291 	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
292 	n++;
293 
294 #ifdef CONFIG_BLK_DEV_INITRD
295 	if (ia64_boot_param->initrd_start) {
296 		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
297 		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
298 		n++;
299 	}
300 #endif
301 
302 #ifdef CONFIG_PROC_VMCORE
303 	if (reserve_elfcorehdr(&rsvd_region[n].start,
304 			       &rsvd_region[n].end) == 0)
305 		n++;
306 #endif
307 
308 	total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
309 	n++;
310 
311 	setup_crashkernel(total_memory, &n);
312 
313 	/* end of memory marker */
314 	rsvd_region[n].start = ~0UL;
315 	rsvd_region[n].end   = ~0UL;
316 	n++;
317 
318 	num_rsvd_regions = n;
319 	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
320 
321 	sort_regions(rsvd_region, num_rsvd_regions);
322 }
323 
324 
325 /**
326  * find_initrd - get initrd parameters from the boot parameter structure
327  *
328  * Grab the initrd start and end from the boot parameter struct given us by
329  * the boot loader.
330  */
331 void __init
332 find_initrd (void)
333 {
334 #ifdef CONFIG_BLK_DEV_INITRD
335 	if (ia64_boot_param->initrd_start) {
336 		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
337 		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
338 
339 		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
340 		       initrd_start, ia64_boot_param->initrd_size);
341 	}
342 #endif
343 }
344 
345 static void __init
346 io_port_init (void)
347 {
348 	unsigned long phys_iobase;
349 
350 	/*
351 	 * Set `iobase' based on the EFI memory map or, failing that, the
352 	 * value firmware left in ar.k0.
353 	 *
354 	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
355 	 * the port's virtual address, so ia32_load_state() loads it with a
356 	 * user virtual address.  But in ia64 mode, glibc uses the
357 	 * *physical* address in ar.k0 to mmap the appropriate area from
358 	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
359 	 * cases, user-mode can only use the legacy 0-64K I/O port space.
360 	 *
361 	 * ar.k0 is not involved in kernel I/O port accesses, which can use
362 	 * any of the I/O port spaces and are done via MMIO using the
363 	 * virtual mmio_base from the appropriate io_space[].
364 	 */
365 	phys_iobase = efi_get_iobase();
366 	if (!phys_iobase) {
367 		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
368 		printk(KERN_INFO "No I/O port range found in EFI memory map, "
369 			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
370 	}
371 	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
372 	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
373 
374 	/* setup legacy IO port space */
375 	io_space[0].mmio_base = ia64_iobase;
376 	io_space[0].sparse = 1;
377 	num_io_spaces = 1;
378 }
379 
380 /**
381  * early_console_setup - setup debugging console
382  *
383  * Consoles started here require little enough setup that we can start using
384  * them very early in the boot process, either right after the machine
385  * vector initialization, or even before if the drivers can detect their hw.
386  *
387  * Returns non-zero if a console couldn't be setup.
388  */
389 static inline int __init
390 early_console_setup (char *cmdline)
391 {
392 	int earlycons = 0;
393 
394 #ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
395 	{
396 		extern int sn_serial_console_early_setup(void);
397 		if (!sn_serial_console_early_setup())
398 			earlycons++;
399 	}
400 #endif
401 #ifdef CONFIG_EFI_PCDP
402 	if (!efi_setup_pcdp_console(cmdline))
403 		earlycons++;
404 #endif
405 	if (!simcons_register())
406 		earlycons++;
407 
408 	return (earlycons) ? 0 : -1;
409 }
410 
411 static inline void
412 mark_bsp_online (void)
413 {
414 #ifdef CONFIG_SMP
415 	/* If we register an early console, allow CPU 0 to printk */
416 	cpu_set(smp_processor_id(), cpu_online_map);
417 #endif
418 }
419 
420 #ifdef CONFIG_SMP
421 static void __init
422 check_for_logical_procs (void)
423 {
424 	pal_logical_to_physical_t info;
425 	s64 status;
426 
427 	status = ia64_pal_logical_to_phys(0, &info);
428 	if (status == -1) {
429 		printk(KERN_INFO "No logical to physical processor mapping "
430 		       "available\n");
431 		return;
432 	}
433 	if (status) {
434 		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
435 		       status);
436 		return;
437 	}
438 	/*
439 	 * Total number of siblings that BSP has.  Though not all of them
440 	 * may have booted successfully. The correct number of siblings
441 	 * booted is in info.overview_num_log.
