xref: /openbmc/linux/arch/ia64/kernel/ptrace.c (revision a1e58bbd)
1 /*
2  * Kernel support for the ptrace() and syscall tracing interfaces.
3  *
4  * Copyright (C) 1999-2005 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  *
7  * Derived from the x86 and Alpha versions.
8  */
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/smp_lock.h>
16 #include <linux/user.h>
17 #include <linux/security.h>
18 #include <linux/audit.h>
19 #include <linux/signal.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/processor.h>
23 #include <asm/ptrace_offsets.h>
24 #include <asm/rse.h>
25 #include <asm/system.h>
26 #include <asm/uaccess.h>
27 #include <asm/unwind.h>
28 #ifdef CONFIG_PERFMON
29 #include <asm/perfmon.h>
30 #endif
31 
32 #include "entry.h"
33 
34 /*
35  * Bits in the PSR that we allow ptrace() to change:
36  *	be, up, ac, mfl, mfh (the user mask; five bits total)
37  *	db (debug breakpoint fault; one bit)
38  *	id (instruction debug fault disable; one bit)
39  *	dd (data debug fault disable; one bit)
40  *	ri (restart instruction; two bits)
41  *	is (instruction set; one bit)
42  */
43 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
44 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45 
46 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
47 #define PFM_MASK	MASK(38)
48 
49 #define PTRACE_DEBUG	0
50 
51 #if PTRACE_DEBUG
52 # define dprintk(format...)	printk(format)
53 # define inline
54 #else
55 # define dprintk(format...)
56 #endif
57 
58 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
59 
60 static inline int
61 in_syscall (struct pt_regs *pt)
62 {
63 	return (long) pt->cr_ifs >= 0;
64 }
65 
66 /*
67  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68  * bitset where bit i is set iff the NaT bit of register i is set.
69  */
70 unsigned long
71 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72 {
73 #	define GET_BITS(first, last, unat)				\
74 	({								\
75 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
76 		unsigned long nbits = (last - first + 1);		\
77 		unsigned long mask = MASK(nbits) << first;		\
78 		unsigned long dist;					\
79 		if (bit < first)					\
80 			dist = 64 + bit - first;			\
81 		else							\
82 			dist = bit - first;				\
83 		ia64_rotr(unat, dist) & mask;				\
84 	})
85 	unsigned long val;
86 
87 	/*
88 	 * Registers that are stored consecutively in struct pt_regs
89 	 * can be handled in parallel.  If the register order in
90 	 * struct_pt_regs changes, this code MUST be updated.
91 	 */
92 	val  = GET_BITS( 1,  1, scratch_unat);
93 	val |= GET_BITS( 2,  3, scratch_unat);
94 	val |= GET_BITS(12, 13, scratch_unat);
95 	val |= GET_BITS(14, 14, scratch_unat);
96 	val |= GET_BITS(15, 15, scratch_unat);
97 	val |= GET_BITS( 8, 11, scratch_unat);
98 	val |= GET_BITS(16, 31, scratch_unat);
99 	return val;
100 
101 #	undef GET_BITS
102 }
103 
104 /*
105  * Set the NaT bits for the scratch registers according to NAT and
106  * return the resulting unat (assuming the scratch registers are
107  * stored in PT).
108  */
109 unsigned long
110 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111 {
112 #	define PUT_BITS(first, last, nat)				\
113 	({								\
114 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
115 		unsigned long nbits = (last - first + 1);		\
116 		unsigned long mask = MASK(nbits) << first;		\
117 		long dist;						\
118 		if (bit < first)					\
119 			dist = 64 + bit - first;			\
120 		else							\
121 			dist = bit - first;				\
122 		ia64_rotl(nat & mask, dist);				\
123 	})
124 	unsigned long scratch_unat;
125 
126 	/*
127 	 * Registers that are stored consecutively in struct pt_regs
128 	 * can be handled in parallel.  If the register order in
129 	 * struct_pt_regs changes, this code MUST be updated.
130 	 */
131 	scratch_unat  = PUT_BITS( 1,  1, nat);
132 	scratch_unat |= PUT_BITS( 2,  3, nat);
133 	scratch_unat |= PUT_BITS(12, 13, nat);
134 	scratch_unat |= PUT_BITS(14, 14, nat);
135 	scratch_unat |= PUT_BITS(15, 15, nat);
136 	scratch_unat |= PUT_BITS( 8, 11, nat);
137 	scratch_unat |= PUT_BITS(16, 31, nat);
138 
139 	return scratch_unat;
140 
141 #	undef PUT_BITS
142 }
143 
144 #define IA64_MLX_TEMPLATE	0x2
145 #define IA64_MOVL_OPCODE	6
146 
147 void
148 ia64_increment_ip (struct pt_regs *regs)
149 {
150 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151 
152 	if (ri > 2) {
153 		ri = 0;
154 		regs->cr_iip += 16;
155 	} else if (ri == 2) {
156 		get_user(w0, (char __user *) regs->cr_iip + 0);
157 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158 			/*
159 			 * rfi'ing to slot 2 of an MLX bundle causes
160 			 * an illegal operation fault.  We don't want
161 			 * that to happen...
162 			 */
163 			ri = 0;
164 			regs->cr_iip += 16;
165 		}
166 	}
167 	ia64_psr(regs)->ri = ri;
168 }
169 
170 void
171 ia64_decrement_ip (struct pt_regs *regs)
172 {
173 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174 
175 	if (ia64_psr(regs)->ri == 0) {
176 		regs->cr_iip -= 16;
177 		ri = 2;
178 		get_user(w0, (char __user *) regs->cr_iip + 0);
179 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180 			/*
181 			 * rfi'ing to slot 2 of an MLX bundle causes
182 			 * an illegal operation fault.  We don't want
183 			 * that to happen...
184 			 */
185 			ri = 1;
186 		}
187 	}
188 	ia64_psr(regs)->ri = ri;
189 }
190 
191 /*
192  * This routine is used to read an rnat bits that are stored on the
193  * kernel backing store.  Since, in general, the alignment of the user
194  * and kernel are different, this is not completely trivial.  In
195  * essence, we need to construct the user RNAT based on up to two
196  * kernel RNAT values and/or the RNAT value saved in the child's
197  * pt_regs.
