xref: /openbmc/linux/arch/ia64/kernel/ptrace.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * Copyright (C) 2006 Intel Co
7  *  2006-08-12	- IA64 Native Utrace implementation support added by
8  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * Derived from the x86 and Alpha versions.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/errno.h>
16 #include <linux/ptrace.h>
17 #include <linux/user.h>
18 #include <linux/security.h>
19 #include <linux/audit.h>
20 #include <linux/signal.h>
21 #include <linux/regset.h>
22 #include <linux/elf.h>
23 #include <linux/tracehook.h>
24 
25 #include <asm/pgtable.h>
26 #include <asm/processor.h>
27 #include <asm/ptrace_offsets.h>
28 #include <asm/rse.h>
29 #include <linux/uaccess.h>
30 #include <asm/unwind.h>
31 #ifdef CONFIG_PERFMON
32 #include <asm/perfmon.h>
33 #endif
34 
35 #include "entry.h"
36 
37 /*
38  * Bits in the PSR that we allow ptrace() to change:
39  *	be, up, ac, mfl, mfh (the user mask; five bits total)
40  *	db (debug breakpoint fault; one bit)
41  *	id (instruction debug fault disable; one bit)
42  *	dd (data debug fault disable; one bit)
43  *	ri (restart instruction; two bits)
44  *	is (instruction set; one bit)
45  */
46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
47 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48 
49 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
50 #define PFM_MASK	MASK(38)
51 
52 #define PTRACE_DEBUG	0
53 
54 #if PTRACE_DEBUG
55 # define dprintk(format...)	printk(format)
56 # define inline
57 #else
58 # define dprintk(format...)
59 #endif
60 
61 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
62 
63 static inline int
64 in_syscall (struct pt_regs *pt)
65 {
66 	return (long) pt->cr_ifs >= 0;
67 }
68 
69 /*
70  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71  * bitset where bit i is set iff the NaT bit of register i is set.
72  */
73 unsigned long
74 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
75 {
76 #	define GET_BITS(first, last, unat)				\
77 	({								\
78 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
79 		unsigned long nbits = (last - first + 1);		\
80 		unsigned long mask = MASK(nbits) << first;		\
81 		unsigned long dist;					\
82 		if (bit < first)					\
83 			dist = 64 + bit - first;			\
84 		else							\
85 			dist = bit - first;				\
86 		ia64_rotr(unat, dist) & mask;				\
87 	})
88 	unsigned long val;
89 
90 	/*
91 	 * Registers that are stored consecutively in struct pt_regs
92 	 * can be handled in parallel.  If the register order in
93 	 * struct_pt_regs changes, this code MUST be updated.
94 	 */
95 	val  = GET_BITS( 1,  1, scratch_unat);
96 	val |= GET_BITS( 2,  3, scratch_unat);
97 	val |= GET_BITS(12, 13, scratch_unat);
98 	val |= GET_BITS(14, 14, scratch_unat);
99 	val |= GET_BITS(15, 15, scratch_unat);
100 	val |= GET_BITS( 8, 11, scratch_unat);
101 	val |= GET_BITS(16, 31, scratch_unat);
102 	return val;
103 
104 #	undef GET_BITS
105 }
106 
107 /*
108  * Set the NaT bits for the scratch registers according to NAT and
109  * return the resulting unat (assuming the scratch registers are
110  * stored in PT).
111  */
112 unsigned long
113 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
114 {
115 #	define PUT_BITS(first, last, nat)				\
116 	({								\
117 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
118 		unsigned long nbits = (last - first + 1);		\
119 		unsigned long mask = MASK(nbits) << first;		\
120 		long dist;						\
121 		if (bit < first)					\
122 			dist = 64 + bit - first;			\
123 		else							\
124 			dist = bit - first;				\
125 		ia64_rotl(nat & mask, dist);				\
126 	})
127 	unsigned long scratch_unat;
128 
129 	/*
130 	 * Registers that are stored consecutively in struct pt_regs
131 	 * can be handled in parallel.  If the register order in
132 	 * struct_pt_regs changes, this code MUST be updated.
133 	 */
134 	scratch_unat  = PUT_BITS( 1,  1, nat);
135 	scratch_unat |= PUT_BITS( 2,  3, nat);
136 	scratch_unat |= PUT_BITS(12, 13, nat);
137 	scratch_unat |= PUT_BITS(14, 14, nat);
138 	scratch_unat |= PUT_BITS(15, 15, nat);
139 	scratch_unat |= PUT_BITS( 8, 11, nat);
140 	scratch_unat |= PUT_BITS(16, 31, nat);
141 
142 	return scratch_unat;
143 
144 #	undef PUT_BITS
145 }
146 
147 #define IA64_MLX_TEMPLATE	0x2
148 #define IA64_MOVL_OPCODE	6
149 
150 void
151 ia64_increment_ip (struct pt_regs *regs)
152 {
153 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
154 
155 	if (ri > 2) {
156 		ri = 0;
157 		regs->cr_iip += 16;
158 	} else if (ri == 2) {
159 		get_user(w0, (char __user *) regs->cr_iip + 0);
160 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
161 			/*
162 			 * rfi'ing to slot 2 of an MLX bundle causes
163 			 * an illegal operation fault.  We don't want
164 			 * that to happen...
165 			 */
166 			ri = 0;
167 			regs->cr_iip += 16;
168 		}
169 	}
170 	ia64_psr(regs)->ri = ri;
171 }
172 
173 void
174 ia64_decrement_ip (struct pt_regs *regs)
175 {
176 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
177 
178 	if (ia64_psr(regs)->ri == 0) {
179 		regs->cr_iip -= 16;
180 		ri = 2;
181 		get_user(w0, (char __user *) regs->cr_iip + 0);
182 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
183 			/*
184 			 * rfi'ing to slot 2 of an MLX bundle causes
185 			 * an illegal operation fault.  We don't want
186 			 * that to happen...
187 			 */
188 			ri = 1;
189 		}
190 	}
191 	ia64_psr(regs)->ri = ri;
192 }
193 
194 /*
195  * This routine is used to read an rnat bits that are stored on the
196  * kernel backing store.  Since, in general, the alignment of the user
197  * and kernel are different, this is not completely trivial.  In
198  * essence, we need to construct the user RNAT based on up to two
199  * kernel RNAT values and/or the RNAT value saved in the child's
200  * pt_regs.
201  *
202  * user rbs
203  *
204  * +--------+ <-- lowest address
205  * | slot62 |
206  * +--------+
207  * |  rnat  | 0x....1f8
208  * +--------+
209  * | slot00 | \
210  * +--------+ |
211  * | slot01 | > child_regs->ar_rnat
212  * +--------+ |
213  * | slot02 | /				kernel rbs
214  * +--------+				+--------+
215  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
216  * +- - - - +				+--------+
217  *					| slot62 |
218  * +- - - - +				+--------+
219  *					|  rnat	 |
220  * +- - - - +				+--------+
221  *   vrnat				| slot00 |
222  * +- - - - +				+--------+
223  *					=	 =
224  *					+--------+
225  *					| slot00 | \
226  *					+--------+ |
227  *					| slot01 | > child_stack->ar_rnat
228  *					+--------+ |
229  *					| slot02 | /
230  *					+--------+
231  *						  <--- child_stack->ar_bspstore
232  *
233  * The way to think of this code is as follows: bit 0 in the user rnat
234  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235  * value.  The kernel rnat value holding this bit is stored in
236  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
237  * form the upper bits of the user rnat value.
238  *
239  * Boundary cases:
240  *
241  * o when reading the rnat "below" the first rnat slot on the kernel
242  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
243  *   merged in from pt->ar_rnat.