442 	 */
443 	smp_num_siblings = info.overview_tpc;
444 	smp_num_cpucores = info.overview_cpp;
445 }
446 #endif
447 
448 static __initdata int nomca;
449 static __init int setup_nomca(char *s)
450 {
451 	nomca = 1;
452 	return 0;
453 }
454 early_param("nomca", setup_nomca);
455 
456 #ifdef CONFIG_PROC_VMCORE
457 /* elfcorehdr= specifies the location of elf core header
458  * stored by the crashed kernel.
459  */
460 static int __init parse_elfcorehdr(char *arg)
461 {
462 	if (!arg)
463 		return -EINVAL;
464 
465         elfcorehdr_addr = memparse(arg, &arg);
466 	return 0;
467 }
468 early_param("elfcorehdr", parse_elfcorehdr);
469 
470 int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
471 {
472 	unsigned long length;
473 
474 	/* We get the address using the kernel command line,
475 	 * but the size is extracted from the EFI tables.
476 	 * Both address and size are required for reservation
477 	 * to work properly.
478 	 */
479 
480 	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
481 		return -EINVAL;
482 
483 	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
484 		elfcorehdr_addr = ELFCORE_ADDR_MAX;
485 		return -EINVAL;
486 	}
487 
488 	*start = (unsigned long)__va(elfcorehdr_addr);
489 	*end = *start + length;
490 	return 0;
491 }
492 
493 #endif /* CONFIG_PROC_VMCORE */
494 
495 void __init
496 setup_arch (char **cmdline_p)
497 {
498 	unw_init();
499 
500 	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
501 
502 	*cmdline_p = __va(ia64_boot_param->command_line);
503 	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
504 
505 	efi_init();
506 	io_port_init();
507 
508 #ifdef CONFIG_IA64_GENERIC
509 	/* machvec needs to be parsed from the command line
510 	 * before parse_early_param() is called to ensure
511 	 * that ia64_mv is initialised before any command line
512 	 * settings may cause console setup to occur
513 	 */
514 	machvec_init_from_cmdline(*cmdline_p);
515 #endif
516 
517 	parse_early_param();
518 
519 	if (early_console_setup(*cmdline_p) == 0)
520 		mark_bsp_online();
521 
522 #ifdef CONFIG_ACPI
523 	/* Initialize the ACPI boot-time table parser */
524 	acpi_table_init();
525 # ifdef CONFIG_ACPI_NUMA
526 	acpi_numa_init();
527 # endif
528 #else
529 # ifdef CONFIG_SMP
530 	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
531 # endif
532 #endif /* CONFIG_APCI_BOOT */
533 
534 	find_memory();
535 
536 	/* process SAL system table: */
537 	ia64_sal_init(__va(efi.sal_systab));
538 
539 	ia64_setup_printk_clock();
540 
541 #ifdef CONFIG_SMP
542 	cpu_physical_id(0) = hard_smp_processor_id();
543 	check_for_logical_procs();
544 	if (smp_num_cpucores > 1)
545 		printk(KERN_INFO
546 		       "cpu package is Multi-Core capable: number of cores=%d\n",
547 		       smp_num_cpucores);
548 	if (smp_num_siblings > 1)
549 		printk(KERN_INFO
550 		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
551 		       smp_num_siblings);
552 #endif
553 
554 	cpu_init();	/* initialize the bootstrap CPU */
555 	mmu_context_init();	/* initialize context_id bitmap */
556 
557 	check_sal_cache_flush();
558 
559 #ifdef CONFIG_ACPI
560 	acpi_boot_init();
561 #endif
562 
563 #ifdef CONFIG_VT
564 	if (!conswitchp) {
565 # if defined(CONFIG_DUMMY_CONSOLE)
566 		conswitchp = &dummy_con;
567 # endif
568 # if defined(CONFIG_VGA_CONSOLE)
569 		/*
570 		 * Non-legacy systems may route legacy VGA MMIO range to system
571 		 * memory.  vga_con probes the MMIO hole, so memory looks like
572 		 * a VGA device to it.  The EFI memory map can tell us if it's
573 		 * memory so we can avoid this problem.
574 		 */
575 		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
576 			conswitchp = &vga_con;
577 # endif
578 	}
579 #endif
580 
581 	/* enable IA-64 Machine Check Abort Handling unless disabled */
582 	if (!nomca)
583 		ia64_mca_init();
584 
585 	platform_setup(cmdline_p);
586 	paging_init();
587 }
588 
589 /*
590  * Display cpu info for all CPUs.
