xref: /openbmc/linux/arch/ia64/kernel/ptrace.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel support for the ptrace() and syscall tracing interfaces.
4  *
5  * Copyright (C) 1999-2005 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * Copyright (C) 2006 Intel Co
8  *  2006-08-12	- IA64 Native Utrace implementation support added by
9  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10  *
11  * Derived from the x86 and Alpha versions.
12  */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/mm.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/tracehook.h>
27 
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/ptrace_offsets.h>
31 #include <asm/rse.h>
32 #include <linux/uaccess.h>
33 #include <asm/unwind.h>
34 #ifdef CONFIG_PERFMON
35 #include <asm/perfmon.h>
36 #endif
37 
38 #include "entry.h"
39 
40 /*
41  * Bits in the PSR that we allow ptrace() to change:
42  *	be, up, ac, mfl, mfh (the user mask; five bits total)
43  *	db (debug breakpoint fault; one bit)
44  *	id (instruction debug fault disable; one bit)
45  *	dd (data debug fault disable; one bit)
46  *	ri (restart instruction; two bits)
47  *	is (instruction set; one bit)
48  */
49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
50 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
51 
52 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
53 #define PFM_MASK	MASK(38)
54 
55 #define PTRACE_DEBUG	0
56 
57 #if PTRACE_DEBUG
58 # define dprintk(format...)	printk(format)
59 # define inline
60 #else
61 # define dprintk(format...)
62 #endif
63 
64 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
65 
66 static inline int
67 in_syscall (struct pt_regs *pt)
68 {
69 	return (long) pt->cr_ifs >= 0;
70 }
71 
72 /*
73  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
74  * bitset where bit i is set iff the NaT bit of register i is set.
75  */
76 unsigned long
77 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
78 {
79 #	define GET_BITS(first, last, unat)				\
80 	({								\
81 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
82 		unsigned long nbits = (last - first + 1);		\
83 		unsigned long mask = MASK(nbits) << first;		\
84 		unsigned long dist;					\
85 		if (bit < first)					\
86 			dist = 64 + bit - first;			\
87 		else							\
88 			dist = bit - first;				\
89 		ia64_rotr(unat, dist) & mask;				\
90 	})
91 	unsigned long val;
92 
93 	/*
94 	 * Registers that are stored consecutively in struct pt_regs
95 	 * can be handled in parallel.  If the register order in
96 	 * struct_pt_regs changes, this code MUST be updated.
97 	 */
98 	val  = GET_BITS( 1,  1, scratch_unat);
99 	val |= GET_BITS( 2,  3, scratch_unat);
100 	val |= GET_BITS(12, 13, scratch_unat);
101 	val |= GET_BITS(14, 14, scratch_unat);
102 	val |= GET_BITS(15, 15, scratch_unat);
103 	val |= GET_BITS( 8, 11, scratch_unat);
104 	val |= GET_BITS(16, 31, scratch_unat);
105 	return val;
106 
107 #	undef GET_BITS
108 }
109 
110 /*
111  * Set the NaT bits for the scratch registers according to NAT and
112  * return the resulting unat (assuming the scratch registers are
113  * stored in PT).
114  */
115 unsigned long
116 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
117 {
118 #	define PUT_BITS(first, last, nat)				\
119 	({								\
120 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
121 		unsigned long nbits = (last - first + 1);		\
122 		unsigned long mask = MASK(nbits) << first;		\
123 		long dist;						\
124 		if (bit < first)					\
125 			dist = 64 + bit - first;			\
126 		else							\
127 			dist = bit - first;				\
128 		ia64_rotl(nat & mask, dist);				\
129 	})
130 	unsigned long scratch_unat;
131 
132 	/*
133 	 * Registers that are stored consecutively in struct pt_regs
134 	 * can be handled in parallel.  If the register order in
135 	 * struct_pt_regs changes, this code MUST be updated.
136 	 */
137 	scratch_unat  = PUT_BITS( 1,  1, nat);
138 	scratch_unat |= PUT_BITS( 2,  3, nat);
139 	scratch_unat |= PUT_BITS(12, 13, nat);
140 	scratch_unat |= PUT_BITS(14, 14, nat);
141 	scratch_unat |= PUT_BITS(15, 15, nat);
142 	scratch_unat |= PUT_BITS( 8, 11, nat);
143 	scratch_unat |= PUT_BITS(16, 31, nat);
144 
145 	return scratch_unat;
146 
147 #	undef PUT_BITS
148 }
149 
150 #define IA64_MLX_TEMPLATE	0x2
151 #define IA64_MOVL_OPCODE	6
152 
153 void
154 ia64_increment_ip (struct pt_regs *regs)
155 {
156 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
157 
158 	if (ri > 2) {
159 		ri = 0;
160 		regs->cr_iip += 16;
161 	} else if (ri == 2) {
162 		get_user(w0, (char __user *) regs->cr_iip + 0);
163 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
164 			/*
165 			 * rfi'ing to slot 2 of an MLX bundle causes
166 			 * an illegal operation fault.  We don't want
167 			 * that to happen...
168 			 */
169 			ri = 0;
170 			regs->cr_iip += 16;
171 		}
172 	}
173 	ia64_psr(regs)->ri = ri;
174 }
175 
176 void
177 ia64_decrement_ip (struct pt_regs *regs)
178 {
179 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
180 
181 	if (ia64_psr(regs)->ri == 0) {
182 		regs->cr_iip -= 16;
183 		ri = 2;
184 		get_user(w0, (char __user *) regs->cr_iip + 0);
185 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
186 			/*
187 			 * rfi'ing to slot 2 of an MLX bundle causes
188 			 * an illegal operation fault.  We don't want
189 			 * that to happen...
190 			 */
191 			ri = 1;
192 		}
193 	}
194 	ia64_psr(regs)->ri = ri;
195 }
196 
197 /*
198  * This routine is used to read an rnat bits that are stored on the
199  * kernel backing store.  Since, in general, the alignment of the user
200  * and kernel are different, this is not completely trivial.  In
201  * essence, we need to construct the user RNAT based on up to two
202  * kernel RNAT values and/or the RNAT value saved in the child's
203  * pt_regs.
204  *
205  * user rbs
206  *
207  * +--------+ <-- lowest address
208  * | slot62 |
209  * +--------+
210  * |  rnat  | 0x....1f8
211  * +--------+
212  * | slot00 | \
213  * +--------+ |
214  * | slot01 | > child_regs->ar_rnat
215  * +--------+ |
216  * | slot02 | /				kernel rbs
217  * +--------+				+--------+
218  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
219  * +- - - - +				+--------+
220  *					| slot62 |
221  * +- - - - +				+--------+
222  *					|  rnat	 |
223  * +- - - - +				+--------+
224  *   vrnat				| slot00 |
225  * +- - - - +				+--------+
226  *					=	 =
227  *					+--------+
228  *					| slot00 | \
229  *					+--------+ |
230  *					| slot01 | > child_stack->ar_rnat
231  *					+--------+ |
232  *					| slot02 | /
233  *					+--------+
234  *						  <--- child_stack->ar_bspstore
235  *
236  * The way to think of this code is as follows: bit 0 in the user rnat
237  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
238  * value.  The kernel rnat value holding this bit is stored in
239  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
240  * form the upper bits of the user rnat value.
241  *
242  * Boundary cases:
243  *
244  * o when reading the rnat "below" the first rnat slot on the kernel
245  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
246  *   merged in from pt->ar_rnat.
247  *
248  * o when reading the rnat "above" the last rnat slot on the kernel
249  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
250  */
251 static unsigned long
252 get_rnat (struct task_struct *task, struct switch_stack *sw,
253 	  unsigned long *krbs, unsigned long *urnat_addr,
254 	  unsigned long *urbs_end)
255 {
256 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
257 	unsigned long umask = 0, mask, m;
258 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
259 	long num_regs, nbits;
260 	struct pt_regs *pt;
261 
262 	pt = task_pt_regs(task);
263 	kbsp = (unsigned long *) sw->ar_bspstore;
264 	ubspstore = (unsigned long *) pt->ar_bspstore;
265 
266 	if (urbs_end < urnat_addr)
267 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
268 	else
269 		nbits = 63;
270 	mask = MASK(nbits);
271 	/*
272 	 * First, figure out which bit number slot 0 in user-land maps
273 	 * to in the kernel rnat.  Do this by figuring out how many
274 	 * register slots we're beyond the user's backingstore and
275 	 * then computing the equivalent address in kernel space.