244  *
245  * o when reading the rnat "above" the last rnat slot on the kernel
246  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247  */
248 static unsigned long
249 get_rnat (struct task_struct *task, struct switch_stack *sw,
250 	  unsigned long *krbs, unsigned long *urnat_addr,
251 	  unsigned long *urbs_end)
252 {
253 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 	unsigned long umask = 0, mask, m;
255 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 	long num_regs, nbits;
257 	struct pt_regs *pt;
258 
259 	pt = task_pt_regs(task);
260 	kbsp = (unsigned long *) sw->ar_bspstore;
261 	ubspstore = (unsigned long *) pt->ar_bspstore;
262 
263 	if (urbs_end < urnat_addr)
264 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 	else
266 		nbits = 63;
267 	mask = MASK(nbits);
268 	/*
269 	 * First, figure out which bit number slot 0 in user-land maps
270 	 * to in the kernel rnat.  Do this by figuring out how many
271 	 * register slots we're beyond the user's backingstore and
272 	 * then computing the equivalent address in kernel space.
273 	 */
274 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 	shift = ia64_rse_slot_num(slot0_kaddr);
277 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 	rnat0_kaddr = rnat1_kaddr - 64;
279 
280 	if (ubspstore + 63 > urnat_addr) {
281 		/* some bits need to be merged in from pt->ar_rnat */
282 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 		urnat = (pt->ar_rnat & umask);
284 		mask &= ~umask;
285 		if (!mask)
286 			return urnat;
287 	}
288 
289 	m = mask << shift;
290 	if (rnat0_kaddr >= kbsp)
291 		rnat0 = sw->ar_rnat;
292 	else if (rnat0_kaddr > krbs)
293 		rnat0 = *rnat0_kaddr;
294 	urnat |= (rnat0 & m) >> shift;
295 
296 	m = mask >> (63 - shift);
297 	if (rnat1_kaddr >= kbsp)
298 		rnat1 = sw->ar_rnat;
299 	else if (rnat1_kaddr > krbs)
300 		rnat1 = *rnat1_kaddr;
301 	urnat |= (rnat1 & m) << (63 - shift);
302 	return urnat;
303 }
304 
305 /*
306  * The reverse of get_rnat.
307  */
308 static void
309 put_rnat (struct task_struct *task, struct switch_stack *sw,
310 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 	  unsigned long *urbs_end)
312 {
313 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 	long num_regs, nbits;
316 	struct pt_regs *pt;
317 	unsigned long cfm, *urbs_kargs;
318 
319 	pt = task_pt_regs(task);
320 	kbsp = (unsigned long *) sw->ar_bspstore;
321 	ubspstore = (unsigned long *) pt->ar_bspstore;
322 
323 	urbs_kargs = urbs_end;
324 	if (in_syscall(pt)) {
325 		/*
326 		 * If entered via syscall, don't allow user to set rnat bits
327 		 * for syscall args.
328 		 */
329 		cfm = pt->cr_ifs;
330 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
331 	}
332 
333 	if (urbs_kargs >= urnat_addr)
334 		nbits = 63;
335 	else {
336 		if ((urnat_addr - 63) >= urbs_kargs)
337 			return;
338 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
339 	}
340 	mask = MASK(nbits);
341 
342 	/*
343 	 * First, figure out which bit number slot 0 in user-land maps
344 	 * to in the kernel rnat.  Do this by figuring out how many
345 	 * register slots we're beyond the user's backingstore and
346 	 * then computing the equivalent address in kernel space.
347 	 */
348 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 	shift = ia64_rse_slot_num(slot0_kaddr);
351 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 	rnat0_kaddr = rnat1_kaddr - 64;
353 
354 	if (ubspstore + 63 > urnat_addr) {
355 		/* some bits need to be place in pt->ar_rnat: */
356 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 		mask &= ~umask;
359 		if (!mask)
360 			return;
361 	}
362 	/*
363 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 	 * rnat slot is ignored. so we don't have to clear it here.
365 	 */
366 	rnat0 = (urnat << shift);
367 	m = mask << shift;
368 	if (rnat0_kaddr >= kbsp)
369 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 	else if (rnat0_kaddr > krbs)
371 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
372 
373 	rnat1 = (urnat >> (63 - shift));
374 	m = mask >> (63 - shift);
375 	if (rnat1_kaddr >= kbsp)
376 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 	else if (rnat1_kaddr > krbs)
378 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
379 }
380 
381 static inline int
382 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 	       unsigned long urbs_end)
384 {
385 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 						      urbs_end);
387 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
388 }
389 
390 /*
391  * Read a word from the user-level backing store of task CHILD.  ADDR
392  * is the user-level address to read the word from, VAL a pointer to
393  * the return value, and USER_BSP gives the end of the user-level
394  * backing store (i.e., it's the address that would be in ar.bsp after
395  * the user executed a "cover" instruction).
396  *
397  * This routine takes care of accessing the kernel register backing
398  * store for those registers that got spilled there.  It also takes
399  * care of calculating the appropriate RNaT collection words.
400  */
401 long
402 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 	   unsigned long user_rbs_end, unsigned long addr, long *val)
404 {
405 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 	struct pt_regs *child_regs;
407 	size_t copied;
408 	long ret;
409 
410 	urbs_end = (long *) user_rbs_end;
411 	laddr = (unsigned long *) addr;
412 	child_regs = task_pt_regs(child);
413 	bspstore = (unsigned long *) child_regs->ar_bspstore;
414 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 			  (unsigned long) urbs_end))
417 	{
418 		/*
419 		 * Attempt to read the RBS in an area that's actually
420 		 * on the kernel RBS => read the corresponding bits in
421 		 * the kernel RBS.
422 		 */
423 		rnat_addr = ia64_rse_rnat_addr(laddr);
424 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
425 
426 		if (laddr == rnat_addr) {
427 			/* return NaT collection word itself */
428 			*val = ret;
429 			return 0;
430 		}
431 
432 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
433 			/*
434 			 * It is implementation dependent whether the
435 			 * data portion of a NaT value gets saved on a
436 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 			 * 4.4.4.6 Register Spill and Fill).  To get
438 			 * consistent behavior across all possible
439 			 * IA-64 implementations, we return zero in
440 			 * this case.
441 			 */
442 			*val = 0;
443 			return 0;
444 		}
445 
446 		if (laddr < urbs_end) {
447 			/*
448 			 * The desired word is on the kernel RBS and
449 			 * is not a NaT.
450 			 */
451 			regnum = ia64_rse_num_regs(bspstore, laddr);
452 			*val = *ia64_rse_skip_regs(krbs, regnum);
453 			return 0;
454 		}
455 	}
456 	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
457 	if (copied != sizeof(ret))
458 		return -EIO;
459 	*val = ret;
460 	return 0;
461 }
462 
463 long
464 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 	   unsigned long user_rbs_end, unsigned long addr, long val)
466 {
467 	unsigned long *bspstore, *krbs, regnum, *laddr;
468 	unsigned long *urbs_end = (long *) user_rbs_end;
469 	struct pt_regs *child_regs;
470 
471 	laddr = (unsigned long *) addr;
472 	child_regs = task_pt_regs(child);
473 	bspstore = (unsigned long *) child_regs->ar_bspstore;
474 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 			  (unsigned long) urbs_end))
477 	{
478 		/*
479 		 * Attempt to write the RBS in an area that's actually
480 		 * on the kernel RBS => write the corresponding bits
481 		 * in the kernel RBS.
482 		 */
483 		if (ia64_rse_is_rnat_slot(laddr))
484 			put_rnat(child, child_stack, krbs, laddr, val,
485 				 urbs_end);
486 		else {
487 			if (laddr < urbs_end) {
488 				regnum = ia64_rse_num_regs(bspstore, laddr);
489 				*ia64_rse_skip_regs(krbs, regnum) = val;
490 			}
491 		}
492 	} else if (access_process_vm(child, addr, &val, sizeof(val),
493 				FOLL_FORCE | FOLL_WRITE)
494 		   != sizeof(val))
495 		return -EIO;
496 	return 0;
497 }
498 
499 /*
500  * Calculate the address of the end of the user-level register backing
501  * store.  This is the address that would have been stored in ar.bsp
502  * if the user had executed a "cover" instruction right before
503  * entering the kernel.  If CFMP is not NULL, it is used to return the
504  * "current frame mask" that was active at the time the kernel was
505  * entered.