591  */
592 static int
593 show_cpuinfo (struct seq_file *m, void *v)
594 {
595 #ifdef CONFIG_SMP
596 #	define lpj	c->loops_per_jiffy
597 #	define cpunum	c->cpu
598 #else
599 #	define lpj	loops_per_jiffy
600 #	define cpunum	0
601 #endif
602 	static struct {
603 		unsigned long mask;
604 		const char *feature_name;
605 	} feature_bits[] = {
606 		{ 1UL << 0, "branchlong" },
607 		{ 1UL << 1, "spontaneous deferral"},
608 		{ 1UL << 2, "16-byte atomic ops" }
609 	};
610 	char features[128], *cp, *sep;
611 	struct cpuinfo_ia64 *c = v;
612 	unsigned long mask;
613 	unsigned long proc_freq;
614 	int i, size;
615 
616 	mask = c->features;
617 
618 	/* build the feature string: */
619 	memcpy(features, "standard", 9);
620 	cp = features;
621 	size = sizeof(features);
622 	sep = "";
623 	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
624 		if (mask & feature_bits[i].mask) {
625 			cp += snprintf(cp, size, "%s%s", sep,
626 				       feature_bits[i].feature_name),
627 			sep = ", ";
628 			mask &= ~feature_bits[i].mask;
629 			size = sizeof(features) - (cp - features);
630 		}
631 	}
632 	if (mask && size > 1) {
633 		/* print unknown features as a hex value */
634 		snprintf(cp, size, "%s0x%lx", sep, mask);
635 	}
636 
637 	proc_freq = cpufreq_quick_get(cpunum);
638 	if (!proc_freq)
639 		proc_freq = c->proc_freq / 1000;
640 
641 	seq_printf(m,
642 		   "processor  : %d\n"
643 		   "vendor     : %s\n"
644 		   "arch       : IA-64\n"
645 		   "family     : %u\n"
646 		   "model      : %u\n"
647 		   "model name : %s\n"
648 		   "revision   : %u\n"
649 		   "archrev    : %u\n"
650 		   "features   : %s\n"
651 		   "cpu number : %lu\n"
652 		   "cpu regs   : %u\n"
653 		   "cpu MHz    : %lu.%03lu\n"
654 		   "itc MHz    : %lu.%06lu\n"
655 		   "BogoMIPS   : %lu.%02lu\n",
656 		   cpunum, c->vendor, c->family, c->model,
657 		   c->model_name, c->revision, c->archrev,
658 		   features, c->ppn, c->number,
659 		   proc_freq / 1000, proc_freq % 1000,
660 		   c->itc_freq / 1000000, c->itc_freq % 1000000,
661 		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
662 #ifdef CONFIG_SMP
663 	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
664 	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
665 		seq_printf(m,
666 		   	   "physical id: %u\n"
667 		   	   "core id    : %u\n"
668 		   	   "thread id  : %u\n",
669 		   	   c->socket_id, c->core_id, c->thread_id);
670 #endif
671 	seq_printf(m,"\n");
672 
673 	return 0;
674 }
675 
676 static void *
677 c_start (struct seq_file *m, loff_t *pos)
678 {
679 #ifdef CONFIG_SMP
680 	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
681 		++*pos;
682 #endif
683 	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
684 }
685 
686 static void *
687 c_next (struct seq_file *m, void *v, loff_t *pos)
688 {
689 	++*pos;
690 	return c_start(m, pos);
691 }
692 
693 static void
694 c_stop (struct seq_file *m, void *v)
695 {
696 }
697 
698 struct seq_operations cpuinfo_op = {
699 	.start =	c_start,
700 	.next =		c_next,
701 	.stop =		c_stop,
702 	.show =		show_cpuinfo
703 };
704 
705 #define MAX_BRANDS	8
706 static char brandname[MAX_BRANDS][128];
707 
708 static char * __cpuinit
709 get_model_name(__u8 family, __u8 model)
710 {
711 	static int overflow;
712 	char brand[128];
713 	int i;
714 
715 	memcpy(brand, "Unknown", 8);
716 	if (ia64_pal_get_brand_info(brand)) {
717 		if (family == 0x7)
718 			memcpy(brand, "Merced", 7);
719 		else if (family == 0x1f) switch (model) {
720 			case 0: memcpy(brand, "McKinley", 9); break;
721 			case 1: memcpy(brand, "Madison", 8); break;
722 			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
723 		}
724 	}
725 	for (i = 0; i < MAX_BRANDS; i++)
726 		if (strcmp(brandname[i], brand) == 0)
727 			return brandname[i];
728 	for (i = 0; i < MAX_BRANDS; i++)
729 		if (brandname[i][0] == '\0')
730 			return strcpy(brandname[i], brand);
731 	if (overflow++ == 0)
732 		printk(KERN_ERR
733 		       "%s: Table overflow. Some processor model information will be missing\n",
734 		       __FUNCTION__);
735 	return "Unknown";
736 }
737 