198  *
199  * user rbs
200  *
201  * +--------+ <-- lowest address
202  * | slot62 |
203  * +--------+
204  * |  rnat  | 0x....1f8
205  * +--------+
206  * | slot00 | \
207  * +--------+ |
208  * | slot01 | > child_regs->ar_rnat
209  * +--------+ |
210  * | slot02 | /				kernel rbs
211  * +--------+				+--------+
212  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
213  * +- - - - +				+--------+
214  *					| slot62 |
215  * +- - - - +				+--------+
216  *					|  rnat	 |
217  * +- - - - +				+--------+
218  *   vrnat				| slot00 |
219  * +- - - - +				+--------+
220  *					=	 =
221  *					+--------+
222  *					| slot00 | \
223  *					+--------+ |
224  *					| slot01 | > child_stack->ar_rnat
225  *					+--------+ |
226  *					| slot02 | /
227  *					+--------+
228  *						  <--- child_stack->ar_bspstore
229  *
230  * The way to think of this code is as follows: bit 0 in the user rnat
231  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232  * value.  The kernel rnat value holding this bit is stored in
233  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
234  * form the upper bits of the user rnat value.
235  *
236  * Boundary cases:
237  *
238  * o when reading the rnat "below" the first rnat slot on the kernel
239  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
240  *   merged in from pt->ar_rnat.
241  *
242  * o when reading the rnat "above" the last rnat slot on the kernel
243  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244  */
245 static unsigned long
246 get_rnat (struct task_struct *task, struct switch_stack *sw,
247 	  unsigned long *krbs, unsigned long *urnat_addr,
248 	  unsigned long *urbs_end)
249 {
250 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251 	unsigned long umask = 0, mask, m;
252 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253 	long num_regs, nbits;
254 	struct pt_regs *pt;
255 
256 	pt = task_pt_regs(task);
257 	kbsp = (unsigned long *) sw->ar_bspstore;
258 	ubspstore = (unsigned long *) pt->ar_bspstore;
259 
260 	if (urbs_end < urnat_addr)
261 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262 	else
263 		nbits = 63;
264 	mask = MASK(nbits);
265 	/*
266 	 * First, figure out which bit number slot 0 in user-land maps
267 	 * to in the kernel rnat.  Do this by figuring out how many
268 	 * register slots we're beyond the user's backingstore and
269 	 * then computing the equivalent address in kernel space.
270 	 */
271 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273 	shift = ia64_rse_slot_num(slot0_kaddr);
274 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275 	rnat0_kaddr = rnat1_kaddr - 64;
276 
277 	if (ubspstore + 63 > urnat_addr) {
278 		/* some bits need to be merged in from pt->ar_rnat */
279 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280 		urnat = (pt->ar_rnat & umask);
281 		mask &= ~umask;
282 		if (!mask)
283 			return urnat;
284 	}
285 
286 	m = mask << shift;
287 	if (rnat0_kaddr >= kbsp)
288 		rnat0 = sw->ar_rnat;
289 	else if (rnat0_kaddr > krbs)
290 		rnat0 = *rnat0_kaddr;
291 	urnat |= (rnat0 & m) >> shift;
292 
293 	m = mask >> (63 - shift);
294 	if (rnat1_kaddr >= kbsp)
295 		rnat1 = sw->ar_rnat;
296 	else if (rnat1_kaddr > krbs)
297 		rnat1 = *rnat1_kaddr;
298 	urnat |= (rnat1 & m) << (63 - shift);
299 	return urnat;
300 }
301 
302 /*
303  * The reverse of get_rnat.
304  */
305 static void
306 put_rnat (struct task_struct *task, struct switch_stack *sw,
307 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308 	  unsigned long *urbs_end)
309 {
310 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312 	long num_regs, nbits;
313 	struct pt_regs *pt;
314 	unsigned long cfm, *urbs_kargs;
315 
316 	pt = task_pt_regs(task);
317 	kbsp = (unsigned long *) sw->ar_bspstore;
318 	ubspstore = (unsigned long *) pt->ar_bspstore;
319 
320 	urbs_kargs = urbs_end;
321 	if (in_syscall(pt)) {
322 		/*
323 		 * If entered via syscall, don't allow user to set rnat bits
324 		 * for syscall args.
325 		 */
326 		cfm = pt->cr_ifs;
327 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328 	}
329 
330 	if (urbs_kargs >= urnat_addr)
331 		nbits = 63;
332 	else {
333 		if ((urnat_addr - 63) >= urbs_kargs)
334 			return;
335 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336 	}
337 	mask = MASK(nbits);
338 
339 	/*
340 	 * First, figure out which bit number slot 0 in user-land maps
341 	 * to in the kernel rnat.  Do this by figuring out how many
342 	 * register slots we're beyond the user's backingstore and
343 	 * then computing the equivalent address in kernel space.
344 	 */
345 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347 	shift = ia64_rse_slot_num(slot0_kaddr);
348 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349 	rnat0_kaddr = rnat1_kaddr - 64;
350 
351 	if (ubspstore + 63 > urnat_addr) {
352 		/* some bits need to be place in pt->ar_rnat: */
353 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355 		mask &= ~umask;
356 		if (!mask)
357 			return;
358 	}
359 	/*
360 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361 	 * rnat slot is ignored. so we don't have to clear it here.
362 	 */
363 	rnat0 = (urnat << shift);
364 	m = mask << shift;
365 	if (rnat0_kaddr >= kbsp)
366 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367 	else if (rnat0_kaddr > krbs)
368 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369 
370 	rnat1 = (urnat >> (63 - shift));
371 	m = mask >> (63 - shift);
372 	if (rnat1_kaddr >= kbsp)
373 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374 	else if (rnat1_kaddr > krbs)
375 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376 }
377 
378 static inline int
379 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380 	       unsigned long urbs_end)
381 {
382 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383 						      urbs_end);
384 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385 }
386 
387 /*
388  * Read a word from the user-level backing store of task CHILD.  ADDR
389  * is the user-level address to read the word from, VAL a pointer to
390  * the return value, and USER_BSP gives the end of the user-level
391  * backing store (i.e., it's the address that would be in ar.bsp after
392  * the user executed a "cover" instruction).
393  *
394  * This routine takes care of accessing the kernel register backing
395  * store for those registers that got spilled there.  It also takes
396  * care of calculating the appropriate RNaT collection words.