506  */
507 unsigned long
508 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
509 		       unsigned long *cfmp)
510 {
511 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
512 	long ndirty;
513 
514 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
515 	bspstore = (unsigned long *) pt->ar_bspstore;
516 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
517 
518 	if (in_syscall(pt))
519 		ndirty += (cfm & 0x7f);
520 	else
521 		cfm &= ~(1UL << 63);	/* clear valid bit */
522 
523 	if (cfmp)
524 		*cfmp = cfm;
525 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
526 }
527 
528 /*
529  * Synchronize (i.e, write) the RSE backing store living in kernel
530  * space to the VM of the CHILD task.  SW and PT are the pointers to
531  * the switch_stack and pt_regs structures, respectively.
532  * USER_RBS_END is the user-level address at which the backing store
533  * ends.
534  */
535 long
536 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
537 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
538 {
539 	unsigned long addr, val;
540 	long ret;
541 
542 	/* now copy word for word from kernel rbs to user rbs: */
543 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
544 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
545 		if (ret < 0)
546 			return ret;
547 		if (access_process_vm(child, addr, &val, sizeof(val),
548 				FOLL_FORCE | FOLL_WRITE)
549 		    != sizeof(val))
550 			return -EIO;
551 	}
552 	return 0;
553 }
554 
555 static long
556 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
557 		unsigned long user_rbs_start, unsigned long user_rbs_end)
558 {
559 	unsigned long addr, val;
560 	long ret;
561 
562 	/* now copy word for word from user rbs to kernel rbs: */
563 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
564 		if (access_process_vm(child, addr, &val, sizeof(val),
565 				FOLL_FORCE)
566 				!= sizeof(val))
567 			return -EIO;
568 
569 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
570 		if (ret < 0)
571 			return ret;
572 	}
573 	return 0;
574 }
575 
576 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
577 			    unsigned long, unsigned long);
578 
579 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
580 {
581 	struct pt_regs *pt;
582 	unsigned long urbs_end;
583 	syncfunc_t fn = arg;
584 
585 	if (unw_unwind_to_user(info) < 0)
586 		return;
587 	pt = task_pt_regs(info->task);
588 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
589 
590 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
591 }
592 
593 /*
594  * when a thread is stopped (ptraced), debugger might change thread's user
595  * stack (change memory directly), and we must avoid the RSE stored in kernel
596  * to override user stack (user space's RSE is newer than kernel's in the
597  * case). To workaround the issue, we copy kernel RSE to user RSE before the
598  * task is stopped, so user RSE has updated data.  we then copy user RSE to
599  * kernel after the task is resummed from traced stop and kernel will use the
600  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
601  * synchronize user RSE to kernel.
602  */
603 void ia64_ptrace_stop(void)
604 {
605 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
606 		return;
607 	set_notify_resume(current);
608 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
609 }
610 
611 /*
612  * This is called to read back the register backing store.
613  */
614 void ia64_sync_krbs(void)
615 {
616 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
617 
618 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
619 }
620 
621 /*
622  * After PTRACE_ATTACH, a thread's register backing store area in user
623  * space is assumed to contain correct data whenever the thread is
624  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
625  * But if the child was already stopped for job control when we attach
626  * to it, then it might not ever get into ptrace_stop by the time we
627  * want to examine the user memory containing the RBS.
628  */
629 void
630 ptrace_attach_sync_user_rbs (struct task_struct *child)
631 {
632 	int stopped = 0;
633 	struct unw_frame_info info;
634 
635 	/*
636 	 * If the child is in TASK_STOPPED, we need to change that to
637 	 * TASK_TRACED momentarily while we operate on it.  This ensures
638 	 * that the child won't be woken up and return to user mode while
639 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
640 	 */
641 
642 	read_lock(&tasklist_lock);
643 	if (child->sighand) {
644 		spin_lock_irq(&child->sighand->siglock);
645 		if (child->state == TASK_STOPPED &&
646 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
647 			set_notify_resume(child);
648 
649 			child->state = TASK_TRACED;
650 			stopped = 1;
651 		}
652 		spin_unlock_irq(&child->sighand->siglock);
653 	}
654 	read_unlock(&tasklist_lock);
655 
656 	if (!stopped)
657 		return;
658 
659 	unw_init_from_blocked_task(&info, child);
660 	do_sync_rbs(&info, ia64_sync_user_rbs);
661 
662 	/*
663 	 * Now move the child back into TASK_STOPPED if it should be in a
664 	 * job control stop, so that SIGCONT can be used to wake it up.
665 	 */
666 	read_lock(&tasklist_lock);
667 	if (child->sighand) {
668 		spin_lock_irq(&child->sighand->siglock);
669 		if (child->state == TASK_TRACED &&
670 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
671 			child->state = TASK_STOPPED;
672 		}
673 		spin_unlock_irq(&child->sighand->siglock);
674 	}
675 	read_unlock(&tasklist_lock);
676 }
677 
678 /*
679  * Write f32-f127 back to task->thread.fph if it has been modified.
680  */
681 inline void
682 ia64_flush_fph (struct task_struct *task)
683 {
684 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
685 
686 	/*
687 	 * Prevent migrating this task while
688 	 * we're fiddling with the FPU state
689 	 */
690 	preempt_disable();
691 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
692 		psr->mfh = 0;
693 		task->thread.flags |= IA64_THREAD_FPH_VALID;
694 		ia64_save_fpu(&task->thread.fph[0]);
695 	}
696 	preempt_enable();
697 }
698 
699 /*
700  * Sync the fph state of the task so that it can be manipulated
701  * through thread.fph.  If necessary, f32-f127 are written back to
702  * thread.fph or, if the fph state hasn't been used before, thread.fph
703  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
704  * ensure that the task picks up the state from thread.fph when it
705  * executes again.
706  */
707 void
708 ia64_sync_fph (struct task_struct *task)
709 {
710 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
711 
712 	ia64_flush_fph(task);
713 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
714 		task->thread.flags |= IA64_THREAD_FPH_VALID;
715 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
716 	}
717 	ia64_drop_fpu(task);
718 	psr->dfh = 1;
719 }
720 
721 /*
722  * Change the machine-state of CHILD such that it will return via the normal
723  * kernel exit-path, rather than the syscall-exit path.
724  */
725 static void
726 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
727 			unsigned long cfm)
728 {
729 	struct unw_frame_info info, prev_info;
730 	unsigned long ip, sp, pr;
731 
732 	unw_init_from_blocked_task(&info, child);
733 	while (1) {
734 		prev_info = info;
735 		if (unw_unwind(&info) < 0)
736 			return;
737 
738 		unw_get_sp(&info, &sp);
739 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
740 		    < IA64_PT_REGS_SIZE) {
741 			dprintk("ptrace.%s: ran off the top of the kernel "
742 				"stack\n", __func__);
743 			return;
744 		}
745 		if (unw_get_pr (&prev_info, &pr) < 0) {
746 			unw_get_rp(&prev_info, &ip);
747 			dprintk("ptrace.%s: failed to read "
748 				"predicate register (ip=0x%lx)\n",
749 				__func__, ip);
750 			return;
751 		}
752 		if (unw_is_intr_frame(&info)
753 		    && (pr & (1UL << PRED_USER_STACK)))
754 			break;
755 	}
756 
757 	/*
758 	 * Note: at the time of this call, the target task is blocked
759 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
760 	 * (aka, "pLvSys") we redirect execution from
761 	 * .work_pending_syscall_end to .work_processed_kernel.
762 	 */
763 	unw_get_pr(&prev_info, &pr);
764 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
765 	pr |=  (1UL << PRED_NON_SYSCALL);
766 	unw_set_pr(&prev_info, pr);
767 
768 	pt->cr_ifs = (1UL << 63) | cfm;
769 	/*
770 	 * Clear the memory that is NOT written on syscall-entry to
771 	 * ensure we do not leak kernel-state to user when execution
772 	 * resumes.