276 	 */
277 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
278 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
279 	shift = ia64_rse_slot_num(slot0_kaddr);
280 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
281 	rnat0_kaddr = rnat1_kaddr - 64;
282 
283 	if (ubspstore + 63 > urnat_addr) {
284 		/* some bits need to be merged in from pt->ar_rnat */
285 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
286 		urnat = (pt->ar_rnat & umask);
287 		mask &= ~umask;
288 		if (!mask)
289 			return urnat;
290 	}
291 
292 	m = mask << shift;
293 	if (rnat0_kaddr >= kbsp)
294 		rnat0 = sw->ar_rnat;
295 	else if (rnat0_kaddr > krbs)
296 		rnat0 = *rnat0_kaddr;
297 	urnat |= (rnat0 & m) >> shift;
298 
299 	m = mask >> (63 - shift);
300 	if (rnat1_kaddr >= kbsp)
301 		rnat1 = sw->ar_rnat;
302 	else if (rnat1_kaddr > krbs)
303 		rnat1 = *rnat1_kaddr;
304 	urnat |= (rnat1 & m) << (63 - shift);
305 	return urnat;
306 }
307 
308 /*
309  * The reverse of get_rnat.
310  */
311 static void
312 put_rnat (struct task_struct *task, struct switch_stack *sw,
313 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
314 	  unsigned long *urbs_end)
315 {
316 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
317 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
318 	long num_regs, nbits;
319 	struct pt_regs *pt;
320 	unsigned long cfm, *urbs_kargs;
321 
322 	pt = task_pt_regs(task);
323 	kbsp = (unsigned long *) sw->ar_bspstore;
324 	ubspstore = (unsigned long *) pt->ar_bspstore;
325 
326 	urbs_kargs = urbs_end;
327 	if (in_syscall(pt)) {
328 		/*
329 		 * If entered via syscall, don't allow user to set rnat bits
330 		 * for syscall args.
331 		 */
332 		cfm = pt->cr_ifs;
333 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
334 	}
335 
336 	if (urbs_kargs >= urnat_addr)
337 		nbits = 63;
338 	else {
339 		if ((urnat_addr - 63) >= urbs_kargs)
340 			return;
341 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
342 	}
343 	mask = MASK(nbits);
344 
345 	/*
346 	 * First, figure out which bit number slot 0 in user-land maps
347 	 * to in the kernel rnat.  Do this by figuring out how many
348 	 * register slots we're beyond the user's backingstore and
349 	 * then computing the equivalent address in kernel space.
350 	 */
351 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
352 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
353 	shift = ia64_rse_slot_num(slot0_kaddr);
354 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
355 	rnat0_kaddr = rnat1_kaddr - 64;
356 
357 	if (ubspstore + 63 > urnat_addr) {
358 		/* some bits need to be place in pt->ar_rnat: */
359 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
360 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
361 		mask &= ~umask;
362 		if (!mask)
363 			return;
364 	}
365 	/*
366 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
367 	 * rnat slot is ignored. so we don't have to clear it here.
368 	 */
369 	rnat0 = (urnat << shift);
370 	m = mask << shift;
371 	if (rnat0_kaddr >= kbsp)
372 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
373 	else if (rnat0_kaddr > krbs)
374 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
375 
376 	rnat1 = (urnat >> (63 - shift));
377 	m = mask >> (63 - shift);
378 	if (rnat1_kaddr >= kbsp)
379 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
380 	else if (rnat1_kaddr > krbs)
381 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
382 }
383 
384 static inline int
385 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
386 	       unsigned long urbs_end)
387 {
388 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
389 						      urbs_end);
390 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
391 }
392 
393 /*
394  * Read a word from the user-level backing store of task CHILD.  ADDR
395  * is the user-level address to read the word from, VAL a pointer to
396  * the return value, and USER_BSP gives the end of the user-level
397  * backing store (i.e., it's the address that would be in ar.bsp after
398  * the user executed a "cover" instruction).
399  *
400  * This routine takes care of accessing the kernel register backing
401  * store for those registers that got spilled there.  It also takes
402  * care of calculating the appropriate RNaT collection words.
403  */
404 long
405 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
406 	   unsigned long user_rbs_end, unsigned long addr, long *val)
407 {
408 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
409 	struct pt_regs *child_regs;
410 	size_t copied;
411 	long ret;
412 
413 	urbs_end = (long *) user_rbs_end;
414 	laddr = (unsigned long *) addr;
415 	child_regs = task_pt_regs(child);
416 	bspstore = (unsigned long *) child_regs->ar_bspstore;
417 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
418 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
419 			  (unsigned long) urbs_end))
420 	{
421 		/*
422 		 * Attempt to read the RBS in an area that's actually
423 		 * on the kernel RBS => read the corresponding bits in
424 		 * the kernel RBS.
425 		 */
426 		rnat_addr = ia64_rse_rnat_addr(laddr);
427 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
428 
429 		if (laddr == rnat_addr) {
430 			/* return NaT collection word itself */
431 			*val = ret;
432 			return 0;
433 		}
434 
435 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
436 			/*
437 			 * It is implementation dependent whether the
438 			 * data portion of a NaT value gets saved on a
439 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
440 			 * 4.4.4.6 Register Spill and Fill).  To get
441 			 * consistent behavior across all possible
442 			 * IA-64 implementations, we return zero in
443 			 * this case.
444 			 */
445 			*val = 0;
446 			return 0;
447 		}
448 
449 		if (laddr < urbs_end) {
450 			/*
451 			 * The desired word is on the kernel RBS and
452 			 * is not a NaT.
453 			 */
454 			regnum = ia64_rse_num_regs(bspstore, laddr);
455 			*val = *ia64_rse_skip_regs(krbs, regnum);
456 			return 0;
457 		}
458 	}
459 	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
460 	if (copied != sizeof(ret))
461 		return -EIO;
462 	*val = ret;
463 	return 0;
464 }
465 
466 long
467 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
468 	   unsigned long user_rbs_end, unsigned long addr, long val)
469 {
470 	unsigned long *bspstore, *krbs, regnum, *laddr;
471 	unsigned long *urbs_end = (long *) user_rbs_end;
472 	struct pt_regs *child_regs;
473 
474 	laddr = (unsigned long *) addr;
475 	child_regs = task_pt_regs(child);
476 	bspstore = (unsigned long *) child_regs->ar_bspstore;
477 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
478 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
479 			  (unsigned long) urbs_end))
480 	{
481 		/*
482 		 * Attempt to write the RBS in an area that's actually
483 		 * on the kernel RBS => write the corresponding bits
484 		 * in the kernel RBS.
485 		 */
486 		if (ia64_rse_is_rnat_slot(laddr))
487 			put_rnat(child, child_stack, krbs, laddr, val,
488 				 urbs_end);
489 		else {
490 			if (laddr < urbs_end) {
491 				regnum = ia64_rse_num_regs(bspstore, laddr);
492 				*ia64_rse_skip_regs(krbs, regnum) = val;
493 			}
494 		}
495 	} else if (access_process_vm(child, addr, &val, sizeof(val),
496 				FOLL_FORCE | FOLL_WRITE)
497 		   != sizeof(val))
498 		return -EIO;
499 	return 0;
500 }
501 
502 /*
503  * Calculate the address of the end of the user-level register backing
504  * store.  This is the address that would have been stored in ar.bsp
505  * if the user had executed a "cover" instruction right before
506  * entering the kernel.  If CFMP is not NULL, it is used to return the
507  * "current frame mask" that was active at the time the kernel was
508  * entered.