397  */
398 long
399 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400 	   unsigned long user_rbs_end, unsigned long addr, long *val)
401 {
402 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403 	struct pt_regs *child_regs;
404 	size_t copied;
405 	long ret;
406 
407 	urbs_end = (long *) user_rbs_end;
408 	laddr = (unsigned long *) addr;
409 	child_regs = task_pt_regs(child);
410 	bspstore = (unsigned long *) child_regs->ar_bspstore;
411 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
413 			  (unsigned long) urbs_end))
414 	{
415 		/*
416 		 * Attempt to read the RBS in an area that's actually
417 		 * on the kernel RBS => read the corresponding bits in
418 		 * the kernel RBS.
419 		 */
420 		rnat_addr = ia64_rse_rnat_addr(laddr);
421 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422 
423 		if (laddr == rnat_addr) {
424 			/* return NaT collection word itself */
425 			*val = ret;
426 			return 0;
427 		}
428 
429 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430 			/*
431 			 * It is implementation dependent whether the
432 			 * data portion of a NaT value gets saved on a
433 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
434 			 * 4.4.4.6 Register Spill and Fill).  To get
435 			 * consistent behavior across all possible
436 			 * IA-64 implementations, we return zero in
437 			 * this case.
438 			 */
439 			*val = 0;
440 			return 0;
441 		}
442 
443 		if (laddr < urbs_end) {
444 			/*
445 			 * The desired word is on the kernel RBS and
446 			 * is not a NaT.
447 			 */
448 			regnum = ia64_rse_num_regs(bspstore, laddr);
449 			*val = *ia64_rse_skip_regs(krbs, regnum);
450 			return 0;
451 		}
452 	}
453 	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454 	if (copied != sizeof(ret))
455 		return -EIO;
456 	*val = ret;
457 	return 0;
458 }
459 
460 long
461 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462 	   unsigned long user_rbs_end, unsigned long addr, long val)
463 {
464 	unsigned long *bspstore, *krbs, regnum, *laddr;
465 	unsigned long *urbs_end = (long *) user_rbs_end;
466 	struct pt_regs *child_regs;
467 
468 	laddr = (unsigned long *) addr;
469 	child_regs = task_pt_regs(child);
470 	bspstore = (unsigned long *) child_regs->ar_bspstore;
471 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
473 			  (unsigned long) urbs_end))
474 	{
475 		/*
476 		 * Attempt to write the RBS in an area that's actually
477 		 * on the kernel RBS => write the corresponding bits
478 		 * in the kernel RBS.
479 		 */
480 		if (ia64_rse_is_rnat_slot(laddr))
481 			put_rnat(child, child_stack, krbs, laddr, val,
482 				 urbs_end);
483 		else {
484 			if (laddr < urbs_end) {
485 				regnum = ia64_rse_num_regs(bspstore, laddr);
486 				*ia64_rse_skip_regs(krbs, regnum) = val;
487 			}
488 		}
489 	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490 		   != sizeof(val))
491 		return -EIO;
492 	return 0;
493 }
494 
495 /*
496  * Calculate the address of the end of the user-level register backing
497  * store.  This is the address that would have been stored in ar.bsp
498  * if the user had executed a "cover" instruction right before
499  * entering the kernel.  If CFMP is not NULL, it is used to return the
500  * "current frame mask" that was active at the time the kernel was
501  * entered.
502  */
503 unsigned long
504 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505 		       unsigned long *cfmp)
506 {
507 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508 	long ndirty;
509 
510 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511 	bspstore = (unsigned long *) pt->ar_bspstore;
512 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513 
514 	if (in_syscall(pt))
515 		ndirty += (cfm & 0x7f);
516 	else
517 		cfm &= ~(1UL << 63);	/* clear valid bit */
518 
519 	if (cfmp)
520 		*cfmp = cfm;
521 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522 }
523 
524 /*
525  * Synchronize (i.e, write) the RSE backing store living in kernel
526  * space to the VM of the CHILD task.  SW and PT are the pointers to
527  * the switch_stack and pt_regs structures, respectively.
528  * USER_RBS_END is the user-level address at which the backing store
529  * ends.
530  */
531 long
532 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
534 {
535 	unsigned long addr, val;
536 	long ret;
537 
538 	/* now copy word for word from kernel rbs to user rbs: */
539 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541 		if (ret < 0)
542 			return ret;
543 		if (access_process_vm(child, addr, &val, sizeof(val), 1)
544 		    != sizeof(val))
545 			return -EIO;
546 	}
547 	return 0;
548 }
549 
550 static long
551 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
552 		unsigned long user_rbs_start, unsigned long user_rbs_end)
553 {
554 	unsigned long addr, val;
555 	long ret;
556 
557 	/* now copy word for word from user rbs to kernel rbs: */
558 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
559 		if (access_process_vm(child, addr, &val, sizeof(val), 0)
560 				!= sizeof(val))
561 			return -EIO;
562 
563 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
564 		if (ret < 0)
565 			return ret;
566 	}
567 	return 0;
568 }
569 
570 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
571 			    unsigned long, unsigned long);
572 
573 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
574 {
575 	struct pt_regs *pt;
576 	unsigned long urbs_end;
577 	syncfunc_t fn = arg;
578 
579 	if (unw_unwind_to_user(info) < 0)
580 		return;
581 	pt = task_pt_regs(info->task);
582 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
583 
584 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
585 }
586 
587 /*
588  * when a thread is stopped (ptraced), debugger might change thread's user
589  * stack (change memory directly), and we must avoid the RSE stored in kernel
590  * to override user stack (user space's RSE is newer than kernel's in the
591  * case). To workaround the issue, we copy kernel RSE to user RSE before the
592  * task is stopped, so user RSE has updated data.  we then copy user RSE to
593  * kernel after the task is resummed from traced stop and kernel will use the
594  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
595  * synchronize user RSE to kernel.
596  */
597 void ia64_ptrace_stop(void)
598 {
599 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
600 		return;
601 	tsk_set_notify_resume(current);
602 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
603 }
604 
605 /*
606  * This is called to read back the register backing store.
