1 /* 2 * salinfo.c 3 * 4 * Creates entries in /proc/sal for various system features. 5 * 6 * Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved. 7 * Copyright (c) 2003 Hewlett-Packard Co 8 * Bjorn Helgaas <bjorn.helgaas@hp.com> 9 * 10 * 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo 11 * code to create this file 12 * Oct 23 2003 kaos@sgi.com 13 * Replace IPI with set_cpus_allowed() to read a record from the required cpu. 14 * Redesign salinfo log processing to separate interrupt and user space 15 * contexts. 16 * Cache the record across multi-block reads from user space. 17 * Support > 64 cpus. 18 * Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module. 19 * 20 * Jan 28 2004 kaos@sgi.com 21 * Periodically check for outstanding MCA or INIT records. 22 * 23 * Dec 5 2004 kaos@sgi.com 24 * Standardize which records are cleared automatically. 25 * 26 * Aug 18 2005 kaos@sgi.com 27 * mca.c may not pass a buffer, a NULL buffer just indicates that a new 28 * record is available in SAL. 29 * Replace some NR_CPUS by cpus_online, for hotplug cpu. 30 * 31 * Jan 5 2006 kaos@sgi.com 32 * Handle hotplug cpus coming online. 33 * Handle hotplug cpus going offline while they still have outstanding records. 34 * Use the cpu_* macros consistently. 35 * Replace the counting semaphore with a mutex and a test if the cpumask is non-empty. 36 * Modify the locking to make the test for "work to do" an atomic operation. 37 */ 38 39 #include <linux/capability.h> 40 #include <linux/cpu.h> 41 #include <linux/types.h> 42 #include <linux/proc_fs.h> 43 #include <linux/seq_file.h> 44 #include <linux/module.h> 45 #include <linux/smp.h> 46 #include <linux/timer.h> 47 #include <linux/vmalloc.h> 48 #include <linux/semaphore.h> 49 50 #include <asm/sal.h> 51 #include <asm/uaccess.h> 52 53 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>"); 54 MODULE_DESCRIPTION("/proc interface to IA-64 SAL features"); 55 MODULE_LICENSE("GPL"); 56 57 static const struct file_operations proc_salinfo_fops; 58 59 typedef struct { 60 const char *name; /* name of the proc entry */ 61 unsigned long feature; /* feature bit */ 62 struct proc_dir_entry *entry; /* registered entry (removal) */ 63 } salinfo_entry_t; 64 65 /* 66 * List {name,feature} pairs for every entry in /proc/sal/<feature> 67 * that this module exports 68 */ 69 static const salinfo_entry_t salinfo_entries[]={ 70 { "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, }, 71 { "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, }, 72 { "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, }, 73 { "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, }, 74 }; 75 76 #define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries) 77 78 static char *salinfo_log_name[] = { 79 "mca", 80 "init", 81 "cmc", 82 "cpe", 83 }; 84 85 static struct proc_dir_entry *salinfo_proc_entries[ 86 ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */ 87 ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */ 88 (2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */ 89 1]; /* /proc/sal */ 90 91 /* Some records we get ourselves, some are accessed as saved data in buffers 92 * that are owned by mca.c. 93 */ 94 struct salinfo_data_saved { 95 u8* buffer; 96 u64 size; 97 u64 id; 98 int cpu; 99 }; 100 101 /* State transitions. Actions are :- 102 * Write "read <cpunum>" to the data file. 103 * Write "clear <cpunum>" to the data file. 104 * Write "oemdata <cpunum> <offset> to the data file. 105 * Read from the data file. 106 * Close the data file. 107 * 108 * Start state is NO_DATA. 109 * 110 * NO_DATA 111 * write "read <cpunum>" -> NO_DATA or LOG_RECORD. 