509  */
510 unsigned long
511 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
512 		       unsigned long *cfmp)
513 {
514 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
515 	long ndirty;
516 
517 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
518 	bspstore = (unsigned long *) pt->ar_bspstore;
519 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
520 
521 	if (in_syscall(pt))
522 		ndirty += (cfm & 0x7f);
523 	else
524 		cfm &= ~(1UL << 63);	/* clear valid bit */
525 
526 	if (cfmp)
527 		*cfmp = cfm;
528 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
529 }
530 
531 /*
532  * Synchronize (i.e, write) the RSE backing store living in kernel
533  * space to the VM of the CHILD task.  SW and PT are the pointers to
534  * the switch_stack and pt_regs structures, respectively.
535  * USER_RBS_END is the user-level address at which the backing store
536  * ends.
537  */
538 long
539 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
540 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
541 {
542 	unsigned long addr, val;
543 	long ret;
544 
545 	/* now copy word for word from kernel rbs to user rbs: */
546 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
547 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
548 		if (ret < 0)
549 			return ret;
550 		if (access_process_vm(child, addr, &val, sizeof(val),
551 				FOLL_FORCE | FOLL_WRITE)
552 		    != sizeof(val))
553 			return -EIO;
554 	}
555 	return 0;
556 }
557 
558 static long
559 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
560 		unsigned long user_rbs_start, unsigned long user_rbs_end)
561 {
562 	unsigned long addr, val;
563 	long ret;
564 
565 	/* now copy word for word from user rbs to kernel rbs: */
566 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
567 		if (access_process_vm(child, addr, &val, sizeof(val),
568 				FOLL_FORCE)
569 				!= sizeof(val))
570 			return -EIO;
571 
572 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
573 		if (ret < 0)
574 			return ret;
575 	}
576 	return 0;
577 }
578 
579 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
580 			    unsigned long, unsigned long);
581 
582 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
583 {
584 	struct pt_regs *pt;
585 	unsigned long urbs_end;
586 	syncfunc_t fn = arg;
587 
588 	if (unw_unwind_to_user(info) < 0)
589 		return;
590 	pt = task_pt_regs(info->task);
591 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
592 
593 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
594 }
595 
596 /*
597  * when a thread is stopped (ptraced), debugger might change thread's user
598  * stack (change memory directly), and we must avoid the RSE stored in kernel
599  * to override user stack (user space's RSE is newer than kernel's in the
600  * case). To workaround the issue, we copy kernel RSE to user RSE before the
601  * task is stopped, so user RSE has updated data.  we then copy user RSE to
602  * kernel after the task is resummed from traced stop and kernel will use the
603  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
604  * synchronize user RSE to kernel.
605  */
606 void ia64_ptrace_stop(void)
607 {
608 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
609 		return;
610 	set_notify_resume(current);
611 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
612 }
613 
614 /*
615  * This is called to read back the register backing store.
616  */
617 void ia64_sync_krbs(void)
618 {
619 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
620 
621 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
622 }
623 
624 /*
625  * After PTRACE_ATTACH, a thread's register backing store area in user
626  * space is assumed to contain correct data whenever the thread is
627  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
628  * But if the child was already stopped for job control when we attach
629  * to it, then it might not ever get into ptrace_stop by the time we
630  * want to examine the user memory containing the RBS.
631  */
632 void
633 ptrace_attach_sync_user_rbs (struct task_struct *child)
634 {
635 	int stopped = 0;
636 	struct unw_frame_info info;
637 
638 	/*
639 	 * If the child is in TASK_STOPPED, we need to change that to
640 	 * TASK_TRACED momentarily while we operate on it.  This ensures
641 	 * that the child won't be woken up and return to user mode while
642 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
643 	 */
644 
645 	read_lock(&tasklist_lock);
646 	if (child->sighand) {
647 		spin_lock_irq(&child->sighand->siglock);
648 		if (child->state == TASK_STOPPED &&
649 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
650 			set_notify_resume(child);
651 
652 			child->state = TASK_TRACED;
653 			stopped = 1;
654 		}
655 		spin_unlock_irq(&child->sighand->siglock);
656 	}
657 	read_unlock(&tasklist_lock);
658 
659 	if (!stopped)
660 		return;
661 
662 	unw_init_from_blocked_task(&info, child);
663 	do_sync_rbs(&info, ia64_sync_user_rbs);
664 
665 	/*
666 	 * Now move the child back into TASK_STOPPED if it should be in a
667 	 * job control stop, so that SIGCONT can be used to wake it up.
668 	 */
669 	read_lock(&tasklist_lock);
670 	if (child->sighand) {
671 		spin_lock_irq(&child->sighand->siglock);
672 		if (child->state == TASK_TRACED &&
673 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
674 			child->state = TASK_STOPPED;
675 		}
676 		spin_unlock_irq(&child->sighand->siglock);
677 	}
678 	read_unlock(&tasklist_lock);
679 }
680 
681 /*
682  * Write f32-f127 back to task->thread.fph if it has been modified.
683  */
684 inline void
685 ia64_flush_fph (struct task_struct *task)
686 {
687 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
688 
689 	/*
690 	 * Prevent migrating this task while
691 	 * we're fiddling with the FPU state
692 	 */
693 	preempt_disable();
694 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
695 		psr->mfh = 0;
696 		task->thread.flags |= IA64_THREAD_FPH_VALID;
697 		ia64_save_fpu(&task->thread.fph[0]);
698 	}
699 	preempt_enable();
700 }
701 
702 /*
703  * Sync the fph state of the task so that it can be manipulated
704  * through thread.fph.  If necessary, f32-f127 are written back to
705  * thread.fph or, if the fph state hasn't been used before, thread.fph
706  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
707  * ensure that the task picks up the state from thread.fph when it
708  * executes again.
709  */
710 void
711 ia64_sync_fph (struct task_struct *task)
712 {
713 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
714 
715 	ia64_flush_fph(task);
716 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
717 		task->thread.flags |= IA64_THREAD_FPH_VALID;
718 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
719 	}
720 	ia64_drop_fpu(task);
721 	psr->dfh = 1;
722 }
723 
724 /*
725  * Change the machine-state of CHILD such that it will return via the normal
726  * kernel exit-path, rather than the syscall-exit path.
727  */
728 static void
729 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
730 			unsigned long cfm)
731 {
732 	struct unw_frame_info info, prev_info;
733 	unsigned long ip, sp, pr;
734 
735 	unw_init_from_blocked_task(&info, child);
736 	while (1) {
737 		prev_info = info;
738 		if (unw_unwind(&info) < 0)
739 			return;
740 
741 		unw_get_sp(&info, &sp);
742 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
743 		    < IA64_PT_REGS_SIZE) {
744 			dprintk("ptrace.%s: ran off the top of the kernel "
745 				"stack\n", __func__);
746 			return;
747 		}
748 		if (unw_get_pr (&prev_info, &pr) < 0) {
749 			unw_get_rp(&prev_info, &ip);
750 			dprintk("ptrace.%s: failed to read "
751 				"predicate register (ip=0x%lx)\n",
752 				__func__, ip);
753 			return;
754 		}
755 		if (unw_is_intr_frame(&info)
756 		    && (pr & (1UL << PRED_USER_STACK)))
757 			break;
758 	}
759 
760 	/*
761 	 * Note: at the time of this call, the target task is blocked
762 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
763 	 * (aka, "pLvSys") we redirect execution from
764 	 * .work_pending_syscall_end to .work_processed_kernel.
765 	 */
766 	unw_get_pr(&prev_info, &pr);
767 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
768 	pr |=  (1UL << PRED_NON_SYSCALL);
769 	unw_set_pr(&prev_info, pr);
770 
771 	pt->cr_ifs = (1UL << 63) | cfm;
772 	/*
773 	 * Clear the memory that is NOT written on syscall-entry to
774 	 * ensure we do not leak kernel-state to user when execution
775 	 * resumes.