607  */
608 void ia64_sync_krbs(void)
609 {
610 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
611 	tsk_clear_notify_resume(current);
612 
613 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
614 }
615 
616 /*
617  * After PTRACE_ATTACH, a thread's register backing store area in user
618  * space is assumed to contain correct data whenever the thread is
619  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
620  * But if the child was already stopped for job control when we attach
621  * to it, then it might not ever get into ptrace_stop by the time we
622  * want to examine the user memory containing the RBS.
623  */
624 void
625 ptrace_attach_sync_user_rbs (struct task_struct *child)
626 {
627 	int stopped = 0;
628 	struct unw_frame_info info;
629 
630 	/*
631 	 * If the child is in TASK_STOPPED, we need to change that to
632 	 * TASK_TRACED momentarily while we operate on it.  This ensures
633 	 * that the child won't be woken up and return to user mode while
634 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
635 	 */
636 
637 	read_lock(&tasklist_lock);
638 	if (child->signal) {
639 		spin_lock_irq(&child->sighand->siglock);
640 		if (child->state == TASK_STOPPED &&
641 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
642 			tsk_set_notify_resume(child);
643 
644 			child->state = TASK_TRACED;
645 			stopped = 1;
646 		}
647 		spin_unlock_irq(&child->sighand->siglock);
648 	}
649 	read_unlock(&tasklist_lock);
650 
651 	if (!stopped)
652 		return;
653 
654 	unw_init_from_blocked_task(&info, child);
655 	do_sync_rbs(&info, ia64_sync_user_rbs);
656 
657 	/*
658 	 * Now move the child back into TASK_STOPPED if it should be in a
659 	 * job control stop, so that SIGCONT can be used to wake it up.
660 	 */
661 	read_lock(&tasklist_lock);
662 	if (child->signal) {
663 		spin_lock_irq(&child->sighand->siglock);
664 		if (child->state == TASK_TRACED &&
665 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
666 			child->state = TASK_STOPPED;
667 		}
668 		spin_unlock_irq(&child->sighand->siglock);
669 	}
670 	read_unlock(&tasklist_lock);
671 }
672 
673 static inline int
674 thread_matches (struct task_struct *thread, unsigned long addr)
675 {
676 	unsigned long thread_rbs_end;
677 	struct pt_regs *thread_regs;
678 
679 	if (ptrace_check_attach(thread, 0) < 0)
680 		/*
681 		 * If the thread is not in an attachable state, we'll
682 		 * ignore it.  The net effect is that if ADDR happens
683 		 * to overlap with the portion of the thread's
684 		 * register backing store that is currently residing
685 		 * on the thread's kernel stack, then ptrace() may end
686 		 * up accessing a stale value.  But if the thread
687 		 * isn't stopped, that's a problem anyhow, so we're
688 		 * doing as well as we can...
689 		 */
690 		return 0;
691 
692 	thread_regs = task_pt_regs(thread);
693 	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
694 	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
695 		return 0;
696 
697 	return 1;	/* looks like we've got a winner */
698 }
699 
700 /*
701  * Write f32-f127 back to task->thread.fph if it has been modified.
702  */
703 inline void
704 ia64_flush_fph (struct task_struct *task)
705 {
706 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
707 
708 	/*
709 	 * Prevent migrating this task while
710 	 * we're fiddling with the FPU state
711 	 */
712 	preempt_disable();
713 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
714 		psr->mfh = 0;
715 		task->thread.flags |= IA64_THREAD_FPH_VALID;
716 		ia64_save_fpu(&task->thread.fph[0]);
717 	}
718 	preempt_enable();
719 }
720 
721 /*
722  * Sync the fph state of the task so that it can be manipulated
723  * through thread.fph.  If necessary, f32-f127 are written back to
724  * thread.fph or, if the fph state hasn't been used before, thread.fph
725  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
726  * ensure that the task picks up the state from thread.fph when it
727  * executes again.
728  */
729 void
730 ia64_sync_fph (struct task_struct *task)
731 {
732 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
733 
734 	ia64_flush_fph(task);
735 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
736 		task->thread.flags |= IA64_THREAD_FPH_VALID;
737 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
738 	}
739 	ia64_drop_fpu(task);
740 	psr->dfh = 1;
741 }
742 
743 static int
744 access_fr (struct unw_frame_info *info, int regnum, int hi,
745 	   unsigned long *data, int write_access)
746 {
747 	struct ia64_fpreg fpval;
748 	int ret;
749 
750 	ret = unw_get_fr(info, regnum, &fpval);
751 	if (ret < 0)
752 		return ret;
753 
754 	if (write_access) {
755 		fpval.u.bits[hi] = *data;
756 		ret = unw_set_fr(info, regnum, fpval);
757 	} else
758 		*data = fpval.u.bits[hi];
759 	return ret;
760 }
761 
762 /*
763  * Change the machine-state of CHILD such that it will return via the normal
764  * kernel exit-path, rather than the syscall-exit path.
765  */
766 static void
767 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
768 			unsigned long cfm)
769 {
770 	struct unw_frame_info info, prev_info;
771 	unsigned long ip, sp, pr;
772 
773 	unw_init_from_blocked_task(&info, child);
774 	while (1) {
775 		prev_info = info;
776 		if (unw_unwind(&info) < 0)
777 			return;
778 
779 		unw_get_sp(&info, &sp);
780 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
781 		    < IA64_PT_REGS_SIZE) {
782 			dprintk("ptrace.%s: ran off the top of the kernel "
783 				"stack\n", __func__);
784 			return;
785 		}
786 		if (unw_get_pr (&prev_info, &pr) < 0) {
787 			unw_get_rp(&prev_info, &ip);
788 			dprintk("ptrace.%s: failed to read "
789 				"predicate register (ip=0x%lx)\n",
790 				__func__, ip);
791 			return;
792 		}
793 		if (unw_is_intr_frame(&info)
794 		    && (pr & (1UL << PRED_USER_STACK)))
795 			break;
796 	}
797 
798 	/*
799 	 * Note: at the time of this call, the target task is blocked
800 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
801 	 * (aka, "pLvSys") we redirect execution from
802 	 * .work_pending_syscall_end to .work_processed_kernel.