112 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD. 113 * write "oemdata <cpunum> <offset> -> return -EINVAL. 114 * read data -> return EOF. 115 * close -> unchanged. Free record areas. 116 * 117 * LOG_RECORD 118 * write "read <cpunum>" -> NO_DATA or LOG_RECORD. 119 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD. 120 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA. 121 * read data -> return the INIT/MCA/CMC/CPE record. 122 * close -> unchanged. Keep record areas. 123 * 124 * OEMDATA 125 * write "read <cpunum>" -> NO_DATA or LOG_RECORD. 126 * write "clear <cpunum>" -> NO_DATA or LOG_RECORD. 127 * write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA. 128 * read data -> return the formatted oemdata. 129 * close -> unchanged. Keep record areas. 130 * 131 * Closing the data file does not change the state. This allows shell scripts 132 * to manipulate salinfo data, each shell redirection opens the file, does one 133 * action then closes it again. The record areas are only freed at close when 134 * the state is NO_DATA. 135 */ 136 enum salinfo_state { 137 STATE_NO_DATA, 138 STATE_LOG_RECORD, 139 STATE_OEMDATA, 140 }; 141 142 struct salinfo_data { 143 cpumask_t cpu_event; /* which cpus have outstanding events */ 144 struct semaphore mutex; 145 u8 *log_buffer; 146 u64 log_size; 147 u8 *oemdata; /* decoded oem data */ 148 u64 oemdata_size; 149 int open; /* single-open to prevent races */ 150 u8 type; 151 u8 saved_num; /* using a saved record? */ 152 enum salinfo_state state :8; /* processing state */ 153 u8 padding; 154 int cpu_check; /* next CPU to check */ 155 struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */ 156 }; 157 158 static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)]; 159 160 static DEFINE_SPINLOCK(data_lock); 161 static DEFINE_SPINLOCK(data_saved_lock); 162 163 /** salinfo_platform_oemdata - optional callback to decode oemdata from an error 164 * record. 165 * @sect_header: pointer to the start of the section to decode. 166 * @oemdata: returns vmalloc area containing the decoded output. 167 * @oemdata_size: returns length of decoded output (strlen). 168 * 169 * Description: If user space asks for oem data to be decoded by the kernel 170 * and/or prom and the platform has set salinfo_platform_oemdata to the address 171 * of a platform specific routine then call that routine. salinfo_platform_oemdata 172 * vmalloc's and formats its output area, returning the address of the text 173 * and its strlen. Returns 0 for success, -ve for error. The callback is 174 * invoked on the cpu that generated the error record. 175 */ 176 int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size); 177 178 struct salinfo_platform_oemdata_parms { 179 const u8 *efi_guid; 180 u8 **oemdata; 181 u64 *oemdata_size; 182 int ret; 183 }; 184 185 /* Kick the mutex that tells user space that there is work to do. Instead of 186 * trying to track the state of the mutex across multiple cpus, in user 187 * context, interrupt context, non-maskable interrupt context and hotplug cpu, 188 * it is far easier just to grab the mutex if it is free then release it. 189 * 190 * This routine must be called with data_saved_lock held, to make the down/up 191 * operation atomic. 