738 static void __cpuinit
739 identify_cpu (struct cpuinfo_ia64 *c)
740 {
741 	union {
742 		unsigned long bits[5];
743 		struct {
744 			/* id 0 & 1: */
745 			char vendor[16];
746 
747 			/* id 2 */
748 			u64 ppn;		/* processor serial number */
749 
750 			/* id 3: */
751 			unsigned number		:  8;
752 			unsigned revision	:  8;
753 			unsigned model		:  8;
754 			unsigned family		:  8;
755 			unsigned archrev	:  8;
756 			unsigned reserved	: 24;
757 
758 			/* id 4: */
759 			u64 features;
760 		} field;
761 	} cpuid;
762 	pal_vm_info_1_u_t vm1;
763 	pal_vm_info_2_u_t vm2;
764 	pal_status_t status;
765 	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
766 	int i;
767 	for (i = 0; i < 5; ++i)
768 		cpuid.bits[i] = ia64_get_cpuid(i);
769 
770 	memcpy(c->vendor, cpuid.field.vendor, 16);
771 #ifdef CONFIG_SMP
772 	c->cpu = smp_processor_id();
773 
774 	/* below default values will be overwritten  by identify_siblings()
775 	 * for Multi-Threading/Multi-Core capable CPUs
776 	 */
777 	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
778 	c->socket_id = -1;
779 
780 	identify_siblings(c);
781 #endif
782 	c->ppn = cpuid.field.ppn;
783 	c->number = cpuid.field.number;
784 	c->revision = cpuid.field.revision;
785 	c->model = cpuid.field.model;
786 	c->family = cpuid.field.family;
787 	c->archrev = cpuid.field.archrev;
788 	c->features = cpuid.field.features;
789 	c->model_name = get_model_name(c->family, c->model);
790 
791 	status = ia64_pal_vm_summary(&vm1, &vm2);
792 	if (status == PAL_STATUS_SUCCESS) {
793 		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
794 		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
795 	}
796 	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
797 	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
798 }
799 
800 void __init
801 setup_per_cpu_areas (void)
802 {
803 	/* start_kernel() requires this... */
804 #ifdef CONFIG_ACPI_HOTPLUG_CPU
805 	prefill_possible_map();
806 #endif
807 }
808 
809 /*
810  * Calculate the max. cache line size.
811  *
812  * In addition, the minimum of the i-cache stride sizes is calculated for
813  * "flush_icache_range()".
814  */
815 static void __cpuinit
816 get_max_cacheline_size (void)
817 {
818 	unsigned long line_size, max = 1;
819 	u64 l, levels, unique_caches;
820         pal_cache_config_info_t cci;
821         s64 status;
822 
823         status = ia64_pal_cache_summary(&levels, &unique_caches);
824         if (status != 0) {
825                 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
826                        __FUNCTION__, status);
827                 max = SMP_CACHE_BYTES;
828 		/* Safest setup for "flush_icache_range()" */
829 		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
830 		goto out;
831         }
832 
833 	for (l = 0; l < levels; ++l) {
834 		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
835 						    &cci);
836 		if (status != 0) {
837 			printk(KERN_ERR
838 			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
839 			       __FUNCTION__, l, status);
840 			max = SMP_CACHE_BYTES;
841 			/* The safest setup for "flush_icache_range()" */
842 			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
843 			cci.pcci_unified = 1;
844 		}
845 		line_size = 1 << cci.pcci_line_size;
846 		if (line_size > max)
847 			max = line_size;
848 		if (!cci.pcci_unified) {
849 			status = ia64_pal_cache_config_info(l,
850 						    /* cache_type (instruction)= */ 1,
851 						    &cci);
852 			if (status != 0) {
853 				printk(KERN_ERR
854 				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
855 					__FUNCTION__, l, status);
856 				/* The safest setup for "flush_icache_range()" */
857 				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
858 			}
859 		}
860 		if (cci.pcci_stride < ia64_i_cache_stride_shift)
861 			ia64_i_cache_stride_shift = cci.pcci_stride;
862 	}
863   out:
864 	if (max > ia64_max_cacheline_size)
865 		ia64_max_cacheline_size = max;
866 }
867 
868 /*
869  * cpu_init() initializes state that is per-CPU.  This function acts
870  * as a 'CPU state barrier', nothing should get across.