773 	 */
774 	pt->r2 = 0;
775 	pt->r3 = 0;
776 	pt->r14 = 0;
777 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
778 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
779 	pt->b7 = 0;
780 	pt->ar_ccv = 0;
781 	pt->ar_csd = 0;
782 	pt->ar_ssd = 0;
783 }
784 
785 static int
786 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
787 		 struct unw_frame_info *info,
788 		 unsigned long *data, int write_access)
789 {
790 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
791 	char nat = 0;
792 
793 	if (write_access) {
794 		nat_bits = *data;
795 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
796 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
797 			dprintk("ptrace: failed to set ar.unat\n");
798 			return -1;
799 		}
800 		for (regnum = 4; regnum <= 7; ++regnum) {
801 			unw_get_gr(info, regnum, &dummy, &nat);
802 			unw_set_gr(info, regnum, dummy,
803 				   (nat_bits >> regnum) & 1);
804 		}
805 	} else {
806 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
807 			dprintk("ptrace: failed to read ar.unat\n");
808 			return -1;
809 		}
810 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
811 		for (regnum = 4; regnum <= 7; ++regnum) {
812 			unw_get_gr(info, regnum, &dummy, &nat);
813 			nat_bits |= (nat != 0) << regnum;
814 		}
815 		*data = nat_bits;
816 	}
817 	return 0;
818 }
819 
820 static int
821 access_uarea (struct task_struct *child, unsigned long addr,
822 	      unsigned long *data, int write_access);
823 
824 static long
825 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
826 {
827 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
828 	struct unw_frame_info info;
829 	struct ia64_fpreg fpval;
830 	struct switch_stack *sw;
831 	struct pt_regs *pt;
832 	long ret, retval = 0;
833 	char nat = 0;
834 	int i;
835 
836 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
837 		return -EIO;
838 
839 	pt = task_pt_regs(child);
840 	sw = (struct switch_stack *) (child->thread.ksp + 16);
841 	unw_init_from_blocked_task(&info, child);
842 	if (unw_unwind_to_user(&info) < 0) {
843 		return -EIO;
844 	}
845 
846 	if (((unsigned long) ppr & 0x7) != 0) {
847 		dprintk("ptrace:unaligned register address %p\n", ppr);
848 		return -EIO;
849 	}
850 
851 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
852 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
853 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
854 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
855 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
856 	    || access_uarea(child, PT_CFM, &cfm, 0)
857 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
858 		return -EIO;
859 
860 	/* control regs */
861 
862 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
863 	retval |= __put_user(psr, &ppr->cr_ipsr);
864 
865 	/* app regs */
866 
867 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
868 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
869 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
870 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
871 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
872 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
873 
874 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
875 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
876 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
877 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
878 	retval |= __put_user(cfm, &ppr->cfm);
879 
880 	/* gr1-gr3 */
881 
882 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
883 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
884 
885 	/* gr4-gr7 */
886 
887 	for (i = 4; i < 8; i++) {
888 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
889 			return -EIO;
890 		retval |= __put_user(val, &ppr->gr[i]);
891 	}
892 
893 	/* gr8-gr11 */
894 
895 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
896 
897 	/* gr12-gr15 */
898 
899 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
900 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
901 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
902 
903 	/* gr16-gr31 */
904 
905 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
906 
907 	/* b0 */
908 
909 	retval |= __put_user(pt->b0, &ppr->br[0]);
910 
911 	/* b1-b5 */
912 
913 	for (i = 1; i < 6; i++) {
914 		if (unw_access_br(&info, i, &val, 0) < 0)
915 			return -EIO;
916 		__put_user(val, &ppr->br[i]);
917 	}
918 
919 	/* b6-b7 */
920 
921 	retval |= __put_user(pt->b6, &ppr->br[6]);
922 	retval |= __put_user(pt->b7, &ppr->br[7]);
923 
924 	/* fr2-fr5 */
925 
926 	for (i = 2; i < 6; i++) {
927 		if (unw_get_fr(&info, i, &fpval) < 0)
928 			return -EIO;
929 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
930 	}
931 
932 	/* fr6-fr11 */
933 
934 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
935 				 sizeof(struct ia64_fpreg) * 6);
936 
937 	/* fp scratch regs(12-15) */
938 
939 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
940 				 sizeof(struct ia64_fpreg) * 4);
941 
942 	/* fr16-fr31 */
943 
944 	for (i = 16; i < 32; i++) {
945 		if (unw_get_fr(&info, i, &fpval) < 0)
946 			return -EIO;
947 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
948 	}
949 
950 	/* fph */
951 
952 	ia64_flush_fph(child);
953 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
954 				 sizeof(ppr->fr[32]) * 96);
955 
956 	/*  preds */
957 
958 	retval |= __put_user(pt->pr, &ppr->pr);
959 
960 	/* nat bits */
961 
962 	retval |= __put_user(nat_bits, &ppr->nat);
963 
964 	ret = retval ? -EIO : 0;
965 	return ret;
966 }
967 
968 static long
969 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
970 {
971 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
972 	struct unw_frame_info info;
973 	struct switch_stack *sw;
974 	struct ia64_fpreg fpval;
975 	struct pt_regs *pt;
976 	long ret, retval = 0;
977 	int i;
978 
979 	memset(&fpval, 0, sizeof(fpval));
980 
981 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
982 		return -EIO;
983 
984 	pt = task_pt_regs(child);
985 	sw = (struct switch_stack *) (child->thread.ksp + 16);
986 	unw_init_from_blocked_task(&info, child);
987 	if (unw_unwind_to_user(&info) < 0) {
988 		return -EIO;
989 	}
990 
991 	if (((unsigned long) ppr & 0x7) != 0) {
992 		dprintk("ptrace:unaligned register address %p\n", ppr);
993 		return -EIO;
994 	}
995 
996 	/* control regs */
997 
998 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
999 	retval |= __get_user(psr, &ppr->cr_ipsr);
1000 
1001 	/* app regs */
1002 
1003 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1004 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1005 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1006 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1007 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1008 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1009 
1010 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1011 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1012 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1013 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1014 	retval |= __get_user(cfm, &ppr->cfm);
1015 
1016 	/* gr1-gr3 */
1017 
1018 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1019 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1020 
1021 	/* gr4-gr7 */
1022 
1023 	for (i = 4; i < 8; i++) {
1024 		retval |= __get_user(val, &ppr->gr[i]);
1025 		/* NaT bit will be set via PT_NAT_BITS: */
1026 		if (unw_set_gr(&info, i, val, 0) < 0)
1027 			return -EIO;
1028 	}
1029 
1030 	/* gr8-gr11 */
1031 
1032 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1033 
1034 	/* gr12-gr15 */
1035 
1036 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1037 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1038 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1039 
1040 	/* gr16-gr31 */
1041 
1042 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1043 
1044 	/* b0 */
1045 
1046 	retval |= __get_user(pt->b0, &ppr->br[0]);
1047 
1048 	/* b1-b5 */
1049 
1050 	for (i = 1; i < 6; i++) {
1051 		retval |= __get_user(val, &ppr->br[i]);
1052 		unw_set_br(&info, i, val);
1053 	}
1054 
1055 	/* b6-b7 */
1056 
1057 	retval |= __get_user(pt->b6, &ppr->br[6]);
1058 	retval |= __get_user(pt->b7, &ppr->br[7]);
1059 
1060 	/* fr2-fr5 */
1061 
1062 	for (i = 2; i < 6; i++) {
1063 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1064 		if (unw_set_fr(&info, i, fpval) < 0)
1065 			return -EIO;
1066 	}
1067 
1068 	/* fr6-fr11 */
1069 
1070 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1071 				   sizeof(ppr->fr[6]) * 6);
1072 
1073 	/* fp scratch regs(12-15) */
1074 
1075 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1076 				   sizeof(ppr->fr[12]) * 4);
1077 
1078 	/* fr16-fr31 */
1079 
1080 	for (i = 16; i < 32; i++) {
1081 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1082 					   sizeof(fpval));
1083 		if (unw_set_fr(&info, i, fpval) < 0)
1084 			return -EIO;
1085 	}
1086 
1087 	/* fph */
1088 
1089 	ia64_sync_fph(child);
1090 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1091 				   sizeof(ppr->fr[32]) * 96);
1092 
1093 	/* preds */
1094 
1095 	retval |= __get_user(pt->pr, &ppr->pr);
1096 
1097 	/* nat bits */
1098 
1099 	retval |= __get_user(nat_bits, &ppr->nat);
1100 
1101 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1102 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1103 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1104 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1105 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1106 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1107 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1108 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1109 
1110 	ret = retval ? -EIO : 0;
1111 	return ret;
1112 }
1113 
1114 void
1115 user_enable_single_step (struct task_struct *child)
1116 {
1117 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1118 
1119 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1120 	child_psr->ss = 1;
1121 }
1122 
1123 void
1124 user_enable_block_step (struct task_struct *child)
1125 {
1126 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1127 
1128 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1129 	child_psr->tb = 1;
1130 }
1131 
1132 void
1133 user_disable_single_step (struct task_struct *child)
1134 {
1135 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1136 
1137 	/* make sure the single step/taken-branch trap bits are not set: */
1138 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1139 	child_psr->ss = 0;
1140 	child_psr->tb = 0;
1141 }
1142 
1143 /*
1144  * Called by kernel/ptrace.c when detaching..