192 */ 193 static void 194 salinfo_work_to_do(struct salinfo_data *data) 195 { 196 (void)(down_trylock(&data->mutex) ?: 0); 197 up(&data->mutex); 198 } 199 200 static void 201 salinfo_platform_oemdata_cpu(void *context) 202 { 203 struct salinfo_platform_oemdata_parms *parms = context; 204 parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size); 205 } 206 207 static void 208 shift1_data_saved (struct salinfo_data *data, int shift) 209 { 210 memcpy(data->data_saved+shift, data->data_saved+shift+1, 211 (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0])); 212 memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0, 213 sizeof(data->data_saved[0])); 214 } 215 216 /* This routine is invoked in interrupt context. Note: mca.c enables 217 * interrupts before calling this code for CMC/CPE. MCA and INIT events are 218 * not irq safe, do not call any routines that use spinlocks, they may deadlock. 219 * MCA and INIT records are recorded, a timer event will look for any 220 * outstanding events and wake up the user space code. 221 * 222 * The buffer passed from mca.c points to the output from ia64_log_get. This is 223 * a persistent buffer but its contents can change between the interrupt and 224 * when user space processes the record. Save the record id to identify 225 * changes. If the buffer is NULL then just update the bitmap. 226 */ 227 void 228 salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe) 229 { 230 struct salinfo_data *data = salinfo_data + type; 231 struct salinfo_data_saved *data_saved; 232 unsigned long flags = 0; 233 int i; 234 int saved_size = ARRAY_SIZE(data->data_saved); 235 236 BUG_ON(type >= ARRAY_SIZE(salinfo_log_name)); 237 238 if (irqsafe) 239 spin_lock_irqsave(&data_saved_lock, flags); 240 if (buffer) { 241 for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) { 242 if (!data_saved->buffer) 243 break; 244 } 245 if (i == saved_size) { 246 if (!data->saved_num) { 247 shift1_data_saved(data, 0); 248 data_saved = data->data_saved + saved_size - 1; 249 } else 250 data_saved = NULL; 251 } 252 if (data_saved) { 253 data_saved->cpu = smp_processor_id(); 254 data_saved->id = ((sal_log_record_header_t *)buffer)->id; 255 data_saved->size = size; 256 data_saved->buffer = buffer; 257 } 258 } 259 cpu_set(smp_processor_id(), data->cpu_event); 260 if (irqsafe) { 261 salinfo_work_to_do(data); 262 spin_unlock_irqrestore(&data_saved_lock, flags); 263 } 264 } 265 266 /* Check for outstanding MCA/INIT records every minute (arbitrary) */ 267 #define SALINFO_TIMER_DELAY (60*HZ) 268 static struct timer_list salinfo_timer; 269 extern void ia64_mlogbuf_dump(void); 270 271 static void 272 salinfo_timeout_check(struct salinfo_data *data) 273 { 274 unsigned long flags; 275 if (!data->open) 276 return; 277 if (!cpus_empty(data->cpu_event)) { 278 spin_lock_irqsave(&data_saved_lock, flags); 279 salinfo_work_to_do(data); 280 spin_unlock_irqrestore(&data_saved_lock, flags); 281 } 282 } 283 284 static void 285 salinfo_timeout (unsigned long arg) 286 { 287 ia64_mlogbuf_dump(); 288 salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA); 289 salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT); 290 salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY; 291 add_timer(&salinfo_timer); 292 } 293 294 static int 295 salinfo_event_open(struct inode *inode, struct file *file) 296 { 297 if (!capable(CAP_SYS_ADMIN)) 298 return -EPERM; 299 return 0; 300 } 301 302 static ssize_t 303 salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) 304 { 305 struct salinfo_data *data = PDE_DATA(file_inode(file)); 306 char cmd[32]; 307 size_t size; 308 int i, n, cpu = -1; 309 310 retry: 311 