1 /* 2 * Kernel support for the ptrace() and syscall tracing interfaces. 3 * 4 * Copyright (C) 1999-2005 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * Copyright (C) 2006 Intel Co 7 * 2006-08-12 - IA64 Native Utrace implementation support added by 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * Derived from the x86 and Alpha versions. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/errno.h> 16 #include <linux/ptrace.h> 17 #include <linux/user.h> 18 #include <linux/security.h> 19 #include <linux/audit.h> 20 #include <linux/signal.h> 21 #include <linux/regset.h> 22 #include <linux/elf.h> 23 #include <linux/tracehook.h> 24 25 #include <asm/pgtable.h> 26 #include <asm/processor.h> 27 #include <asm/ptrace_offsets.h> 28 #include <asm/rse.h> 29 #include <asm/uaccess.h> 30 #include <asm/unwind.h> 31 #ifdef CONFIG_PERFMON 32 #include <asm/perfmon.h> 33 #endif 34 35 #include "entry.h" 36 37 /* 38 * Bits in the PSR that we allow ptrace() to change: 39 * be, up, ac, mfl, mfh (the user mask; five bits total) 40 * db (debug breakpoint fault; one bit) 41 * id (instruction debug fault disable; one bit) 42 * dd (data debug fault disable; one bit) 43 * ri (restart instruction; two bits) 44 * is (instruction set; one bit) 45 */ 46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ 47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) 48 49 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ 50 #define PFM_MASK MASK(38) 51 52 #define PTRACE_DEBUG 0 53 54 #if PTRACE_DEBUG 55 # define dprintk(format...) printk(format) 56 # define inline 57 #else 58 # define dprintk(format...) 59 #endif 60 61 /* Return TRUE if PT was created due to kernel-entry via a system-call. */ 62 63 static inline int 64 in_syscall (struct pt_regs *pt) 65 { 66 return (long) pt->cr_ifs >= 0; 67 } 68 69 /* 70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT 71 * bitset where bit i is set iff the NaT bit of register i is set. 72 */ 73 unsigned long 74 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) 75 { 76 # define GET_BITS(first, last, unat) \ 77 ({ \ 78 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 79 unsigned long nbits = (last - first + 1); \ 80 unsigned long mask = MASK(nbits) << first; \ 81 unsigned long dist; \ 82 if (bit < first) \ 83 dist = 64 + bit - first; \ 84 else \ 85 dist = bit - first; \ 86 ia64_rotr(unat, dist) & mask; \ 87 }) 88 unsigned long val; 89 90 /* 91 * Registers that are stored consecutively in struct pt_regs 92 * can be handled in parallel. If the register order in 93 * struct_pt_regs changes, this code MUST be updated. 94 */ 95 val = GET_BITS( 1, 1, scratch_unat); 96 val |= GET_BITS( 2, 3, scratch_unat); 97 val |= GET_BITS(12, 13, scratch_unat); 98 val |= GET_BITS(14, 14, scratch_unat); 99 val |= GET_BITS(15, 15, scratch_unat); 100 val |= GET_BITS( 8, 11, scratch_unat); 101 val |= GET_BITS(16, 31, scratch_unat); 102 return val; 103 104 # undef GET_BITS 105 } 106 107 /* 108 * Set the NaT bits for the scratch registers according to NAT and 109 * return the resulting unat (assuming the scratch registers are 110 * stored in PT). 111 */ 112 unsigned long 113 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) 114 { 115 # define PUT_BITS(first, last, nat) \ 116 ({ \ 117 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 118 unsigned long nbits = (last - first + 1); \ 119 unsigned long mask = MASK(nbits) << first; \ 120 long dist; \ 121 if (bit < first) \ 122 dist = 64 + bit - first; \ 123 else \ 124 dist = bit - first; \ 125 ia64_rotl(nat & mask, dist); \ 126 }) 127 unsigned long scratch_unat; 128 129 /* 130 * Registers that are stored consecutively in struct pt_regs 131 * can be handled in parallel. If the register order in 132 * struct_pt_regs changes, this code MUST be updated. 133 */ 134 scratch_unat = PUT_BITS( 1, 1, nat); 135 scratch_unat |= PUT_BITS( 2, 3, nat); 136 scratch_unat |= PUT_BITS(12, 13, nat); 137 scratch_unat |= PUT_BITS(14, 14, nat); 138 scratch_unat |= PUT_BITS(15, 15, nat); 139 scratch_unat |= PUT_BITS( 8, 11, nat); 140 scratch_unat |= PUT_BITS(16, 31, nat); 141 142 return scratch_unat; 143 144 # undef PUT_BITS 145 } 146 147 #define IA64_MLX_TEMPLATE 0x2 148 #define IA64_MOVL_OPCODE 6 149 150 void 151 ia64_increment_ip (struct pt_regs *regs) 152 { 153 unsigned long w0, ri = ia64_psr(regs)->ri + 1; 154 155 if (ri > 2) { 156 ri = 0; 157 regs->cr_iip += 16; 158 } else if (ri == 2) { 159 get_user(w0, (char __user *) regs->cr_iip + 0); 160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 161 /* 162 * rfi'ing to slot 2 of an MLX bundle causes 163 * an illegal operation fault. We don't want 164 * that to happen... 165 */ 166 ri = 0; 167 regs->cr_iip += 16; 168 } 169 } 170 ia64_psr(regs)->ri = ri; 171 } 172 173 void 174 ia64_decrement_ip (struct pt_regs *regs) 175 { 176 unsigned long w0, ri = ia64_psr(regs)->ri - 1; 177 178 if (ia64_psr(regs)->ri == 0) { 179 regs->cr_iip -= 16; 180 ri = 2; 181 get_user(w0, (char __user *) regs->cr_iip + 0); 182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 183 /* 184 * rfi'ing to slot 2 of an MLX bundle causes 185 * an illegal operation fault. We don't want 186 * that to happen... 