1145  *
1146  * Make sure the single step bit is not set.
1147  */
1148 void
1149 ptrace_disable (struct task_struct *child)
1150 {
1151 	user_disable_single_step(child);
1152 }
1153 
1154 long
1155 arch_ptrace (struct task_struct *child, long request,
1156 	     unsigned long addr, unsigned long data)
1157 {
1158 	switch (request) {
1159 	case PTRACE_PEEKTEXT:
1160 	case PTRACE_PEEKDATA:
1161 		/* read word at location addr */
1162 		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1163 				FOLL_FORCE)
1164 		    != sizeof(data))
1165 			return -EIO;
1166 		/* ensure return value is not mistaken for error code */
1167 		force_successful_syscall_return();
1168 		return data;
1169 
1170 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1171 	 * by the generic ptrace_request().
1172 	 */
1173 
1174 	case PTRACE_PEEKUSR:
1175 		/* read the word at addr in the USER area */
1176 		if (access_uarea(child, addr, &data, 0) < 0)
1177 			return -EIO;
1178 		/* ensure return value is not mistaken for error code */
1179 		force_successful_syscall_return();
1180 		return data;
1181 
1182 	case PTRACE_POKEUSR:
1183 		/* write the word at addr in the USER area */
1184 		if (access_uarea(child, addr, &data, 1) < 0)
1185 			return -EIO;
1186 		return 0;
1187 
1188 	case PTRACE_OLD_GETSIGINFO:
1189 		/* for backwards-compatibility */
1190 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1191 
1192 	case PTRACE_OLD_SETSIGINFO:
1193 		/* for backwards-compatibility */
1194 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1195 
1196 	case PTRACE_GETREGS:
1197 		return ptrace_getregs(child,
1198 				      (struct pt_all_user_regs __user *) data);
1199 
1200 	case PTRACE_SETREGS:
1201 		return ptrace_setregs(child,
1202 				      (struct pt_all_user_regs __user *) data);
1203 
1204 	default:
1205 		return ptrace_request(child, request, addr, data);
1206 	}
1207 }
1208 
1209 
1210 /* "asmlinkage" so the input arguments are preserved... */
1211 
1212 asmlinkage long
1213 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1214 		     long arg4, long arg5, long arg6, long arg7,
1215 		     struct pt_regs regs)
1216 {
1217 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1218 		if (tracehook_report_syscall_entry(&regs))
1219 			return -ENOSYS;
1220 
1221 	/* copy user rbs to kernel rbs */
1222 	if (test_thread_flag(TIF_RESTORE_RSE))
1223 		ia64_sync_krbs();
1224 
1225 
1226 	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1227 
1228 	return 0;
1229 }
1230 
1231 /* "asmlinkage" so the input arguments are preserved... */
1232 
1233 asmlinkage void
1234 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1235 		     long arg4, long arg5, long arg6, long arg7,
1236 		     struct pt_regs regs)
1237 {
1238 	int step;
1239 
1240 	audit_syscall_exit(&regs);
1241 
1242 	step = test_thread_flag(TIF_SINGLESTEP);
1243 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1244 		tracehook_report_syscall_exit(&regs, step);
1245 
1246 	/* copy user rbs to kernel rbs */
1247 	if (test_thread_flag(TIF_RESTORE_RSE))
1248 		ia64_sync_krbs();
1249 }
1250 
1251 /* Utrace implementation starts here */
1252 struct regset_get {
1253 	void *kbuf;
1254 	void __user *ubuf;
1255 };
1256 
1257 struct regset_set {
1258 	const void *kbuf;
1259 	const void __user *ubuf;
1260 };
1261 
1262 struct regset_getset {
1263 	struct task_struct *target;
1264 	const struct user_regset *regset;
1265 	union {
1266 		struct regset_get get;
1267 		struct regset_set set;
1268 	} u;
1269 	unsigned int pos;
1270 	unsigned int count;
1271 	int ret;
1272 };
1273 
1274 static int
1275 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1276 		unsigned long addr, unsigned long *data, int write_access)
1277 {
1278 	struct pt_regs *pt;
1279 	unsigned long *ptr = NULL;
1280 	int ret;
1281 	char nat = 0;
1282 
1283 	pt = task_pt_regs(target);
1284 	switch (addr) {
1285 	case ELF_GR_OFFSET(1):
1286 		ptr = &pt->r1;
1287 		break;
1288 	case ELF_GR_OFFSET(2):
1289 	case ELF_GR_OFFSET(3):
1290 		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1291 		break;
1292 	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1293 		if (write_access) {
1294 			/* read NaT bit first: */
1295 			unsigned long dummy;
1296 
1297 			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1298 			if (ret < 0)
1299 				return ret;
1300 		}
1301 		return unw_access_gr(info, addr/8, data, &nat, write_access);
1302 	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1303 		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1304 		break;
1305 	case ELF_GR_OFFSET(12):
1306 	case ELF_GR_OFFSET(13):
1307 		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1308 		break;
1309 	case ELF_GR_OFFSET(14):
1310 		ptr = &pt->r14;
1311 		break;
1312 	case ELF_GR_OFFSET(15):
1313 		ptr = &pt->r15;
1314 	}
1315 	if (write_access)
1316 		*ptr = *data;
1317 	else
1318 		*data = *ptr;
1319 	return 0;
1320 }
1321 
1322 static int
1323 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1324 		unsigned long addr, unsigned long *data, int write_access)
1325 {
1326 	struct pt_regs *pt;
1327 	unsigned long *ptr = NULL;
1328 
1329 	pt = task_pt_regs(target);
1330 	switch (addr) {
1331 	case ELF_BR_OFFSET(0):
1332 		ptr = &pt->b0;
1333 		break;
1334 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1335 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1336 				     data, write_access);
1337 	case ELF_BR_OFFSET(6):
1338 		ptr = &pt->b6;
1339 		break;
1340 	case ELF_BR_OFFSET(7):
1341 		ptr = &pt->b7;
1342 	}
1343 	if (write_access)
1344 		*ptr = *data;
1345 	else
1346 		*data = *ptr;
1347 	return 0;
1348 }
1349 
1350 static int
1351 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1352 		unsigned long addr, unsigned long *data, int write_access)
1353 {
1354 	struct pt_regs *pt;
1355 	unsigned long cfm, urbs_end;
1356 	unsigned long *ptr = NULL;
1357 
1358 	pt = task_pt_regs(target);
1359 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1360 		switch (addr) {
1361 		case ELF_AR_RSC_OFFSET:
1362 			/* force PL3 */
1363 			if (write_access)
1364 				pt->ar_rsc = *data | (3 << 2);
1365 			else
1366 				*data = pt->ar_rsc;
1367 			return 0;
1368 		case ELF_AR_BSP_OFFSET:
1369 			/*
1370 			 * By convention, we use PT_AR_BSP to refer to
1371 			 * the end of the user-level backing store.
1372 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1373 			 * to get the real value of ar.bsp at the time
1374 			 * the kernel was entered.