if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) { 312 if (file->f_flags & O_NONBLOCK) 313 return -EAGAIN; 314 if (down_interruptible(&data->mutex)) 315 return -EINTR; 316 } 317 318 n = data->cpu_check; 319 for (i = 0; i < nr_cpu_ids; i++) { 320 if (cpu_isset(n, data->cpu_event)) { 321 if (!cpu_online(n)) { 322 cpu_clear(n, data->cpu_event); 323 continue; 324 } 325 cpu = n; 326 break; 327 } 328 if (++n == nr_cpu_ids) 329 n = 0; 330 } 331 332 if (cpu == -1) 333 goto retry; 334 335 ia64_mlogbuf_dump(); 336 337 /* for next read, start checking at next CPU */ 338 data->cpu_check = cpu; 339 if (++data->cpu_check == nr_cpu_ids) 340 data->cpu_check = 0; 341 342 snprintf(cmd, sizeof(cmd), "read %d\n", cpu); 343 344 size = strlen(cmd); 345 if (size > count) 346 size = count; 347 if (copy_to_user(buffer, cmd, size)) 348 return -EFAULT; 349 350 return size; 351 } 352 353 static const struct file_operations salinfo_event_fops = { 354 .open = salinfo_event_open, 355 .read = salinfo_event_read, 356 .llseek = noop_llseek, 357 }; 358 359 static int 360 salinfo_log_open(struct inode *inode, struct file *file) 361 { 362 struct salinfo_data *data = PDE_DATA(inode); 363 364 if (!capable(CAP_SYS_ADMIN)) 365 return -EPERM; 366 367 spin_lock(&data_lock); 368 if (data->open) { 369 spin_unlock(&data_lock); 370 return -EBUSY; 371 } 372 data->open = 1; 373 spin_unlock(&data_lock); 374 375 if (data->state == STATE_NO_DATA && 376 !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) { 377 data->open = 0; 378 return -ENOMEM; 379 } 380 381 return 0; 382 } 383 384 static int 385 salinfo_log_release(struct inode *inode, struct file *file) 386 { 387 struct salinfo_data *data = PDE_DATA(inode); 388 389 if (data->state == STATE_NO_DATA) { 390 vfree(data->log_buffer); 391 vfree(data->oemdata); 392 data->log_buffer = NULL; 393 data->oemdata = NULL; 394 } 395 spin_lock(&data_lock); 396 data->open = 0; 397 spin_unlock(&data_lock); 398 return 0; 399 } 400 401 static void 402 call_on_cpu(int cpu, void (*fn)(void *), void *arg) 403 { 404 cpumask_t save_cpus_allowed = current->cpus_allowed; 405 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 406 (*fn)(arg); 407 set_cpus_allowed_ptr(current, &save_cpus_allowed); 408 } 409 410 static void 411 salinfo_log_read_cpu(void *context) 412 { 413 struct salinfo_data *data = context; 414 sal_log_record_header_t *rh; 415 data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer); 416 rh = (sal_log_record_header_t *)(data->log_buffer); 417 /* Clear corrected errors as they are read from SAL */ 418 if (rh->severity == sal_log_severity_corrected) 419 ia64_sal_clear_state_info(data->type); 420 } 421 422 static void 423 salinfo_log_new_read(int cpu, struct salinfo_data *data) 424 { 425 struct salinfo_data_saved *data_saved; 426 unsigned long flags; 427 int i; 428 int saved_size = ARRAY_SIZE(data->data_saved); 429 430 data->saved_num = 0; 431 spin_lock_irqsave(&data_saved_lock, flags); 432 retry: 433 for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) { 434 if (data_saved->buffer && data_saved->cpu == cpu) { 435 sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer); 436 data->log_size = data_saved->size; 437 memcpy(data->log_buffer, rh, data->log_size); 438 barrier(); /* id check must not be moved */ 439 if (rh->id == data_saved->id) { 440 data->saved_num = i+1; 441 break; 442 } 443 /* saved record changed by mca.c since interrupt, discard it */ 444 shift1_data_saved(data, i); 445 goto retry; 446 } 447 } 448 spin_unlock_irqrestore(&data_saved_lock, flags); 