776 	 */
777 	pt->r2 = 0;
778 	pt->r3 = 0;
779 	pt->r14 = 0;
780 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
781 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
782 	pt->b7 = 0;
783 	pt->ar_ccv = 0;
784 	pt->ar_csd = 0;
785 	pt->ar_ssd = 0;
786 }
787 
788 static int
789 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
790 		 struct unw_frame_info *info,
791 		 unsigned long *data, int write_access)
792 {
793 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
794 	char nat = 0;
795 
796 	if (write_access) {
797 		nat_bits = *data;
798 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
799 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
800 			dprintk("ptrace: failed to set ar.unat\n");
801 			return -1;
802 		}
803 		for (regnum = 4; regnum <= 7; ++regnum) {
804 			unw_get_gr(info, regnum, &dummy, &nat);
805 			unw_set_gr(info, regnum, dummy,
806 				   (nat_bits >> regnum) & 1);
807 		}
808 	} else {
809 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
810 			dprintk("ptrace: failed to read ar.unat\n");
811 			return -1;
812 		}
813 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
814 		for (regnum = 4; regnum <= 7; ++regnum) {
815 			unw_get_gr(info, regnum, &dummy, &nat);
816 			nat_bits |= (nat != 0) << regnum;
817 		}
818 		*data = nat_bits;
819 	}
820 	return 0;
821 }
822 
823 static int
824 access_uarea (struct task_struct *child, unsigned long addr,
825 	      unsigned long *data, int write_access);
826 
827 static long
828 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
829 {
830 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
831 	struct unw_frame_info info;
832 	struct ia64_fpreg fpval;
833 	struct switch_stack *sw;
834 	struct pt_regs *pt;
835 	long ret, retval = 0;
836 	char nat = 0;
837 	int i;
838 
839 	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
840 		return -EIO;
841 
842 	pt = task_pt_regs(child);
843 	sw = (struct switch_stack *) (child->thread.ksp + 16);
844 	unw_init_from_blocked_task(&info, child);
845 	if (unw_unwind_to_user(&info) < 0) {
846 		return -EIO;
847 	}
848 
849 	if (((unsigned long) ppr & 0x7) != 0) {
850 		dprintk("ptrace:unaligned register address %p\n", ppr);
851 		return -EIO;
852 	}
853 
854 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
855 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
856 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
857 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
858 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
859 	    || access_uarea(child, PT_CFM, &cfm, 0)
860 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
861 		return -EIO;
862 
863 	/* control regs */
864 
865 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
866 	retval |= __put_user(psr, &ppr->cr_ipsr);
867 
868 	/* app regs */
869 
870 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
871 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
872 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
873 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
874 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
875 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
876 
877 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
878 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
879 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
880 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
881 	retval |= __put_user(cfm, &ppr->cfm);
882 
883 	/* gr1-gr3 */
884 
885 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
886 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
887 
888 	/* gr4-gr7 */
889 
890 	for (i = 4; i < 8; i++) {
891 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
892 			return -EIO;
893 		retval |= __put_user(val, &ppr->gr[i]);
894 	}
895 
896 	/* gr8-gr11 */
897 
898 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
899 
900 	/* gr12-gr15 */
901 
902 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
903 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
904 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
905 
906 	/* gr16-gr31 */
907 
908 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
909 
910 	/* b0 */
911 
912 	retval |= __put_user(pt->b0, &ppr->br[0]);
913 
914 	/* b1-b5 */
915 
916 	for (i = 1; i < 6; i++) {
917 		if (unw_access_br(&info, i, &val, 0) < 0)
918 			return -EIO;
919 		__put_user(val, &ppr->br[i]);
920 	}
921 
922 	/* b6-b7 */
923 
924 	retval |= __put_user(pt->b6, &ppr->br[6]);
925 	retval |= __put_user(pt->b7, &ppr->br[7]);
926 
927 	/* fr2-fr5 */
928 
929 	for (i = 2; i < 6; i++) {
930 		if (unw_get_fr(&info, i, &fpval) < 0)
931 			return -EIO;
932 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
933 	}
934 
935 	/* fr6-fr11 */
936 
937 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
938 				 sizeof(struct ia64_fpreg) * 6);
939 
940 	/* fp scratch regs(12-15) */
941 
942 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
943 				 sizeof(struct ia64_fpreg) * 4);
944 
945 	/* fr16-fr31 */
946 
947 	for (i = 16; i < 32; i++) {
948 		if (unw_get_fr(&info, i, &fpval) < 0)
949 			return -EIO;
950 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
951 	}
952 
953 	/* fph */
954 
955 	ia64_flush_fph(child);
956 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
957 				 sizeof(ppr->fr[32]) * 96);
958 
959 	/*  preds */
960 
961 	retval |= __put_user(pt->pr, &ppr->pr);
962 
963 	/* nat bits */
964 
965 	retval |= __put_user(nat_bits, &ppr->nat);
966 
967 	ret = retval ? -EIO : 0;
968 	return ret;
969 }
970 
971 static long
972 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
973 {
974 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
975 	struct unw_frame_info info;
976 	struct switch_stack *sw;
977 	struct ia64_fpreg fpval;
978 	struct pt_regs *pt;
979 	long ret, retval = 0;
980 	int i;
981 
982 	memset(&fpval, 0, sizeof(fpval));
983 
984 	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
985 		return -EIO;
986 
987 	pt = task_pt_regs(child);
988 	sw = (struct switch_stack *) (child->thread.ksp + 16);
989 	unw_init_from_blocked_task(&info, child);
990 	if (unw_unwind_to_user(&info) < 0) {
991 		return -EIO;
992 	}
993 
994 	if (((unsigned long) ppr & 0x7) != 0) {
995 		dprintk("ptrace:unaligned register address %p\n", ppr);
996 		return -EIO;
997 	}
998 
999 	/* control regs */
1000 
1001 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1002 	retval |= __get_user(psr, &ppr->cr_ipsr);
1003 
1004 	/* app regs */
1005 
1006 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1007 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1008 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1009 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1010 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1011 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1012 
1013 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1014 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1015 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1016 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1017 	retval |= __get_user(cfm, &ppr->cfm);
1018 
1019 	/* gr1-gr3 */
1020 
1021 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1022 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1023 
1024 	/* gr4-gr7 */
1025 
1026 	for (i = 4; i < 8; i++) {
1027 		retval |= __get_user(val, &ppr->gr[i]);
1028 		/* NaT bit will be set via PT_NAT_BITS: */
1029 		if (unw_set_gr(&info, i, val, 0) < 0)
1030 			return -EIO;
1031 	}
1032 
1033 	/* gr8-gr11 */
1034 
1035 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1036 
1037 	/* gr12-gr15 */
1038 
1039 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1040 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1041 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1042 
1043 	/* gr16-gr31 */
1044 
1045 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1046 
1047 	/* b0 */
1048 
1049 	retval |= __get_user(pt->b0, &ppr->br[0]);
1050 
1051 	/* b1-b5 */
1052 
1053 	for (i = 1; i < 6; i++) {
1054 		retval |= __get_user(val, &ppr->br[i]);
1055 		unw_set_br(&info, i, val);
1056 	}
1057 
1058 	/* b6-b7 */
1059 
1060 	retval |= __get_user(pt->b6, &ppr->br[6]);
1061 	retval |= __get_user(pt->b7, &ppr->br[7]);
1062 
1063 	/* fr2-fr5 */
1064 
1065 	for (i = 2; i < 6; i++) {
1066 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1067 		if (unw_set_fr(&info, i, fpval) < 0)
1068 			return -EIO;
1069 	}
1070 
1071 	/* fr6-fr11 */
1072 
1073 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1074 				   sizeof(ppr->fr[6]) * 6);
1075 
1076 	/* fp scratch regs(12-15) */
1077 
1078 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1079 				   sizeof(ppr->fr[12]) * 4);
1080 
1081 	/* fr16-fr31 */
1082 
1083 	for (i = 16; i < 32; i++) {
1084 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1085 					   sizeof(fpval));
1086 		if (unw_set_fr(&info, i, fpval) < 0)
1087 			return -EIO;
1088 	}
1089 
1090 	/* fph */
1091 
1092 	ia64_sync_fph(child);
1093 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1094 				   sizeof(ppr->fr[32]) * 96);
1095 
1096 	/* preds */
1097 
1098 	retval |= __get_user(pt->pr, &ppr->pr);
1099 
1100 	/* nat bits */
1101 
1102 	retval |= __get_user(nat_bits, &ppr->nat);
1103 
1104 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1105 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1106 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1107 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1108 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1109 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1110 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1111 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1112 
1113 	ret = retval ? -EIO : 0;
1114 	return ret;
1115 }
1116 
1117 void
1118 user_enable_single_step (struct task_struct *child)
1119 {
1120 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1121 
1122 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1123 	child_psr->ss = 1;
1124 }
1125 
1126 void
1127 user_enable_block_step (struct task_struct *child)
1128 {
1129 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1130 
1131 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1132 	child_psr->tb = 1;
1133 }
1134 
1135 void
1136 user_disable_single_step (struct task_struct *child)
1137 {
1138 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1139 
1140 	/* make sure the single step/taken-branch trap bits are not set: */
1141 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1142 	child_psr->ss = 0;
1143 	child_psr->tb = 0;
1144 }
1145 
1146 /*
1147  * Called by kernel/ptrace.c when detaching..