1375 			 *
1376 			 * Furthermore, when changing the contents of
1377 			 * PT_AR_BSP (or PT_CFM) while the task is
1378 			 * blocked in a system call, convert the state
1379 			 * so that the non-system-call exit
1380 			 * path is used.  This ensures that the proper
1381 			 * state will be picked up when resuming
1382 			 * execution.  However, it *also* means that
1383 			 * once we write PT_AR_BSP/PT_CFM, it won't be
1384 			 * possible to modify the syscall arguments of
1385 			 * the pending system call any longer.  This
1386 			 * shouldn't be an issue because modifying
1387 			 * PT_AR_BSP/PT_CFM generally implies that
1388 			 * we're either abandoning the pending system
1389 			 * call or that we defer it's re-execution
1390 			 * (e.g., due to GDB doing an inferior
1391 			 * function call).
1392 			 */
1393 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1394 			if (write_access) {
1395 				if (*data != urbs_end) {
1396 					if (in_syscall(pt))
1397 						convert_to_non_syscall(target,
1398 								       pt,
1399 								       cfm);
1400 					/*
1401 					 * Simulate user-level write
1402 					 * of ar.bsp:
1403 					 */
1404 					pt->loadrs = 0;
1405 					pt->ar_bspstore = *data;
1406 				}
1407 			} else
1408 				*data = urbs_end;
1409 			return 0;
1410 		case ELF_AR_BSPSTORE_OFFSET:
1411 			ptr = &pt->ar_bspstore;
1412 			break;
1413 		case ELF_AR_RNAT_OFFSET:
1414 			ptr = &pt->ar_rnat;
1415 			break;
1416 		case ELF_AR_CCV_OFFSET:
1417 			ptr = &pt->ar_ccv;
1418 			break;
1419 		case ELF_AR_UNAT_OFFSET:
1420 			ptr = &pt->ar_unat;
1421 			break;
1422 		case ELF_AR_FPSR_OFFSET:
1423 			ptr = &pt->ar_fpsr;
1424 			break;
1425 		case ELF_AR_PFS_OFFSET:
1426 			ptr = &pt->ar_pfs;
1427 			break;
1428 		case ELF_AR_LC_OFFSET:
1429 			return unw_access_ar(info, UNW_AR_LC, data,
1430 					     write_access);
1431 		case ELF_AR_EC_OFFSET:
1432 			return unw_access_ar(info, UNW_AR_EC, data,
1433 					     write_access);
1434 		case ELF_AR_CSD_OFFSET:
1435 			ptr = &pt->ar_csd;
1436 			break;
1437 		case ELF_AR_SSD_OFFSET:
1438 			ptr = &pt->ar_ssd;
1439 		}
1440 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1441 		switch (addr) {
1442 		case ELF_CR_IIP_OFFSET:
1443 			ptr = &pt->cr_iip;
1444 			break;
1445 		case ELF_CFM_OFFSET:
1446 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1447 			if (write_access) {
1448 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1449 					if (in_syscall(pt))
1450 						convert_to_non_syscall(target,
1451 								       pt,
1452 								       cfm);
1453 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1454 						      | (*data & PFM_MASK));
1455 				}
1456 			} else
1457 				*data = cfm;
1458 			return 0;
1459 		case ELF_CR_IPSR_OFFSET:
1460 			if (write_access) {
1461 				unsigned long tmp = *data;
1462 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1463 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1464 					tmp &= ~IA64_PSR_RI;
1465 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1466 					       | (pt->cr_ipsr & ~IPSR_MASK));
1467 			} else
1468 				*data = (pt->cr_ipsr & IPSR_MASK);
1469 			return 0;
1470 		}
1471 	} else if (addr == ELF_NAT_OFFSET)
1472 		return access_nat_bits(target, pt, info,
1473 				       data, write_access);
1474 	else if (addr == ELF_PR_OFFSET)
1475 		ptr = &pt->pr;
1476 	else
1477 		return -1;
1478 
1479 	if (write_access)
1480 		*ptr = *data;
1481 	else
1482 		*data = *ptr;
1483 
1484 	return 0;
1485 }
1486 
1487 static int
1488 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1489 		unsigned long addr, unsigned long *data, int write_access)
1490 {
1491 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1492 		return access_elf_gpreg(target, info, addr, data, write_access);
1493 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1494 		return access_elf_breg(target, info, addr, data, write_access);
1495 	else
1496 		return access_elf_areg(target, info, addr, data, write_access);
1497 }
1498 
1499 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1500 {
1501 	struct pt_regs *pt;
1502 	struct regset_getset *dst = arg;
1503 	elf_greg_t tmp[16];
1504 	unsigned int i, index, min_copy;
1505 
1506 	if (unw_unwind_to_user(info) < 0)
1507 		return;
1508 
1509 	/*
1510 	 * coredump format:
1511 	 *      r0-r31
1512 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1513 	 *      predicate registers (p0-p63)
1514 	 *      b0-b7
1515 	 *      ip cfm user-mask
1516 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1517 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1518 	 */
1519 
1520 
1521 	/* Skip r0 */
1522 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1523 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1524 						      &dst->u.get.kbuf,
1525 						      &dst->u.get.ubuf,
1526 						      0, ELF_GR_OFFSET(1));
1527 		if (dst->ret || dst->count == 0)
1528 			return;
1529 	}
1530 
1531 	/* gr1 - gr15 */
1532 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1533 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1534 		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1535 			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1536 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1537 				index++)
1538 			if (access_elf_reg(dst->target, info, i,
1539 						&tmp[index], 0) < 0) {
1540 				dst->ret = -EIO;
1541 				return;
1542 			}
1543 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1544 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1545 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1546 		if (dst->ret || dst->count == 0)
1547 			return;
1548 	}
1549 
1550 	/* r16-r31 */
1551 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1552 		pt = task_pt_regs(dst->target);
1553 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1554 				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1555 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1556 		if (dst->ret || dst->count == 0)
1557 			return;
1558 	}
1559 
1560 	/* nat, pr, b0 - b7 */
1561 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1562 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1563 		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1564 			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1565 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1566 				index++)
1567 			if (access_elf_reg(dst->target, info, i,
1568 						&tmp[index], 0) < 0) {
1569 				dst->ret = -EIO;
1570 				return;
1571 			}
1572 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1573 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1574 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1575 		if (dst->ret || dst->count == 0)
1576 			return;
1577 	}
1578 
1579 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1580 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1581 	 */
1582 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1583 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1584 		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1585 			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1586 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1587 				index++)
1588 			if (access_elf_reg(dst->target, info, i,
1589 						&tmp[index], 0) < 0) {
1590 				dst->ret = -EIO;
1591 				return;
1592 			}
1593 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1594 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1595 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1596 	}
1597 }
1598 
1599 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1600 {
1601 	struct pt_regs *pt;
1602 	struct regset_getset *dst = arg;
1603 	elf_greg_t tmp[16];
1604 	unsigned int i, index;
1605 
1606 	if (unw_unwind_to_user(info) < 0)
1607 		return;
1608 
1609 	/* Skip r0 */
1610 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1611 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1612 						       &dst->u.set.kbuf,
1613 						       &dst->u.set.ubuf,
1614 						       0, ELF_GR_OFFSET(1));
1615 		if (dst->ret || dst->count == 0)
1616 			return;
1617 	}
1618 
1619 	/* gr1-gr15 */