449 450 if (!data->saved_num) 451 call_on_cpu(cpu, salinfo_log_read_cpu, data); 452 if (!data->log_size) { 453 data->state = STATE_NO_DATA; 454 cpu_clear(cpu, data->cpu_event); 455 } else { 456 data->state = STATE_LOG_RECORD; 457 } 458 } 459 460 static ssize_t 461 salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos) 462 { 463 struct salinfo_data *data = PDE_DATA(file_inode(file)); 464 u8 *buf; 465 u64 bufsize; 466 467 if (data->state == STATE_LOG_RECORD) { 468 buf = data->log_buffer; 469 bufsize = data->log_size; 470 } else if (data->state == STATE_OEMDATA) { 471 buf = data->oemdata; 472 bufsize = data->oemdata_size; 473 } else { 474 buf = NULL; 475 bufsize = 0; 476 } 477 return simple_read_from_buffer(buffer, count, ppos, buf, bufsize); 478 } 479 480 static void 481 salinfo_log_clear_cpu(void *context) 482 { 483 struct salinfo_data *data = context; 484 ia64_sal_clear_state_info(data->type); 485 } 486 487 static int 488 salinfo_log_clear(struct salinfo_data *data, int cpu) 489 { 490 sal_log_record_header_t *rh; 491 unsigned long flags; 492 spin_lock_irqsave(&data_saved_lock, flags); 493 data->state = STATE_NO_DATA; 494 if (!cpu_isset(cpu, data->cpu_event)) { 495 spin_unlock_irqrestore(&data_saved_lock, flags); 496 return 0; 497 } 498 cpu_clear(cpu, data->cpu_event); 499 if (data->saved_num) { 500 shift1_data_saved(data, data->saved_num - 1); 501 data->saved_num = 0; 502 } 503 spin_unlock_irqrestore(&data_saved_lock, flags); 504 rh = (sal_log_record_header_t *)(data->log_buffer); 505 /* Corrected errors have already been cleared from SAL */ 506 if (rh->severity != sal_log_severity_corrected) 507 call_on_cpu(cpu, salinfo_log_clear_cpu, data); 508 /* clearing a record may make a new record visible */ 509 salinfo_log_new_read(cpu, data); 510 if (data->state == STATE_LOG_RECORD) { 511 spin_lock_irqsave(&data_saved_lock, flags); 512 cpu_set(cpu, data->cpu_event); 513 salinfo_work_to_do(data); 514 spin_unlock_irqrestore(&data_saved_lock, flags); 515 } 516 return 0; 517 } 518 519 static ssize_t 520 salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos) 521 { 522 struct salinfo_data *data = PDE_DATA(file_inode(file)); 523 char cmd[32]; 524 size_t size; 525 u32 offset; 526 int cpu; 527 528 size = sizeof(cmd); 529 if (count < size) 530 size = count; 531 if (copy_from_user(cmd, buffer, size)) 532 return -EFAULT; 533 534 if (sscanf(cmd, "read %d", &cpu) == 1) { 535 salinfo_log_new_read(cpu, data); 536 } else if (sscanf(cmd, "clear %d", &cpu) == 1) { 537 int ret; 538 if ((ret = salinfo_log_clear(data, cpu))) 539 count = ret; 540 } else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) { 541 if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA) 542 return -EINVAL; 543 if (offset > data->log_size - sizeof(efi_guid_t)) 544 return -EINVAL; 545 data->state = STATE_OEMDATA; 546 if (salinfo_platform_oemdata) { 547 struct salinfo_platform_oemdata_parms parms = { 548 .efi_guid = data->log_buffer + offset, 549 .oemdata = &data->oemdata, 550 .oemdata_size = &data->oemdata_size 551 }; 552 call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms); 553 if (parms.ret) 554 count = parms.ret; 555 } else 556 data->oemdata_size = 0; 557 } else 558 return -EINVAL; 559 560 return count; 561 } 562 563 static const struct file_operations salinfo_data_fops = { 564 .open = salinfo_log_open, 565 .release = salinfo_log_release, 566 .read = salinfo_log_read, 567 .write = salinfo_log_write, 568 .llseek = default_llseek, 569 }; 570 571 static int 572 salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu) 573 { 574 unsigned int i, cpu = (unsigned long)hcpu; 575 unsigned long flags; 576 struct salinfo_data *data; 577 switch (action) { 578 case CPU_ONLINE: 579 case CPU_ONLINE_FROZEN: 580 spin_lock_irqsave(&data_saved_lock, flags); 581 for (i = 0, data = salinfo_data; 582 i < ARRAY_SIZE(salinfo_data); 583 ++i, ++data) { 584 cpu_set(cpu, data->cpu_event); 585 salinfo_work_to_do(data); 586 } 587 spin_unlock_irqrestore(&data_saved_lock, flags); 588 break; 589 case CPU_DEAD: 590 case CPU_DEAD_FROZEN: 591 spin_lock_irqsave(&data_saved_lock, flags); 592 for (i = 0, data = salinfo_data; 593 i < ARRAY_SIZE(salinfo_data); 594 ++i, ++data) { 595 struct salinfo_data_saved *data_saved; 596 int j; 597 for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j; 598 j >= 0; 599 --j, --data_saved) { 600 if (data_saved->buffer && data_saved->cpu == cpu) { 601 shift1_data_saved(data, j); 602 } 603 } 604 cpu_clear(cpu, data->cpu_event); 605 } 606 spin_unlock_irqrestore(&data_saved_lock, flags); 607 break; 608 } 609 return NOTIFY_OK; 610 } 611 612 static struct notifier_block salinfo_cpu_notifier = 613 { 614 .notifier_call = salinfo_cpu_callback, 615 .priority = 0, 616 }; 617 618 static int __init 619 salinfo_init(void) 620 { 621 struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */ 622 struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */ 623 struct proc_dir_entry *dir, *entry; 624 struct salinfo_data *data; 625 int i, j; 626 627 salinfo_dir = proc_mkdir("sal", NULL); 628 if (!salinfo_dir) 629 return 0; 630 631 for (i=0; i < NR_SALINFO_ENTRIES; i++) { 632 /* pass the feature bit in question as misc data */ 633 *sdir++ = proc_create_data(salinfo_entries[i].name, 0, salinfo_dir, 634 &proc_salinfo_fops, 635 (void *)salinfo_entries[i].feature); 636 } 637 638 cpu_notifier_register_begin(); 639 640 for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) { 641 data = salinfo_data + i; 642 data->type = i; 643 sema_init(&data->mutex, 1); 644 dir = proc_mkdir(salinfo_log_name[i], salinfo_dir); 645 if (!dir) 646 continue; 647 648 entry = proc_create_data("event", S_IRUSR, dir, 649 &salinfo_event_fops, data); 650 if (!entry) 651 continue; 652 *sdir++ = entry; 653 654 entry = proc_create_data("data", S_IRUSR | S_IWUSR, dir, 655 &salinfo_data_fops, data); 656 if (!entry) 657 continue; 658 *sdir++ = entry; 659 660 /* we missed any events before now */ 661 for_each_online_cpu(j) 662 cpu_set(j, data->cpu_event); 663 664 *sdir++ = dir; 665 } 666 667 *sdir++ = salinfo_dir; 668 669 init_timer(&salinfo_timer); 670 salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY; 671 salinfo_timer.function = &salinfo_timeout; 672 add_timer(&salinfo_timer); 673 674 __register_hotcpu_notifier(&salinfo_cpu_notifier); 675 676 cpu_notifier_register_done(); 677 678 return 0; 679 } 680 681 /* 682 * 'data' contains an integer that corresponds to the feature we're 683 * testing 684 */ 685 static int proc_salinfo_show(struct seq_file *m, void *v) 686 { 687 unsigned long data = (unsigned long)v; 688 seq_puts(m, (sal_platform_features & data) ? "1\n" : "0\n"); 689 return 0; 690 } 691 692 static int proc_salinfo_open(struct inode *inode, struct file *file) 693 { 694 return single_open(file, proc_salinfo_show, PDE_DATA(inode)); 695 } 696 697 static const struct file_operations proc_salinfo_fops = { 698 .open = proc_salinfo_open, 699 .read = seq_read, 700 .llseek = seq_lseek, 701 .release = single_release, 702 }; 703 704 module_init(salinfo_init); 705