1148  *
1149  * Make sure the single step bit is not set.
1150  */
1151 void
1152 ptrace_disable (struct task_struct *child)
1153 {
1154 	user_disable_single_step(child);
1155 }
1156 
1157 long
1158 arch_ptrace (struct task_struct *child, long request,
1159 	     unsigned long addr, unsigned long data)
1160 {
1161 	switch (request) {
1162 	case PTRACE_PEEKTEXT:
1163 	case PTRACE_PEEKDATA:
1164 		/* read word at location addr */
1165 		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1166 				FOLL_FORCE)
1167 		    != sizeof(data))
1168 			return -EIO;
1169 		/* ensure return value is not mistaken for error code */
1170 		force_successful_syscall_return();
1171 		return data;
1172 
1173 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1174 	 * by the generic ptrace_request().
1175 	 */
1176 
1177 	case PTRACE_PEEKUSR:
1178 		/* read the word at addr in the USER area */
1179 		if (access_uarea(child, addr, &data, 0) < 0)
1180 			return -EIO;
1181 		/* ensure return value is not mistaken for error code */
1182 		force_successful_syscall_return();
1183 		return data;
1184 
1185 	case PTRACE_POKEUSR:
1186 		/* write the word at addr in the USER area */
1187 		if (access_uarea(child, addr, &data, 1) < 0)
1188 			return -EIO;
1189 		return 0;
1190 
1191 	case PTRACE_OLD_GETSIGINFO:
1192 		/* for backwards-compatibility */
1193 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1194 
1195 	case PTRACE_OLD_SETSIGINFO:
1196 		/* for backwards-compatibility */
1197 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1198 
1199 	case PTRACE_GETREGS:
1200 		return ptrace_getregs(child,
1201 				      (struct pt_all_user_regs __user *) data);
1202 
1203 	case PTRACE_SETREGS:
1204 		return ptrace_setregs(child,
1205 				      (struct pt_all_user_regs __user *) data);
1206 
1207 	default:
1208 		return ptrace_request(child, request, addr, data);
1209 	}
1210 }
1211 
1212 
1213 /* "asmlinkage" so the input arguments are preserved... */
1214 
1215 asmlinkage long
1216 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1217 		     long arg4, long arg5, long arg6, long arg7,
1218 		     struct pt_regs regs)
1219 {
1220 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1221 		if (tracehook_report_syscall_entry(&regs))
1222 			return -ENOSYS;
1223 
1224 	/* copy user rbs to kernel rbs */
1225 	if (test_thread_flag(TIF_RESTORE_RSE))
1226 		ia64_sync_krbs();
1227 
1228 
1229 	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1230 
1231 	return 0;
1232 }
1233 
1234 /* "asmlinkage" so the input arguments are preserved... */
1235 
1236 asmlinkage void
1237 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1238 		     long arg4, long arg5, long arg6, long arg7,
1239 		     struct pt_regs regs)
1240 {
1241 	int step;
1242 
1243 	audit_syscall_exit(&regs);
1244 
1245 	step = test_thread_flag(TIF_SINGLESTEP);
1246 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1247 		tracehook_report_syscall_exit(&regs, step);
1248 
1249 	/* copy user rbs to kernel rbs */
1250 	if (test_thread_flag(TIF_RESTORE_RSE))
1251 		ia64_sync_krbs();
1252 }
1253 
1254 /* Utrace implementation starts here */
1255 struct regset_get {
1256 	void *kbuf;
1257 	void __user *ubuf;
1258 };
1259 
1260 struct regset_set {
1261 	const void *kbuf;
1262 	const void __user *ubuf;
1263 };
1264 
1265 struct regset_getset {
1266 	struct task_struct *target;
1267 	const struct user_regset *regset;
1268 	union {
1269 		struct regset_get get;
1270 		struct regset_set set;
1271 	} u;
1272 	unsigned int pos;
1273 	unsigned int count;
1274 	int ret;
1275 };
1276 
1277 static int
1278 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1279 		unsigned long addr, unsigned long *data, int write_access)
1280 {
1281 	struct pt_regs *pt;
1282 	unsigned long *ptr = NULL;
1283 	int ret;
1284 	char nat = 0;
1285 
1286 	pt = task_pt_regs(target);
1287 	switch (addr) {
1288 	case ELF_GR_OFFSET(1):
1289 		ptr = &pt->r1;
1290 		break;
1291 	case ELF_GR_OFFSET(2):
1292 	case ELF_GR_OFFSET(3):
1293 		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1294 		break;
1295 	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1296 		if (write_access) {
1297 			/* read NaT bit first: */
1298 			unsigned long dummy;
1299 
1300 			ret = unw_get_gr(info, addr/8, &dummy, &nat);
1301 			if (ret < 0)
1302 				return ret;
1303 		}
1304 		return unw_access_gr(info, addr/8, data, &nat, write_access);
1305 	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1306 		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1307 		break;
1308 	case ELF_GR_OFFSET(12):
1309 	case ELF_GR_OFFSET(13):
1310 		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1311 		break;
1312 	case ELF_GR_OFFSET(14):
1313 		ptr = &pt->r14;
1314 		break;
1315 	case ELF_GR_OFFSET(15):
1316 		ptr = &pt->r15;
1317 	}
1318 	if (write_access)
1319 		*ptr = *data;
1320 	else
1321 		*data = *ptr;
1322 	return 0;
1323 }
1324 
1325 static int
1326 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1327 		unsigned long addr, unsigned long *data, int write_access)
1328 {
1329 	struct pt_regs *pt;
1330 	unsigned long *ptr = NULL;
1331 
1332 	pt = task_pt_regs(target);
1333 	switch (addr) {
1334 	case ELF_BR_OFFSET(0):
1335 		ptr = &pt->b0;
1336 		break;
1337 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1338 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1339 				     data, write_access);
1340 	case ELF_BR_OFFSET(6):
1341 		ptr = &pt->b6;
1342 		break;
1343 	case ELF_BR_OFFSET(7):
1344 		ptr = &pt->b7;
1345 	}
1346 	if (write_access)
1347 		*ptr = *data;
1348 	else
1349 		*data = *ptr;
1350 	return 0;
1351 }
1352 
1353 static int
1354 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1355 		unsigned long addr, unsigned long *data, int write_access)
1356 {
1357 	struct pt_regs *pt;
1358 	unsigned long cfm, urbs_end;
1359 	unsigned long *ptr = NULL;
1360 
1361 	pt = task_pt_regs(target);
1362 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1363 		switch (addr) {
1364 		case ELF_AR_RSC_OFFSET:
1365 			/* force PL3 */
1366 			if (write_access)
1367 				pt->ar_rsc = *data | (3 << 2);
1368 			else
1369 				*data = pt->ar_rsc;
1370 			return 0;
1371 		case ELF_AR_BSP_OFFSET:
1372 			/*
1373 			 * By convention, we use PT_AR_BSP to refer to
1374 			 * the end of the user-level backing store.
1375 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1376 			 * to get the real value of ar.bsp at the time
1377 			 * the kernel was entered.
1378 			 *
1379 			 * Furthermore, when changing the contents of
1380 			 * PT_AR_BSP (or PT_CFM) while the task is
1381 			 * blocked in a system call, convert the state
1382 			 * so that the non-system-call exit
1383 			 * path is used.  This ensures that the proper
1384 			 * state will be picked up when resuming
1385 			 * execution.  However, it *also* means that
1386 			 * once we write PT_AR_BSP/PT_CFM, it won't be
1387 			 * possible to modify the syscall arguments of
1388 			 * the pending system call any longer.  This
1389 			 * shouldn't be an issue because modifying
1390 			 * PT_AR_BSP/PT_CFM generally implies that
1391 			 * we're either abandoning the pending system
1392 			 * call or that we defer it's re-execution
1393 			 * (e.g., due to GDB doing an inferior
1394 			 * function call).