1620 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1621 		i = dst->pos;
1622 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1623 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1624 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1625 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1626 		if (dst->ret)
1627 			return;
1628 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1629 			if (access_elf_reg(dst->target, info, i,
1630 						&tmp[index], 1) < 0) {
1631 				dst->ret = -EIO;
1632 				return;
1633 			}
1634 		if (dst->count == 0)
1635 			return;
1636 	}
1637 
1638 	/* gr16-gr31 */
1639 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1640 		pt = task_pt_regs(dst->target);
1641 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1642 				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1643 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1644 		if (dst->ret || dst->count == 0)
1645 			return;
1646 	}
1647 
1648 	/* nat, pr, b0 - b7 */
1649 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1650 		i = dst->pos;
1651 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1652 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1653 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1654 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1655 		if (dst->ret)
1656 			return;
1657 		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1658 			if (access_elf_reg(dst->target, info, i,
1659 						&tmp[index], 1) < 0) {
1660 				dst->ret = -EIO;
1661 				return;
1662 			}
1663 		if (dst->count == 0)
1664 			return;
1665 	}
1666 
1667 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1668 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1669 	 */
1670 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1671 		i = dst->pos;
1672 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1673 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1674 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1675 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1676 		if (dst->ret)
1677 			return;
1678 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1679 			if (access_elf_reg(dst->target, info, i,
1680 						&tmp[index], 1) < 0) {
1681 				dst->ret = -EIO;
1682 				return;
1683 			}
1684 	}
1685 }
1686 
1687 #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1688 
1689 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1690 {
1691 	struct regset_getset *dst = arg;
1692 	struct task_struct *task = dst->target;
1693 	elf_fpreg_t tmp[30];
1694 	int index, min_copy, i;
1695 
1696 	if (unw_unwind_to_user(info) < 0)
1697 		return;
1698 
1699 	/* Skip pos 0 and 1 */
1700 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1701 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1702 						      &dst->u.get.kbuf,
1703 						      &dst->u.get.ubuf,
1704 						      0, ELF_FP_OFFSET(2));
1705 		if (dst->count == 0 || dst->ret)
1706 			return;
1707 	}
1708 
1709 	/* fr2-fr31 */
1710 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1711 		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1712 
1713 		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1714 				dst->pos + dst->count);
1715 		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1716 				index++)
1717 			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1718 					 &tmp[index])) {
1719 				dst->ret = -EIO;
1720 				return;
1721 			}
1722 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1723 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1724 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1725 		if (dst->count == 0 || dst->ret)
1726 			return;
1727 	}
1728 
1729 	/* fph */
1730 	if (dst->count > 0) {
1731 		ia64_flush_fph(dst->target);
1732 		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1733 			dst->ret = user_regset_copyout(
1734 				&dst->pos, &dst->count,
1735 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1736 				&dst->target->thread.fph,
1737 				ELF_FP_OFFSET(32), -1);
1738 		else
1739 			/* Zero fill instead.  */
1740 			dst->ret = user_regset_copyout_zero(
1741 				&dst->pos, &dst->count,
1742 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1743 				ELF_FP_OFFSET(32), -1);
1744 	}
1745 }
1746 
1747 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1748 {
1749 	struct regset_getset *dst = arg;
1750 	elf_fpreg_t fpreg, tmp[30];
1751 	int index, start, end;
1752 
1753 	if (unw_unwind_to_user(info) < 0)
1754 		return;
1755 
1756 	/* Skip pos 0 and 1 */
1757 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1758 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1759 						       &dst->u.set.kbuf,
1760 						       &dst->u.set.ubuf,
1761 						       0, ELF_FP_OFFSET(2));
1762 		if (dst->count == 0 || dst->ret)
1763 			return;
1764 	}
1765 
1766 	/* fr2-fr31 */
1767 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1768 		start = dst->pos;
1769 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1770 			 dst->pos + dst->count);
1771 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1772 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1773 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1774 		if (dst->ret)
1775 			return;
1776 
1777 		if (start & 0xF) { /* only write high part */
1778 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1779 					 &fpreg)) {
1780 				dst->ret = -EIO;
1781 				return;
1782 			}
1783 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1784 				= fpreg.u.bits[0];
1785 			start &= ~0xFUL;
1786 		}
1787 		if (end & 0xF) { /* only write low part */
1788 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1789 					&fpreg)) {
1790 				dst->ret = -EIO;
1791 				return;
1792 			}
1793 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1794 				= fpreg.u.bits[1];
1795 			end = (end + 0xF) & ~0xFUL;
1796 		}
1797 
1798 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1799 			index = start / sizeof(elf_fpreg_t);
1800 			if (unw_set_fr(info, index, tmp[index - 2])) {
1801 				dst->ret = -EIO;
1802 				return;
1803 			}
1804 		}
1805 		if (dst->ret || dst->count == 0)
1806 			return;
1807 	}
1808 
1809 	/* fph */
1810 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1811 		ia64_sync_fph(dst->target);
1812 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1813 						&dst->u.set.kbuf,
1814 						&dst->u.set.ubuf,
1815 						&dst->target->thread.fph,
1816 						ELF_FP_OFFSET(32), -1);
1817 	}
1818 }
1819 
1820 static int
1821 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1822 	       struct task_struct *target,
1823 	       const struct user_regset *regset,
1824 	       unsigned int pos, unsigned int count,
1825 	       const void *kbuf, const void __user *ubuf)
1826 {
1827 	struct regset_getset info = { .target = target, .regset = regset,
1828 				 .pos = pos, .count = count,
1829 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1830 				 .ret = 0 };
1831 
1832 	if (target == current)
1833 		unw_init_running(call, &info);
1834 	else {
1835 		struct unw_frame_info ufi;
1836 		memset(&ufi, 0, sizeof(ufi));
1837 		unw_init_from_blocked_task(&ufi, target);
1838 		(*call)(&ufi, &info);
1839 	}
1840 
1841 	return info.ret;
1842 }
1843 
1844 static int
1845 gpregs_get(struct task_struct *target,
1846 	   const struct user_regset *regset,
1847 	   unsigned int pos, unsigned int count,
1848 	   void *kbuf, void __user *ubuf)
1849 {
1850 	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1851 		kbuf, ubuf);
1852 }
1853 
1854 static int gpregs_set(struct task_struct *target,
1855 		const struct user_regset *regset,
1856 		unsigned int pos, unsigned int count,
1857 		const void *kbuf, const void __user *ubuf)
1858 {
1859 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1860 		kbuf, ubuf);
1861 }
1862 
1863 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1864 {
1865 	do_sync_rbs(info, ia64_sync_user_rbs);
1866 }
1867 
1868 /*
1869  * This is called to write back the register backing store.
1870  * ptrace does this before it stops, so that a tracer reading the user
1871  * memory after the thread stops will get the current register data.