803 	 */
804 	unw_get_pr(&prev_info, &pr);
805 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
806 	pr |=  (1UL << PRED_NON_SYSCALL);
807 	unw_set_pr(&prev_info, pr);
808 
809 	pt->cr_ifs = (1UL << 63) | cfm;
810 	/*
811 	 * Clear the memory that is NOT written on syscall-entry to
812 	 * ensure we do not leak kernel-state to user when execution
813 	 * resumes.
814 	 */
815 	pt->r2 = 0;
816 	pt->r3 = 0;
817 	pt->r14 = 0;
818 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
819 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
820 	pt->b7 = 0;
821 	pt->ar_ccv = 0;
822 	pt->ar_csd = 0;
823 	pt->ar_ssd = 0;
824 }
825 
826 static int
827 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
828 		 struct unw_frame_info *info,
829 		 unsigned long *data, int write_access)
830 {
831 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
832 	char nat = 0;
833 
834 	if (write_access) {
835 		nat_bits = *data;
836 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
837 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
838 			dprintk("ptrace: failed to set ar.unat\n");
839 			return -1;
840 		}
841 		for (regnum = 4; regnum <= 7; ++regnum) {
842 			unw_get_gr(info, regnum, &dummy, &nat);
843 			unw_set_gr(info, regnum, dummy,
844 				   (nat_bits >> regnum) & 1);
845 		}
846 	} else {
847 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
848 			dprintk("ptrace: failed to read ar.unat\n");
849 			return -1;
850 		}
851 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
852 		for (regnum = 4; regnum <= 7; ++regnum) {
853 			unw_get_gr(info, regnum, &dummy, &nat);
854 			nat_bits |= (nat != 0) << regnum;
855 		}
856 		*data = nat_bits;
857 	}
858 	return 0;
859 }
860 
861 static int
862 access_uarea (struct task_struct *child, unsigned long addr,
863 	      unsigned long *data, int write_access)
864 {
865 	unsigned long *ptr, regnum, urbs_end, cfm;
866 	struct switch_stack *sw;
867 	struct pt_regs *pt;
868 #	define pt_reg_addr(pt, reg)	((void *)			    \
869 					 ((unsigned long) (pt)		    \
870 					  + offsetof(struct pt_regs, reg)))
871 
872 
873 	pt = task_pt_regs(child);
874 	sw = (struct switch_stack *) (child->thread.ksp + 16);
875 
876 	if ((addr & 0x7) != 0) {
877 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
878 		return -1;
879 	}
880 
881 	if (addr < PT_F127 + 16) {
882 		/* accessing fph */
883 		if (write_access)
884 			ia64_sync_fph(child);
885 		else
886 			ia64_flush_fph(child);
887 		ptr = (unsigned long *)
888 			((unsigned long) &child->thread.fph + addr);
889 	} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
890 		/* scratch registers untouched by kernel (saved in pt_regs) */
891 		ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
892 	} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
893 		/*
894 		 * Scratch registers untouched by kernel (saved in
895 		 * switch_stack).
896 		 */
897 		ptr = (unsigned long *) ((long) sw
898 					 + (addr - PT_NAT_BITS - 32));
899 	} else if (addr < PT_AR_LC + 8) {
900 		/* preserved state: */
901 		struct unw_frame_info info;
902 		char nat = 0;
903 		int ret;
904 
905 		unw_init_from_blocked_task(&info, child);
906 		if (unw_unwind_to_user(&info) < 0)
907 			return -1;
908 
909 		switch (addr) {
910 		      case PT_NAT_BITS:
911 			return access_nat_bits(child, pt, &info,
912 					       data, write_access);
913 
914 		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
915 			if (write_access) {
916 				/* read NaT bit first: */
917 				unsigned long dummy;
918 
919 				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
920 						 &dummy, &nat);
921 				if (ret < 0)
922 					return ret;
923 			}
924 			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
925 					     &nat, write_access);
926 
927 		      case PT_B1: case PT_B2: case PT_B3:
928 		      case PT_B4: case PT_B5:
929 			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
930 					     write_access);
931 
932 		      case PT_AR_EC:
933 			return unw_access_ar(&info, UNW_AR_EC, data,
934 					     write_access);
935 
936 		      case PT_AR_LC:
937 			return unw_access_ar(&info, UNW_AR_LC, data,
938 					     write_access);
939 
940 		      default:
941 			if (addr >= PT_F2 && addr < PT_F5 + 16)
942 				return access_fr(&info, (addr - PT_F2)/16 + 2,
943 						 (addr & 8) != 0, data,
944 						 write_access);
945 			else if (addr >= PT_F16 && addr < PT_F31 + 16)
946 				return access_fr(&info,
947 						 (addr - PT_F16)/16 + 16,
948 						 (addr & 8) != 0,
949 						 data, write_access);
950 			else {
951 				dprintk("ptrace: rejecting access to register "
952 					"address 0x%lx\n", addr);
953 				return -1;
954 			}
955 		}
956 	} else if (addr < PT_F9+16) {
957 		/* scratch state */
958 		switch (addr) {
959 		      case PT_AR_BSP:
960 			/*
961 			 * By convention, we use PT_AR_BSP to refer to
962 			 * the end of the user-level backing store.
963 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
964 			 * to get the real value of ar.bsp at the time
965 			 * the kernel was entered.
966 			 *
967 			 * Furthermore, when changing the contents of
968 			 * PT_AR_BSP (or PT_CFM) while the task is
969 			 * blocked in a system call, convert the state
970 			 * so that the non-system-call exit
971 			 * path is used.  This ensures that the proper
972 			 * state will be picked up when resuming
973 			 * execution.  However, it *also* means that
974 			 * once we write PT_AR_BSP/PT_CFM, it won't be
975 			 * possible to modify the syscall arguments of
976 			 * the pending system call any longer.  This
977 			 * shouldn't be an issue because modifying
978 			 * PT_AR_BSP/PT_CFM generally implies that
979 			 * we're either abandoning the pending system
980 			 * call or that we defer it's re-execution
981 			 * (e.g., due to GDB doing an inferior
982 			 * function call).