1395 			 */
1396 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1397 			if (write_access) {
1398 				if (*data != urbs_end) {
1399 					if (in_syscall(pt))
1400 						convert_to_non_syscall(target,
1401 								       pt,
1402 								       cfm);
1403 					/*
1404 					 * Simulate user-level write
1405 					 * of ar.bsp:
1406 					 */
1407 					pt->loadrs = 0;
1408 					pt->ar_bspstore = *data;
1409 				}
1410 			} else
1411 				*data = urbs_end;
1412 			return 0;
1413 		case ELF_AR_BSPSTORE_OFFSET:
1414 			ptr = &pt->ar_bspstore;
1415 			break;
1416 		case ELF_AR_RNAT_OFFSET:
1417 			ptr = &pt->ar_rnat;
1418 			break;
1419 		case ELF_AR_CCV_OFFSET:
1420 			ptr = &pt->ar_ccv;
1421 			break;
1422 		case ELF_AR_UNAT_OFFSET:
1423 			ptr = &pt->ar_unat;
1424 			break;
1425 		case ELF_AR_FPSR_OFFSET:
1426 			ptr = &pt->ar_fpsr;
1427 			break;
1428 		case ELF_AR_PFS_OFFSET:
1429 			ptr = &pt->ar_pfs;
1430 			break;
1431 		case ELF_AR_LC_OFFSET:
1432 			return unw_access_ar(info, UNW_AR_LC, data,
1433 					     write_access);
1434 		case ELF_AR_EC_OFFSET:
1435 			return unw_access_ar(info, UNW_AR_EC, data,
1436 					     write_access);
1437 		case ELF_AR_CSD_OFFSET:
1438 			ptr = &pt->ar_csd;
1439 			break;
1440 		case ELF_AR_SSD_OFFSET:
1441 			ptr = &pt->ar_ssd;
1442 		}
1443 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1444 		switch (addr) {
1445 		case ELF_CR_IIP_OFFSET:
1446 			ptr = &pt->cr_iip;
1447 			break;
1448 		case ELF_CFM_OFFSET:
1449 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1450 			if (write_access) {
1451 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1452 					if (in_syscall(pt))
1453 						convert_to_non_syscall(target,
1454 								       pt,
1455 								       cfm);
1456 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1457 						      | (*data & PFM_MASK));
1458 				}
1459 			} else
1460 				*data = cfm;
1461 			return 0;
1462 		case ELF_CR_IPSR_OFFSET:
1463 			if (write_access) {
1464 				unsigned long tmp = *data;
1465 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1466 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1467 					tmp &= ~IA64_PSR_RI;
1468 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1469 					       | (pt->cr_ipsr & ~IPSR_MASK));
1470 			} else
1471 				*data = (pt->cr_ipsr & IPSR_MASK);
1472 			return 0;
1473 		}
1474 	} else if (addr == ELF_NAT_OFFSET)
1475 		return access_nat_bits(target, pt, info,
1476 				       data, write_access);
1477 	else if (addr == ELF_PR_OFFSET)
1478 		ptr = &pt->pr;
1479 	else
1480 		return -1;
1481 
1482 	if (write_access)
1483 		*ptr = *data;
1484 	else
1485 		*data = *ptr;
1486 
1487 	return 0;
1488 }
1489 
1490 static int
1491 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1492 		unsigned long addr, unsigned long *data, int write_access)
1493 {
1494 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1495 		return access_elf_gpreg(target, info, addr, data, write_access);
1496 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1497 		return access_elf_breg(target, info, addr, data, write_access);
1498 	else
1499 		return access_elf_areg(target, info, addr, data, write_access);
1500 }
1501 
1502 void do_gpregs_get(struct unw_frame_info *info, void *arg)
1503 {
1504 	struct pt_regs *pt;
1505 	struct regset_getset *dst = arg;
1506 	elf_greg_t tmp[16];
1507 	unsigned int i, index, min_copy;
1508 
1509 	if (unw_unwind_to_user(info) < 0)
1510 		return;
1511 
1512 	/*
1513 	 * coredump format:
1514 	 *      r0-r31
1515 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1516 	 *      predicate registers (p0-p63)
1517 	 *      b0-b7
1518 	 *      ip cfm user-mask
1519 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1520 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1521 	 */
1522 
1523 
1524 	/* Skip r0 */
1525 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1526 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1527 						      &dst->u.get.kbuf,
1528 						      &dst->u.get.ubuf,
1529 						      0, ELF_GR_OFFSET(1));
1530 		if (dst->ret || dst->count == 0)
1531 			return;
1532 	}
1533 
1534 	/* gr1 - gr15 */
1535 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1536 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1537 		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1538 			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1539 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1540 				index++)
1541 			if (access_elf_reg(dst->target, info, i,
1542 						&tmp[index], 0) < 0) {
1543 				dst->ret = -EIO;
1544 				return;
1545 			}
1546 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1547 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1548 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1549 		if (dst->ret || dst->count == 0)
1550 			return;
1551 	}
1552 
1553 	/* r16-r31 */
1554 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1555 		pt = task_pt_regs(dst->target);
1556 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1557 				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1558 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1559 		if (dst->ret || dst->count == 0)
1560 			return;
1561 	}
1562 
1563 	/* nat, pr, b0 - b7 */
1564 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1565 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1566 		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1567 			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1568 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1569 				index++)
1570 			if (access_elf_reg(dst->target, info, i,
1571 						&tmp[index], 0) < 0) {
1572 				dst->ret = -EIO;
1573 				return;
1574 			}
1575 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1576 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1577 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1578 		if (dst->ret || dst->count == 0)
1579 			return;
1580 	}
1581 
1582 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1583 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1584 	 */
1585 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1586 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1587 		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1588 			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1589 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1590 				index++)
1591 			if (access_elf_reg(dst->target, info, i,
1592 						&tmp[index], 0) < 0) {
1593 				dst->ret = -EIO;
1594 				return;
1595 			}
1596 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1597 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1598 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1599 	}
1600 }
1601 
1602 void do_gpregs_set(struct unw_frame_info *info, void *arg)
1603 {
1604 	struct pt_regs *pt;
1605 	struct regset_getset *dst = arg;
1606 	elf_greg_t tmp[16];
1607 	unsigned int i, index;
1608 
1609 	if (unw_unwind_to_user(info) < 0)
1610 		return;
1611 
1612 	/* Skip r0 */
1613 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1614 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1615 						       &dst->u.set.kbuf,
1616 						       &dst->u.set.ubuf,
1617 						       0, ELF_GR_OFFSET(1));
1618 		if (dst->ret || dst->count == 0)
1619 			return;
1620 	}
1621 
1622 	/* gr1-gr15 */
1623 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1624 		i = dst->pos;
1625 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1626 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1627 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1628 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1629 		if (dst->ret)
1630 			return;
1631 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1632 			if (access_elf_reg(dst->target, info, i,