1872  */
1873 static int
1874 gpregs_writeback(struct task_struct *target,
1875 		 const struct user_regset *regset,
1876 		 int now)
1877 {
1878 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1879 		return 0;
1880 	set_notify_resume(target);
1881 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1882 		NULL, NULL);
1883 }
1884 
1885 static int
1886 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1887 {
1888 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1889 }
1890 
1891 static int fpregs_get(struct task_struct *target,
1892 		const struct user_regset *regset,
1893 		unsigned int pos, unsigned int count,
1894 		void *kbuf, void __user *ubuf)
1895 {
1896 	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1897 		kbuf, ubuf);
1898 }
1899 
1900 static int fpregs_set(struct task_struct *target,
1901 		const struct user_regset *regset,
1902 		unsigned int pos, unsigned int count,
1903 		const void *kbuf, const void __user *ubuf)
1904 {
1905 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1906 		kbuf, ubuf);
1907 }
1908 
1909 static int
1910 access_uarea(struct task_struct *child, unsigned long addr,
1911 	      unsigned long *data, int write_access)
1912 {
1913 	unsigned int pos = -1; /* an invalid value */
1914 	int ret;
1915 	unsigned long *ptr, regnum;
1916 
1917 	if ((addr & 0x7) != 0) {
1918 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1919 		return -1;
1920 	}
1921 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1922 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1923 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1924 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1925 		dprintk("ptrace: rejecting access to register "
1926 					"address 0x%lx\n", addr);
1927 		return -1;
1928 	}
1929 
1930 	switch (addr) {
1931 	case PT_F32 ... (PT_F127 + 15):
1932 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1933 		break;
1934 	case PT_F2 ... (PT_F5 + 15):
1935 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1936 		break;
1937 	case PT_F10 ... (PT_F31 + 15):
1938 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1939 		break;
1940 	case PT_F6 ... (PT_F9 + 15):
1941 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1942 		break;
1943 	}
1944 
1945 	if (pos != -1) {
1946 		if (write_access)
1947 			ret = fpregs_set(child, NULL, pos,
1948 				sizeof(unsigned long), data, NULL);
1949 		else
1950 			ret = fpregs_get(child, NULL, pos,
1951 				sizeof(unsigned long), data, NULL);
1952 		if (ret != 0)
1953 			return -1;
1954 		return 0;
1955 	}
1956 
1957 	switch (addr) {
1958 	case PT_NAT_BITS:
1959 		pos = ELF_NAT_OFFSET;
1960 		break;
1961 	case PT_R4 ... PT_R7:
1962 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1963 		break;
1964 	case PT_B1 ... PT_B5:
1965 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1966 		break;
1967 	case PT_AR_EC:
1968 		pos = ELF_AR_EC_OFFSET;
1969 		break;
1970 	case PT_AR_LC:
1971 		pos = ELF_AR_LC_OFFSET;
1972 		break;
1973 	case PT_CR_IPSR:
1974 		pos = ELF_CR_IPSR_OFFSET;
1975 		break;
1976 	case PT_CR_IIP:
1977 		pos = ELF_CR_IIP_OFFSET;
1978 		break;
1979 	case PT_CFM:
1980 		pos = ELF_CFM_OFFSET;
1981 		break;
1982 	case PT_AR_UNAT:
1983 		pos = ELF_AR_UNAT_OFFSET;
1984 		break;
1985 	case PT_AR_PFS:
1986 		pos = ELF_AR_PFS_OFFSET;
1987 		break;
1988 	case PT_AR_RSC:
1989 		pos = ELF_AR_RSC_OFFSET;
1990 		break;
1991 	case PT_AR_RNAT:
1992 		pos = ELF_AR_RNAT_OFFSET;
1993 		break;
1994 	case PT_AR_BSPSTORE:
1995 		pos = ELF_AR_BSPSTORE_OFFSET;
1996 		break;
1997 	case PT_PR:
1998 		pos = ELF_PR_OFFSET;
1999 		break;
2000 	case PT_B6:
2001 		pos = ELF_BR_OFFSET(6);
2002 		break;
2003 	case PT_AR_BSP:
2004 		pos = ELF_AR_BSP_OFFSET;
2005 		break;
2006 	case PT_R1 ... PT_R3:
2007 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2008 		break;
2009 	case PT_R12 ... PT_R15:
2010 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2011 		break;
2012 	case PT_R8 ... PT_R11:
2013 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2014 		break;
2015 	case PT_R16 ... PT_R31:
2016 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2017 		break;
2018 	case PT_AR_CCV:
2019 		pos = ELF_AR_CCV_OFFSET;
2020 		break;
2021 	case PT_AR_FPSR:
2022 		pos = ELF_AR_FPSR_OFFSET;
2023 		break;
2024 	case PT_B0:
2025 		pos = ELF_BR_OFFSET(0);
2026 		break;
2027 	case PT_B7:
2028 		pos = ELF_BR_OFFSET(7);
2029 		break;
2030 	case PT_AR_CSD:
2031 		pos = ELF_AR_CSD_OFFSET;
2032 		break;
2033 	case PT_AR_SSD:
2034 		pos = ELF_AR_SSD_OFFSET;
2035 		break;
2036 	}
2037 
2038 	if (pos != -1) {
2039 		if (write_access)
2040 			ret = gpregs_set(child, NULL, pos,
2041 				sizeof(unsigned long), data, NULL);
2042 		else
2043 			ret = gpregs_get(child, NULL, pos,
2044 				sizeof(unsigned long), data, NULL);
2045 		if (ret != 0)
2046 			return -1;
2047 		return 0;
2048 	}
2049 
2050 	/* access debug registers */
2051 	if (addr >= PT_IBR) {
2052 		regnum = (addr - PT_IBR) >> 3;
2053 		ptr = &child->thread.ibr[0];
2054 	} else {
2055 		regnum = (addr - PT_DBR) >> 3;
2056 		ptr = &child->thread.dbr[0];
2057 	}
2058 
2059 	if (regnum >= 8) {
2060 		dprintk("ptrace: rejecting access to register "
2061 				"address 0x%lx\n", addr);
2062 		return -1;
2063 	}
2064 #ifdef CONFIG_PERFMON
2065 	/*
2066 	 * Check if debug registers are used by perfmon. This
2067 	 * test must be done once we know that we can do the
2068 	 * operation, i.e. the arguments are all valid, but
2069 	 * before we start modifying the state.
2070 	 *
2071 	 * Perfmon needs to keep a count of how many processes
2072 	 * are trying to modify the debug registers for system
2073 	 * wide monitoring sessions.
2074 	 *
2075 	 * We also include read access here, because they may
2076 	 * cause the PMU-installed debug register state
2077 	 * (dbr[], ibr[]) to be reset. The two arrays are also
2078 	 * used by perfmon, but we do not use
2079 	 * IA64_THREAD_DBG_VALID. The registers are restored
2080 	 * by the PMU context switch code.
2081 	 */
2082 	if (pfm_use_debug_registers(child))
2083 		return -1;
2084 #endif
2085 
2086 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2087 		child->thread.flags |= IA64_THREAD_DBG_VALID;
2088 		memset(child->thread.dbr, 0,
2089 				sizeof(child->thread.dbr));
2090 		memset(child->thread.ibr, 0,
2091 				sizeof(child->thread.ibr));
2092 	}
2093 
2094 	ptr += regnum;
2095 
2096 	if ((regnum & 1) && write_access) {
2097 		/* don't let the user set kernel-level breakpoints: */
2098 		*ptr = *data & ~(7UL << 56);
2099 		return 0;
2100 	}
2101 	if (write_access)
2102 		*ptr = *data;
2103 	else
2104 		*data = *ptr;
2105 	return 0;
2106 }
2107 
2108 static const struct user_regset native_regsets[] = {
2109 	{
2110 		.core_note_type = NT_PRSTATUS,
2111 		.n = ELF_NGREG,
2112 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2113 		.get = gpregs_get, .set = gpregs_set,
2114 		.writeback = gpregs_writeback
2115 	},
2116 	{
2117 		.core_note_type = NT_PRFPREG,
2118 		.n = ELF_NFPREG,
2119 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2120 		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2121 	},
2122 };
2123 
2124 static const struct user_regset_view user_ia64_view = {
2125 	.name = "ia64",
2126 	.e_machine = EM_IA_64,
2127 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2128 };
2129 
2130 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2131 {
2132 	return &user_ia64_view;
2133 }
2134 
2135 struct syscall_get_set_args {
2136 	unsigned int i;
2137 	unsigned int n;
2138 	unsigned long *args;
2139 	struct pt_regs *regs;
2140 	int rw;
2141 };
2142 
2143 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2144 {
2145 	struct syscall_get_set_args *args = data;
2146 	struct pt_regs *pt = args->regs;
2147 	unsigned long *krbs, cfm, ndirty;
2148 	int i, count;
2149 
2150 	if (unw_unwind_to_user(info) < 0)
2151 		return;
2152 
2153 	cfm = pt->cr_ifs;
2154 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2155 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2156 
2157 	count = 0;
2158 	if (in_syscall(pt))
2159 		count = min_t(int, args->n, cfm & 0x7f);
2160 
2161 	for (i = 0; i < count; i++) {
2162 		if (args->rw)
2163 			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2164 				args->args[i];
2165 		else
2166 			args->args[i] = *ia64_rse_skip_regs(krbs,
2167 				ndirty + i + args->i);
2168 	}
2169 
2170 	if (!args->rw) {
2171 		while (i < args->n) {
2172 			args->args[i] = 0;
2173 			i++;
2174 		}
2175 	}
2176 }
2177 
2178 void ia64_syscall_get_set_arguments(struct task_struct *task,
2179 	struct pt_regs *regs, unsigned int i, unsigned int n,
2180 	unsigned long *args, int rw)
2181 {
2182 	struct syscall_get_set_args data = {
2183 		.i = i,
2184 		.n = n,
2185 		.args = args,
2186 		.regs = regs,
2187 		.rw = rw,
2188 	};
2189 
2190 	if (task == current)
2191 		unw_init_running(syscall_get_set_args_cb, &data);
2192 	else {
2193 		struct unw_frame_info ufi;
2194 		memset(&ufi, 0, sizeof(ufi));
2195 		unw_init_from_blocked_task(&ufi, task);
2196 		syscall_get_set_args_cb(&ufi, &data);
2197 	}
2198 }
2199