983 			 */
984 			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
985 			if (write_access) {
986 				if (*data != urbs_end) {
987 					if (in_syscall(pt))
988 						convert_to_non_syscall(child,
989 								       pt,
990 								       cfm);
991 					/*
992 					 * Simulate user-level write
993 					 * of ar.bsp:
994 					 */
995 					pt->loadrs = 0;
996 					pt->ar_bspstore = *data;
997 				}
998 			} else
999 				*data = urbs_end;
1000 			return 0;
1001 
1002 		      case PT_CFM:
1003 			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
1004 			if (write_access) {
1005 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1006 					if (in_syscall(pt))
1007 						convert_to_non_syscall(child,
1008 								       pt,
1009 								       cfm);
1010 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1011 						      | (*data & PFM_MASK));
1012 				}
1013 			} else
1014 				*data = cfm;
1015 			return 0;
1016 
1017 		      case PT_CR_IPSR:
1018 			if (write_access) {
1019 				unsigned long tmp = *data;
1020 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1021 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1022 					tmp &= ~IA64_PSR_RI;
1023 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1024 					       | (pt->cr_ipsr & ~IPSR_MASK));
1025 			} else
1026 				*data = (pt->cr_ipsr & IPSR_MASK);
1027 			return 0;
1028 
1029 		      case PT_AR_RSC:
1030 			if (write_access)
1031 				pt->ar_rsc = *data | (3 << 2); /* force PL3 */
1032 			else
1033 				*data = pt->ar_rsc;
1034 			return 0;
1035 
1036 		      case PT_AR_RNAT:
1037 			ptr = pt_reg_addr(pt, ar_rnat);
1038 			break;
1039 		      case PT_R1:
1040 			ptr = pt_reg_addr(pt, r1);
1041 			break;
1042 		      case PT_R2:  case PT_R3:
1043 			ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
1044 			break;
1045 		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
1046 			ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
1047 			break;
1048 		      case PT_R12: case PT_R13:
1049 			ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
1050 			break;
1051 		      case PT_R14:
1052 			ptr = pt_reg_addr(pt, r14);
1053 			break;
1054 		      case PT_R15:
1055 			ptr = pt_reg_addr(pt, r15);
1056 			break;
1057 		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
1058 		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
1059 		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1060 		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1061 			ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1062 			break;
1063 		      case PT_B0:
1064 			ptr = pt_reg_addr(pt, b0);
1065 			break;
1066 		      case PT_B6:
1067 			ptr = pt_reg_addr(pt, b6);
1068 			break;
1069 		      case PT_B7:
1070 			ptr = pt_reg_addr(pt, b7);
1071 			break;
1072 		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
1073 		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
1074 			ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1075 			break;
1076 		      case PT_AR_BSPSTORE:
1077 			ptr = pt_reg_addr(pt, ar_bspstore);
1078 			break;
1079 		      case PT_AR_UNAT:
1080 			ptr = pt_reg_addr(pt, ar_unat);
1081 			break;
1082 		      case PT_AR_PFS:
1083 			ptr = pt_reg_addr(pt, ar_pfs);
1084 			break;
1085 		      case PT_AR_CCV:
1086 			ptr = pt_reg_addr(pt, ar_ccv);
1087 			break;
1088 		      case PT_AR_FPSR:
1089 			ptr = pt_reg_addr(pt, ar_fpsr);
1090 			break;
1091 		      case PT_CR_IIP:
1092 			ptr = pt_reg_addr(pt, cr_iip);
1093 			break;
1094 		      case PT_PR:
1095 			ptr = pt_reg_addr(pt, pr);
1096 			break;
1097 			/* scratch register */
1098 
1099 		      default:
1100 			/* disallow accessing anything else... */
1101 			dprintk("ptrace: rejecting access to register "
1102 				"address 0x%lx\n", addr);
1103 			return -1;
1104 		}
1105 	} else if (addr <= PT_AR_SSD) {
1106 		ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1107 	} else {
1108 		/* access debug registers */
1109 
1110 		if (addr >= PT_IBR) {
1111 			regnum = (addr - PT_IBR) >> 3;
1112 			ptr = &child->thread.ibr[0];
1113 		} else {
1114 			regnum = (addr - PT_DBR) >> 3;
1115 			ptr = &child->thread.dbr[0];
1116 		}
1117 
1118 		if (regnum >= 8) {
1119 			dprintk("ptrace: rejecting access to register "
1120 				"address 0x%lx\n", addr);
1121 			return -1;
1122 		}
1123 #ifdef CONFIG_PERFMON
1124 		/*
1125 		 * Check if debug registers are used by perfmon. This
1126 		 * test must be done once we know that we can do the
1127 		 * operation, i.e. the arguments are all valid, but
1128 		 * before we start modifying the state.
1129 		 *
1130 		 * Perfmon needs to keep a count of how many processes
1131 		 * are trying to modify the debug registers for system
1132 		 * wide monitoring sessions.
1133 		 *
1134 		 * We also include read access here, because they may
1135 		 * cause the PMU-installed debug register state
1136 		 * (dbr[], ibr[]) to be reset. The two arrays are also
1137 		 * used by perfmon, but we do not use
1138 		 * IA64_THREAD_DBG_VALID. The registers are restored
1139 		 * by the PMU context switch code.