871  */
872 void __cpuinit
873 cpu_init (void)
874 {
875 	extern void __cpuinit ia64_mmu_init (void *);
876 	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
877 	unsigned long num_phys_stacked;
878 	pal_vm_info_2_u_t vmi;
879 	unsigned int max_ctx;
880 	struct cpuinfo_ia64 *cpu_info;
881 	void *cpu_data;
882 
883 	cpu_data = per_cpu_init();
884 #ifdef CONFIG_SMP
885 	/*
886 	 * insert boot cpu into sibling and core mapes
887 	 * (must be done after per_cpu area is setup)
888 	 */
889 	if (smp_processor_id() == 0) {
890 		cpu_set(0, per_cpu(cpu_sibling_map, 0));
891 		cpu_set(0, cpu_core_map[0]);
892 	}
893 #endif
894 
895 	/*
896 	 * We set ar.k3 so that assembly code in MCA handler can compute
897 	 * physical addresses of per cpu variables with a simple:
898 	 *   phys = ar.k3 + &per_cpu_var
899 	 */
900 	ia64_set_kr(IA64_KR_PER_CPU_DATA,
901 		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
902 
903 	get_max_cacheline_size();
904 
905 	/*
906 	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
907 	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
908 	 * depends on the data returned by identify_cpu().  We break the dependency by
909 	 * accessing cpu_data() through the canonical per-CPU address.
910 	 */
911 	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
912 	identify_cpu(cpu_info);
913 
914 #ifdef CONFIG_MCKINLEY
915 	{
916 #		define FEATURE_SET 16
917 		struct ia64_pal_retval iprv;
918 
919 		if (cpu_info->family == 0x1f) {
920 			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
921 			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
922 				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
923 				              (iprv.v1 | 0x80), FEATURE_SET, 0);
924 		}
925 	}
926 #endif
927 
928 	/* Clear the stack memory reserved for pt_regs: */
929 	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
930 
931 	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
932 
933 	/*
934 	 * Initialize the page-table base register to a global
935 	 * directory with all zeroes.  This ensure that we can handle
936 	 * TLB-misses to user address-space even before we created the
937 	 * first user address-space.  This may happen, e.g., due to
938 	 * aggressive use of lfetch.fault.
939 	 */
940 	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
941 
942 	/*
943 	 * Initialize default control register to defer speculative faults except
944 	 * for those arising from TLB misses, which are not deferred.  The
945 	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
946 	 * the kernel must have recovery code for all speculative accesses).  Turn on
947 	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
948 	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
949 	 * be fine).
950 	 */
951 	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
952 					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
953 	atomic_inc(&init_mm.mm_count);
954 	current->active_mm = &init_mm;
955 	if (current->mm)
956 		BUG();
957 
958 	ia64_mmu_init(ia64_imva(cpu_data));
959 	ia64_mca_cpu_init(ia64_imva(cpu_data));
960 
961 #ifdef CONFIG_IA32_SUPPORT
962 	ia32_cpu_init();
963 #endif
964 
965 	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
966 	ia64_set_itc(0);
967 
968 	/* disable all local interrupt sources: */
969 	ia64_set_itv(1 << 16);
970 	ia64_set_lrr0(1 << 16);
971 	ia64_set_lrr1(1 << 16);
972 	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
973 	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
974 
975 	/* clear TPR & XTP to enable all interrupt classes: */
976 	ia64_setreg(_IA64_REG_CR_TPR, 0);
977 
978 	/* Clear any pending interrupts left by SAL/EFI */
979 	while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
980 		ia64_eoi();
981 
982 #ifdef CONFIG_SMP
983 	normal_xtp();
984 #endif
985 
986 	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
987 	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
988 		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
989 	else {
990 		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
991 		max_ctx = (1U << 15) - 1;	/* use architected minimum */
992 	}
993 	while (max_ctx < ia64_ctx.max_ctx) {
994 		unsigned int old = ia64_ctx.max_ctx;
995 		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
996 			break;
997 	}
998 
999 	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
1000 		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
1001 		       "stacked regs\n");
1002 		num_phys_stacked = 96;
1003 	}
1004 	/* size of physical stacked register partition plus 8 bytes: */
1005 	if (num_phys_stacked > max_num_phys_stacked) {
1006 		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
1007 		max_num_phys_stacked = num_phys_stacked;
1008 	}
1009 	platform_cpu_init();
1010 	pm_idle = default_idle;
1011 }
1012 
1013 void __init
1014 check_bugs (void)
1015 {
1016 	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1017 			       (unsigned long) __end___mckinley_e9_bundles);
1018 }
1019 
1020 static int __init run_dmi_scan(void)
1021 {
1022 	dmi_scan_machine();
1023 	return 0;
1024 }
1025 core_initcall(run_dmi_scan);
1026