1633 						&tmp[index], 1) < 0) {
1634 				dst->ret = -EIO;
1635 				return;
1636 			}
1637 		if (dst->count == 0)
1638 			return;
1639 	}
1640 
1641 	/* gr16-gr31 */
1642 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1643 		pt = task_pt_regs(dst->target);
1644 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1645 				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1646 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1647 		if (dst->ret || dst->count == 0)
1648 			return;
1649 	}
1650 
1651 	/* nat, pr, b0 - b7 */
1652 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1653 		i = dst->pos;
1654 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1655 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1656 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1657 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1658 		if (dst->ret)
1659 			return;
1660 		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1661 			if (access_elf_reg(dst->target, info, i,
1662 						&tmp[index], 1) < 0) {
1663 				dst->ret = -EIO;
1664 				return;
1665 			}
1666 		if (dst->count == 0)
1667 			return;
1668 	}
1669 
1670 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1671 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1672 	 */
1673 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1674 		i = dst->pos;
1675 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1676 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1677 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1678 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1679 		if (dst->ret)
1680 			return;
1681 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1682 			if (access_elf_reg(dst->target, info, i,
1683 						&tmp[index], 1) < 0) {
1684 				dst->ret = -EIO;
1685 				return;
1686 			}
1687 	}
1688 }
1689 
1690 #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1691 
1692 void do_fpregs_get(struct unw_frame_info *info, void *arg)
1693 {
1694 	struct regset_getset *dst = arg;
1695 	struct task_struct *task = dst->target;
1696 	elf_fpreg_t tmp[30];
1697 	int index, min_copy, i;
1698 
1699 	if (unw_unwind_to_user(info) < 0)
1700 		return;
1701 
1702 	/* Skip pos 0 and 1 */
1703 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1704 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1705 						      &dst->u.get.kbuf,
1706 						      &dst->u.get.ubuf,
1707 						      0, ELF_FP_OFFSET(2));
1708 		if (dst->count == 0 || dst->ret)
1709 			return;
1710 	}
1711 
1712 	/* fr2-fr31 */
1713 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1714 		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1715 
1716 		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1717 				dst->pos + dst->count);
1718 		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1719 				index++)
1720 			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1721 					 &tmp[index])) {
1722 				dst->ret = -EIO;
1723 				return;
1724 			}
1725 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1726 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1727 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1728 		if (dst->count == 0 || dst->ret)
1729 			return;
1730 	}
1731 
1732 	/* fph */
1733 	if (dst->count > 0) {
1734 		ia64_flush_fph(dst->target);
1735 		if (task->thread.flags & IA64_THREAD_FPH_VALID)
1736 			dst->ret = user_regset_copyout(
1737 				&dst->pos, &dst->count,
1738 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1739 				&dst->target->thread.fph,
1740 				ELF_FP_OFFSET(32), -1);
1741 		else
1742 			/* Zero fill instead.  */
1743 			dst->ret = user_regset_copyout_zero(
1744 				&dst->pos, &dst->count,
1745 				&dst->u.get.kbuf, &dst->u.get.ubuf,
1746 				ELF_FP_OFFSET(32), -1);
1747 	}
1748 }
1749 
1750 void do_fpregs_set(struct unw_frame_info *info, void *arg)
1751 {
1752 	struct regset_getset *dst = arg;
1753 	elf_fpreg_t fpreg, tmp[30];
1754 	int index, start, end;
1755 
1756 	if (unw_unwind_to_user(info) < 0)
1757 		return;
1758 
1759 	/* Skip pos 0 and 1 */
1760 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1761 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1762 						       &dst->u.set.kbuf,
1763 						       &dst->u.set.ubuf,
1764 						       0, ELF_FP_OFFSET(2));
1765 		if (dst->count == 0 || dst->ret)
1766 			return;
1767 	}
1768 
1769 	/* fr2-fr31 */
1770 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1771 		start = dst->pos;
1772 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1773 			 dst->pos + dst->count);
1774 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1775 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1776 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1777 		if (dst->ret)
1778 			return;
1779 
1780 		if (start & 0xF) { /* only write high part */
1781 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1782 					 &fpreg)) {
1783 				dst->ret = -EIO;
1784 				return;
1785 			}
1786 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1787 				= fpreg.u.bits[0];
1788 			start &= ~0xFUL;
1789 		}
1790 		if (end & 0xF) { /* only write low part */
1791 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1792 					&fpreg)) {
1793 				dst->ret = -EIO;
1794 				return;
1795 			}
1796 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1797 				= fpreg.u.bits[1];
1798 			end = (end + 0xF) & ~0xFUL;
1799 		}
1800 
1801 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1802 			index = start / sizeof(elf_fpreg_t);
1803 			if (unw_set_fr(info, index, tmp[index - 2])) {
1804 				dst->ret = -EIO;
1805 				return;
1806 			}
1807 		}
1808 		if (dst->ret || dst->count == 0)
1809 			return;
1810 	}
1811 
1812 	/* fph */
1813 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1814 		ia64_sync_fph(dst->target);
1815 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1816 						&dst->u.set.kbuf,
1817 						&dst->u.set.ubuf,
1818 						&dst->target->thread.fph,
1819 						ELF_FP_OFFSET(32), -1);
1820 	}
1821 }
1822 
1823 static int
1824 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1825 	       struct task_struct *target,
1826 	       const struct user_regset *regset,
1827 	       unsigned int pos, unsigned int count,
1828 	       const void *kbuf, const void __user *ubuf)
1829 {
1830 	struct regset_getset info = { .target = target, .regset = regset,
1831 				 .pos = pos, .count = count,
1832 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1833 				 .ret = 0 };
1834 
1835 	if (target == current)
1836 		unw_init_running(call, &info);
1837 	else {
1838 		struct unw_frame_info ufi;
1839 		memset(&ufi, 0, sizeof(ufi));
1840 		unw_init_from_blocked_task(&ufi, target);
1841 		(*call)(&ufi, &info);
1842 	}
1843 
1844 	return info.ret;
1845 }
1846 
1847 static int
1848 gpregs_get(struct task_struct *target,
1849 	   const struct user_regset *regset,
1850 	   unsigned int pos, unsigned int count,
1851 	   void *kbuf, void __user *ubuf)
1852 {
1853 	return do_regset_call(do_gpregs_get, target, regset, pos, count,
1854 		kbuf, ubuf);
1855 }
1856 
1857 static int gpregs_set(struct task_struct *target,
1858 		const struct user_regset *regset,
1859 		unsigned int pos, unsigned int count,
1860 		const void *kbuf, const void __user *ubuf)
1861 {
1862 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1863 		kbuf, ubuf);
1864 }
1865 
1866 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1867 {
1868 	do_sync_rbs(info, ia64_sync_user_rbs);
1869 }
1870 
1871 /*
1872  * This is called to write back the register backing store.
1873  * ptrace does this before it stops, so that a tracer reading the user
1874  * memory after the thread stops will get the current register data.