1140 		 */
1141 		if (pfm_use_debug_registers(child)) return -1;
1142 #endif
1143 
1144 		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1145 			child->thread.flags |= IA64_THREAD_DBG_VALID;
1146 			memset(child->thread.dbr, 0,
1147 			       sizeof(child->thread.dbr));
1148 			memset(child->thread.ibr, 0,
1149 			       sizeof(child->thread.ibr));
1150 		}
1151 
1152 		ptr += regnum;
1153 
1154 		if ((regnum & 1) && write_access) {
1155 			/* don't let the user set kernel-level breakpoints: */
1156 			*ptr = *data & ~(7UL << 56);
1157 			return 0;
1158 		}
1159 	}
1160 	if (write_access)
1161 		*ptr = *data;
1162 	else
1163 		*data = *ptr;
1164 	return 0;
1165 }
1166 
1167 static long
1168 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1169 {
1170 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1171 	struct unw_frame_info info;
1172 	struct ia64_fpreg fpval;
1173 	struct switch_stack *sw;
1174 	struct pt_regs *pt;
1175 	long ret, retval = 0;
1176 	char nat = 0;
1177 	int i;
1178 
1179 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1180 		return -EIO;
1181 
1182 	pt = task_pt_regs(child);
1183 	sw = (struct switch_stack *) (child->thread.ksp + 16);
1184 	unw_init_from_blocked_task(&info, child);
1185 	if (unw_unwind_to_user(&info) < 0) {
1186 		return -EIO;
1187 	}
1188 
1189 	if (((unsigned long) ppr & 0x7) != 0) {
1190 		dprintk("ptrace:unaligned register address %p\n", ppr);
1191 		return -EIO;
1192 	}
1193 
1194 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1195 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1196 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1197 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1198 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1199 	    || access_uarea(child, PT_CFM, &cfm, 0)
1200 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1201 		return -EIO;
1202 
1203 	/* control regs */
1204 
1205 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1206 	retval |= __put_user(psr, &ppr->cr_ipsr);
1207 
1208 	/* app regs */
1209 
1210 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1211 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1212 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1213 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1214 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1215 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1216 
1217 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1218 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1219 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1220 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1221 	retval |= __put_user(cfm, &ppr->cfm);
1222 
1223 	/* gr1-gr3 */
1224 
1225 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1226 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1227 
1228 	/* gr4-gr7 */
1229 
1230 	for (i = 4; i < 8; i++) {
1231 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1232 			return -EIO;
1233 		retval |= __put_user(val, &ppr->gr[i]);
1234 	}
1235 
1236 	/* gr8-gr11 */
1237 
1238 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1239 
1240 	/* gr12-gr15 */
1241 
1242 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1243 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1244 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1245 
1246 	/* gr16-gr31 */
1247 
1248 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1249 
1250 	/* b0 */
1251 
1252 	retval |= __put_user(pt->b0, &ppr->br[0]);
1253 
1254 	/* b1-b5 */
1255 
1256 	for (i = 1; i < 6; i++) {
1257 		if (unw_access_br(&info, i, &val, 0) < 0)
1258 			return -EIO;
1259 		__put_user(val, &ppr->br[i]);
1260 	}
1261 
1262 	/* b6-b7 */
1263 
1264 	retval |= __put_user(pt->b6, &ppr->br[6]);
1265 	retval |= __put_user(pt->b7, &ppr->br[7]);
1266 
1267 	/* fr2-fr5 */
1268 
1269 	for (i = 2; i < 6; i++) {
1270 		if (unw_get_fr(&info, i, &fpval) < 0)
1271 			return -EIO;
1272 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1273 	}
1274 
1275 	/* fr6-fr11 */
1276 
1277 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1278 				 sizeof(struct ia64_fpreg) * 6);
1279 
1280 	/* fp scratch regs(12-15) */
1281 
1282 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1283 				 sizeof(struct ia64_fpreg) * 4);
1284 
1285 	/* fr16-fr31 */
1286 
1287 	for (i = 16; i < 32; i++) {
1288 		if (unw_get_fr(&info, i, &fpval) < 0)
1289 			return -EIO;
1290 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1291 	}
1292 
1293 	/* fph */
1294 
1295 	ia64_flush_fph(child);
1296 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1297 				 sizeof(ppr->fr[32]) * 96);
1298 
1299 	/*  preds */
1300 
1301 	retval |= __put_user(pt->pr, &ppr->pr);
1302 
1303 	/* nat bits */
1304 
1305 	retval |= __put_user(nat_bits, &ppr->nat);
1306 
1307 	ret = retval ? -EIO : 0;
1308 	return ret;
1309 }
1310 
1311 static long
1312 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1313 {
1314 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1315 	struct unw_frame_info info;
1316 	struct switch_stack *sw;
1317 	struct ia64_fpreg fpval;
1318 	struct pt_regs *pt;
1319 	long ret, retval = 0;
1320 	int i;
1321 
1322 	memset(&fpval, 0, sizeof(fpval));
1323 
1324 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1325 		return -EIO;
1326 
1327 	pt = task_pt_regs(child);
1328 	sw = (struct switch_stack *) (child->thread.ksp + 16);
1329 	unw_init_from_blocked_task(&info, child);
1330 	if (unw_unwind_to_user(&info) < 0) {
1331 		return -EIO;
1332 	}
1333 
1334 	if (((unsigned long) ppr & 0x7) != 0) {
1335 		dprintk("ptrace:unaligned register address %p\n", ppr);
1336 		return -EIO;
1337 	}
1338 
1339 	/* control regs */
1340 
1341 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1342 	retval |= __get_user(psr, &ppr->cr_ipsr);
1343 
1344 	/* app regs */
1345 
1346 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1347 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1348 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1349 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1350 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1351 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1352 
1353 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1354 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1355 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1356 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1357 	retval |= __get_user(cfm, &ppr->cfm);
1358 
1359 	/* gr1-gr3 */
1360 
1361 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1362 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1363 
1364 	/* gr4-gr7 */
1365 
1366 	for (i = 4; i < 8; i++) {
1367 		retval |= __get_user(val, &ppr->gr[i]);
1368 		/* NaT bit will be set via PT_NAT_BITS: */
1369 		if (unw_set_gr(&info, i, val, 0) < 0)
1370 			return -EIO;
1371 	}
1372 
1373 	/* gr8-gr11 */
1374 
1375 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1376 
1377 	/* gr12-gr15 */
1378 
1379 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1380 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1381 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1382 
1383 	/* gr16-gr31 */
1384 
1385 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1386 
1387 	/* b0 */
1388 
1389 	retval |= __get_user(pt->b0, &ppr->br[0]);
1390 
1391 	/* b1-b5 */
1392 
1393 	for (i = 1; i < 6; i++) {
1394 		retval |= __get_user(val, &ppr->br[i]);
1395 		unw_set_br(&info, i, val);
1396 	}
1397 
1398 	/* b6-b7 */
1399 
1400 	retval |= __get_user(pt->b6, &ppr->br[6]);
1401 	retval |= __get_user(pt->b7, &ppr->br[7]);
1402 
1403 	/* fr2-fr5 */
1404 
1405 	for (i = 2; i < 6; i++) {
1406 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1407 		if (unw_set_fr(&info, i, fpval) < 0)
1408 			return -EIO;
1409 	}
1410 
1411 	/* fr6-fr11 */
1412 
1413 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1414 				   sizeof(ppr->fr[6]) * 6);
1415 
1416 	/* fp scratch regs(12-15) */
1417 
1418 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1419 				   sizeof(ppr->fr[12]) * 4);
1420 
1421 	/* fr16-fr31 */
1422 
1423 	for (i = 16; i < 32; i++) {
1424 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1425 					   sizeof(fpval));
1426 		if (unw_set_fr(&info, i, fpval) < 0)
1427 			return -EIO;
1428 	}
1429 
1430 	/* fph */
1431 
1432 	ia64_sync_fph(child);
1433 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1434 				   sizeof(ppr->fr[32]) * 96);
1435 
1436 	/* preds */
1437 
1438 	retval |= __get_user(pt->pr, &ppr->pr);
1439 
1440 	/* nat bits */
1441 
1442 	retval |= __get_user(nat_bits, &ppr->nat);
1443 
1444 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1445 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1446 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1447 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1448 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1449 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1450 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1451 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1452 
1453 	ret = retval ? -EIO : 0;
1454 	return ret;
1455 }
1456 
1457 void
1458 user_enable_single_step (struct task_struct *child)
1459 {
1460 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1461 
1462 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1463 	child_psr->ss = 1;
1464 }
1465 
1466 void
1467 user_enable_block_step (struct task_struct *child)
1468 {
1469 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1470 
1471 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1472 	child_psr->tb = 1;
1473 }
1474 
1475 void
1476 user_disable_single_step (struct task_struct *child)
1477 {
1478 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1479 
1480 	/* make sure the single step/taken-branch trap bits are not set: */
1481 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1482 	child_psr->ss = 0;
1483 	child_psr->tb = 0;
1484 }
1485 
1486 /*
1487  * Called by kernel/ptrace.c when detaching..