1875  */
1876 static int
1877 gpregs_writeback(struct task_struct *target,
1878 		 const struct user_regset *regset,
1879 		 int now)
1880 {
1881 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1882 		return 0;
1883 	set_notify_resume(target);
1884 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1885 		NULL, NULL);
1886 }
1887 
1888 static int
1889 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1890 {
1891 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1892 }
1893 
1894 static int fpregs_get(struct task_struct *target,
1895 		const struct user_regset *regset,
1896 		unsigned int pos, unsigned int count,
1897 		void *kbuf, void __user *ubuf)
1898 {
1899 	return do_regset_call(do_fpregs_get, target, regset, pos, count,
1900 		kbuf, ubuf);
1901 }
1902 
1903 static int fpregs_set(struct task_struct *target,
1904 		const struct user_regset *regset,
1905 		unsigned int pos, unsigned int count,
1906 		const void *kbuf, const void __user *ubuf)
1907 {
1908 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1909 		kbuf, ubuf);
1910 }
1911 
1912 static int
1913 access_uarea(struct task_struct *child, unsigned long addr,
1914 	      unsigned long *data, int write_access)
1915 {
1916 	unsigned int pos = -1; /* an invalid value */
1917 	int ret;
1918 	unsigned long *ptr, regnum;
1919 
1920 	if ((addr & 0x7) != 0) {
1921 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1922 		return -1;
1923 	}
1924 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1925 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1926 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1927 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1928 		dprintk("ptrace: rejecting access to register "
1929 					"address 0x%lx\n", addr);
1930 		return -1;
1931 	}
1932 
1933 	switch (addr) {
1934 	case PT_F32 ... (PT_F127 + 15):
1935 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1936 		break;
1937 	case PT_F2 ... (PT_F5 + 15):
1938 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1939 		break;
1940 	case PT_F10 ... (PT_F31 + 15):
1941 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1942 		break;
1943 	case PT_F6 ... (PT_F9 + 15):
1944 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1945 		break;
1946 	}
1947 
1948 	if (pos != -1) {
1949 		if (write_access)
1950 			ret = fpregs_set(child, NULL, pos,
1951 				sizeof(unsigned long), data, NULL);
1952 		else
1953 			ret = fpregs_get(child, NULL, pos,
1954 				sizeof(unsigned long), data, NULL);
1955 		if (ret != 0)
1956 			return -1;
1957 		return 0;
1958 	}
1959 
1960 	switch (addr) {
1961 	case PT_NAT_BITS:
1962 		pos = ELF_NAT_OFFSET;
1963 		break;
1964 	case PT_R4 ... PT_R7:
1965 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1966 		break;
1967 	case PT_B1 ... PT_B5:
1968 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1969 		break;
1970 	case PT_AR_EC:
1971 		pos = ELF_AR_EC_OFFSET;
1972 		break;
1973 	case PT_AR_LC:
1974 		pos = ELF_AR_LC_OFFSET;
1975 		break;
1976 	case PT_CR_IPSR:
1977 		pos = ELF_CR_IPSR_OFFSET;
1978 		break;
1979 	case PT_CR_IIP:
1980 		pos = ELF_CR_IIP_OFFSET;
1981 		break;
1982 	case PT_CFM:
1983 		pos = ELF_CFM_OFFSET;
1984 		break;
1985 	case PT_AR_UNAT:
1986 		pos = ELF_AR_UNAT_OFFSET;
1987 		break;
1988 	case PT_AR_PFS:
1989 		pos = ELF_AR_PFS_OFFSET;
1990 		break;
1991 	case PT_AR_RSC:
1992 		pos = ELF_AR_RSC_OFFSET;
1993 		break;
1994 	case PT_AR_RNAT:
1995 		pos = ELF_AR_RNAT_OFFSET;
1996 		break;
1997 	case PT_AR_BSPSTORE:
1998 		pos = ELF_AR_BSPSTORE_OFFSET;
1999 		break;
2000 	case PT_PR:
2001 		pos = ELF_PR_OFFSET;
2002 		break;
2003 	case PT_B6:
2004 		pos = ELF_BR_OFFSET(6);
2005 		break;
2006 	case PT_AR_BSP:
2007 		pos = ELF_AR_BSP_OFFSET;
2008 		break;
2009 	case PT_R1 ... PT_R3:
2010 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2011 		break;
2012 	case PT_R12 ... PT_R15:
2013 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2014 		break;
2015 	case PT_R8 ... PT_R11:
2016 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2017 		break;
2018 	case PT_R16 ... PT_R31:
2019 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2020 		break;
2021 	case PT_AR_CCV:
2022 		pos = ELF_AR_CCV_OFFSET;
2023 		break;
2024 	case PT_AR_FPSR:
2025 		pos = ELF_AR_FPSR_OFFSET;
2026 		break;
2027 	case PT_B0:
2028 		pos = ELF_BR_OFFSET(0);
2029 		break;
2030 	case PT_B7:
2031 		pos = ELF_BR_OFFSET(7);
2032 		break;
2033 	case PT_AR_CSD:
2034 		pos = ELF_AR_CSD_OFFSET;
2035 		break;
2036 	case PT_AR_SSD:
2037 		pos = ELF_AR_SSD_OFFSET;
2038 		break;
2039 	}
2040 
2041 	if (pos != -1) {
2042 		if (write_access)
2043 			ret = gpregs_set(child, NULL, pos,
2044 				sizeof(unsigned long), data, NULL);
2045 		else
2046 			ret = gpregs_get(child, NULL, pos,
2047 				sizeof(unsigned long), data, NULL);
2048 		if (ret != 0)
2049 			return -1;
2050 		return 0;
2051 	}
2052 
2053 	/* access debug registers */
2054 	if (addr >= PT_IBR) {
2055 		regnum = (addr - PT_IBR) >> 3;
2056 		ptr = &child->thread.ibr[0];
2057 	} else {
2058 		regnum = (addr - PT_DBR) >> 3;
2059 		ptr = &child->thread.dbr[0];
2060 	}
2061 
2062 	if (regnum >= 8) {
2063 		dprintk("ptrace: rejecting access to register "
2064 				"address 0x%lx\n", addr);
2065 		return -1;
2066 	}
2067 #ifdef CONFIG_PERFMON
2068 	/*
2069 	 * Check if debug registers are used by perfmon. This
2070 	 * test must be done once we know that we can do the
2071 	 * operation, i.e. the arguments are all valid, but
2072 	 * before we start modifying the state.
2073 	 *
2074 	 * Perfmon needs to keep a count of how many processes
2075 	 * are trying to modify the debug registers for system
2076 	 * wide monitoring sessions.
2077 	 *
2078 	 * We also include read access here, because they may
2079 	 * cause the PMU-installed debug register state
2080 	 * (dbr[], ibr[]) to be reset. The two arrays are also
2081 	 * used by perfmon, but we do not use
2082 	 * IA64_THREAD_DBG_VALID. The registers are restored
2083 	 * by the PMU context switch code.
2084 	 */
2085 	if (pfm_use_debug_registers(child))
2086 		return -1;
2087 #endif
2088 
2089 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2090 		child->thread.flags |= IA64_THREAD_DBG_VALID;
2091 		memset(child->thread.dbr, 0,
2092 				sizeof(child->thread.dbr));
2093 		memset(child->thread.ibr, 0,
2094 				sizeof(child->thread.ibr));
2095 	}
2096 
2097 	ptr += regnum;
2098 
2099 	if ((regnum & 1) && write_access) {
2100 		/* don't let the user set kernel-level breakpoints: */
2101 		*ptr = *data & ~(7UL << 56);
2102 		return 0;
2103 	}
2104 	if (write_access)
2105 		*ptr = *data;
2106 	else
2107 		*data = *ptr;
2108 	return 0;
2109 }
2110 
2111 static const struct user_regset native_regsets[] = {
2112 	{
2113 		.core_note_type = NT_PRSTATUS,
2114 		.n = ELF_NGREG,
2115 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2116 		.get = gpregs_get, .set = gpregs_set,
2117 		.writeback = gpregs_writeback
2118 	},
2119 	{
2120 		.core_note_type = NT_PRFPREG,
2121 		.n = ELF_NFPREG,
2122 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2123 		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2124 	},
2125 };
2126 
2127 static const struct user_regset_view user_ia64_view = {
2128 	.name = "ia64",
2129 	.e_machine = EM_IA_64,
2130 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2131 };
2132 
2133 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2134 {
2135 	return &user_ia64_view;
2136 }
2137 
2138 struct syscall_get_set_args {
2139 	unsigned int i;
2140 	unsigned int n;
2141 	unsigned long *args;
2142 	struct pt_regs *regs;
2143 	int rw;
2144 };
2145 
2146 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2147 {
2148 	struct syscall_get_set_args *args = data;
2149 	struct pt_regs *pt = args->regs;
2150 	unsigned long *krbs, cfm, ndirty;
2151 	int i, count;
2152 
2153 	if (unw_unwind_to_user(info) < 0)
2154 		return;
2155 
2156 	cfm = pt->cr_ifs;
2157 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2158 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2159 
2160 	count = 0;
2161 	if (in_syscall(pt))
2162 		count = min_t(int, args->n, cfm & 0x7f);
2163 
2164 	for (i = 0; i < count; i++) {
2165 		if (args->rw)
2166 			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2167 				args->args[i];
2168 		else
2169 			args->args[i] = *ia64_rse_skip_regs(krbs,
2170 				ndirty + i + args->i);
2171 	}
2172 
2173 	if (!args->rw) {
2174 		while (i < args->n) {
2175 			args->args[i] = 0;
2176 			i++;
2177 		}
2178 	}
2179 }
2180 
2181 void ia64_syscall_get_set_arguments(struct task_struct *task,
2182 	struct pt_regs *regs, unsigned long *args, int rw)
2183 {
2184 	struct syscall_get_set_args data = {
2185 		.i = 0,
2186 		.n = 6,
2187 		.args = args,
2188 		.regs = regs,
2189 		.rw = rw,
2190 	};
2191 
2192 	if (task == current)
2193 		unw_init_running(syscall_get_set_args_cb, &data);
2194 	else {
2195 		struct unw_frame_info ufi;
2196 		memset(&ufi, 0, sizeof(ufi));
2197 		unw_init_from_blocked_task(&ufi, task);
2198 		syscall_get_set_args_cb(&ufi, &data);
2199 	}
2200 }
2201