1488  *
1489  * Make sure the single step bit is not set.
1490  */
1491 void
1492 ptrace_disable (struct task_struct *child)
1493 {
1494 	user_disable_single_step(child);
1495 }
1496 
1497 long
1498 arch_ptrace (struct task_struct *child, long request, long addr, long data)
1499 {
1500 	switch (request) {
1501 	case PTRACE_PEEKTEXT:
1502 	case PTRACE_PEEKDATA:
1503 		/* read word at location addr */
1504 		if (access_process_vm(child, addr, &data, sizeof(data), 0)
1505 		    != sizeof(data))
1506 			return -EIO;
1507 		/* ensure return value is not mistaken for error code */
1508 		force_successful_syscall_return();
1509 		return data;
1510 
1511 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1512 	 * by the generic ptrace_request().
1513 	 */
1514 
1515 	case PTRACE_PEEKUSR:
1516 		/* read the word at addr in the USER area */
1517 		if (access_uarea(child, addr, &data, 0) < 0)
1518 			return -EIO;
1519 		/* ensure return value is not mistaken for error code */
1520 		force_successful_syscall_return();
1521 		return data;
1522 
1523 	case PTRACE_POKEUSR:
1524 		/* write the word at addr in the USER area */
1525 		if (access_uarea(child, addr, &data, 1) < 0)
1526 			return -EIO;
1527 		return 0;
1528 
1529 	case PTRACE_OLD_GETSIGINFO:
1530 		/* for backwards-compatibility */
1531 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1532 
1533 	case PTRACE_OLD_SETSIGINFO:
1534 		/* for backwards-compatibility */
1535 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1536 
1537 	case PTRACE_GETREGS:
1538 		return ptrace_getregs(child,
1539 				      (struct pt_all_user_regs __user *) data);
1540 
1541 	case PTRACE_SETREGS:
1542 		return ptrace_setregs(child,
1543 				      (struct pt_all_user_regs __user *) data);
1544 
1545 	default:
1546 		return ptrace_request(child, request, addr, data);
1547 	}
1548 }
1549 
1550 
1551 static void
1552 syscall_trace (void)
1553 {
1554 	/*
1555 	 * The 0x80 provides a way for the tracing parent to
1556 	 * distinguish between a syscall stop and SIGTRAP delivery.
1557 	 */
1558 	ptrace_notify(SIGTRAP
1559 		      | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1560 
1561 	/*
1562 	 * This isn't the same as continuing with a signal, but it
1563 	 * will do for normal use.  strace only continues with a
1564 	 * signal if the stopping signal is not SIGTRAP.  -brl
1565 	 */
1566 	if (current->exit_code) {
1567 		send_sig(current->exit_code, current, 1);
1568 		current->exit_code = 0;
1569 	}
1570 }
1571 
1572 /* "asmlinkage" so the input arguments are preserved... */
1573 
1574 asmlinkage void
1575 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1576 		     long arg4, long arg5, long arg6, long arg7,
1577 		     struct pt_regs regs)
1578 {
1579 	if (test_thread_flag(TIF_SYSCALL_TRACE)
1580 	    && (current->ptrace & PT_PTRACED))
1581 		syscall_trace();
1582 
1583 	/* copy user rbs to kernel rbs */
1584 	if (test_thread_flag(TIF_RESTORE_RSE))
1585 		ia64_sync_krbs();
1586 
1587 	if (unlikely(current->audit_context)) {
1588 		long syscall;
1589 		int arch;
1590 
1591 		if (IS_IA32_PROCESS(&regs)) {
1592 			syscall = regs.r1;
1593 			arch = AUDIT_ARCH_I386;
1594 		} else {
1595 			syscall = regs.r15;
1596 			arch = AUDIT_ARCH_IA64;
1597 		}
1598 
1599 		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1600 	}
1601 
1602 }
1603 
1604 /* "asmlinkage" so the input arguments are preserved... */
1605 
1606 asmlinkage void
1607 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1608 		     long arg4, long arg5, long arg6, long arg7,
1609 		     struct pt_regs regs)
1610 {
1611 	if (unlikely(current->audit_context)) {
1612 		int success = AUDITSC_RESULT(regs.r10);
1613 		long result = regs.r8;
1614 
1615 		if (success != AUDITSC_SUCCESS)
1616 			result = -result;
1617 		audit_syscall_exit(success, result);
1618 	}
1619 
1620 	if ((test_thread_flag(TIF_SYSCALL_TRACE)
1621 	    || test_thread_flag(TIF_SINGLESTEP))
1622 	    && (current->ptrace & PT_PTRACED))
1623 		syscall_trace();
1624 
1625 	/* copy user rbs to kernel rbs */
1626 	if (test_thread_flag(TIF_RESTORE_RSE))
1627 		ia64_sync_krbs();
1628 }
1629