187 */ 188 ri = 1; 189 } 190 } 191 ia64_psr(regs)->ri = ri; 192 } 193 194 /* 195 * This routine is used to read an rnat bits that are stored on the 196 * kernel backing store. Since, in general, the alignment of the user 197 * and kernel are different, this is not completely trivial. In 198 * essence, we need to construct the user RNAT based on up to two 199 * kernel RNAT values and/or the RNAT value saved in the child's 200 * pt_regs. 201 * 202 * user rbs 203 * 204 * +--------+ <-- lowest address 205 * | slot62 | 206 * +--------+ 207 * | rnat | 0x....1f8 208 * +--------+ 209 * | slot00 | \ 210 * +--------+ | 211 * | slot01 | > child_regs->ar_rnat 212 * +--------+ | 213 * | slot02 | / kernel rbs 214 * +--------+ +--------+ 215 * <- child_regs->ar_bspstore | slot61 | <-- krbs 216 * +- - - - + +--------+ 217 * | slot62 | 218 * +- - - - + +--------+ 219 * | rnat | 220 * +- - - - + +--------+ 221 * vrnat | slot00 | 222 * +- - - - + +--------+ 223 * = = 224 * +--------+ 225 * | slot00 | \ 226 * +--------+ | 227 * | slot01 | > child_stack->ar_rnat 228 * +--------+ | 229 * | slot02 | / 230 * +--------+ 231 * <--- child_stack->ar_bspstore 232 * 233 * The way to think of this code is as follows: bit 0 in the user rnat 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat 235 * value. The kernel rnat value holding this bit is stored in 236 * variable rnat0. rnat1 is loaded with the kernel rnat value that 237 * form the upper bits of the user rnat value. 238 * 239 * Boundary cases: 240 * 241 * o when reading the rnat "below" the first rnat slot on the kernel 242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are 243 * merged in from pt->ar_rnat. 244 * 245 * o when reading the rnat "above" the last rnat slot on the kernel 246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. 247 */ 248 static unsigned long 249 get_rnat (struct task_struct *task, struct switch_stack *sw, 250 unsigned long *krbs, unsigned long *urnat_addr, 251 unsigned long *urbs_end) 252 { 253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; 254 unsigned long umask = 0, mask, m; 255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 256 long num_regs, nbits; 257 struct pt_regs *pt; 258 259 pt = task_pt_regs(task); 260 kbsp = (unsigned long *) sw->ar_bspstore; 261 ubspstore = (unsigned long *) pt->ar_bspstore; 262 263 if (urbs_end < urnat_addr) 264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); 265 else 266 nbits = 63; 267 mask = MASK(nbits); 268 /* 269 * First, figure out which bit number slot 0 in user-land maps 270 * to in the kernel rnat. Do this by figuring out how many 271 * register slots we're beyond the user's backingstore and 272 * then computing the equivalent address in kernel space. 273 */ 274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 276 shift = ia64_rse_slot_num(slot0_kaddr); 277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 278 rnat0_kaddr = rnat1_kaddr - 64; 279 280 if (ubspstore + 63 > urnat_addr) { 281 /* some bits need to be merged in from pt->ar_rnat */ 282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 283 urnat = (pt->ar_rnat & umask); 284 mask &= ~umask; 285 if (!mask) 286 return urnat; 287 } 288 289 m = mask << shift; 290 if (rnat0_kaddr >= kbsp) 291 rnat0 = sw->ar_rnat; 292 else if (rnat0_kaddr > krbs) 293 rnat0 = *rnat0_kaddr; 294 urnat |= (rnat0 & m) >> shift; 295 296 m = mask >> (63 - shift); 297 if (rnat1_kaddr >= kbsp) 298 rnat1 = sw->ar_rnat; 299 else if (rnat1_kaddr > krbs) 300 rnat1 = *rnat1_kaddr; 301 urnat |= (rnat1 & m) << (63 - shift); 302 return urnat; 303 } 304 305 /* 306 * The reverse of get_rnat. 307 */ 308 static void 309 put_rnat (struct task_struct *task, struct switch_stack *sw, 310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, 311 unsigned long *urbs_end) 312 { 313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; 314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 315 long num_regs, nbits; 316 struct pt_regs *pt; 317 unsigned long cfm, *urbs_kargs; 318 319 pt = task_pt_regs(task); 320 kbsp = (unsigned long *) sw->ar_bspstore; 321 ubspstore = (unsigned long *) pt->ar_bspstore; 322 323 urbs_kargs = urbs_end; 324 if (in_syscall(pt)) { 325 /* 326 * If entered via syscall, don't allow user to set rnat bits 327 * for syscall args. 328 */ 329 cfm = pt->cr_ifs; 330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); 331 } 332 333 if (urbs_kargs >= urnat_addr) 334 nbits = 63; 335 else { 336 if ((urnat_addr - 63) >= urbs_kargs) 337 return; 338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); 339 } 340 mask = MASK(nbits); 341 342 /* 343 * First, figure out which bit number slot 0 in user-land maps 344 * to in the kernel rnat. Do this by figuring out how many 345 * register slots we're beyond the user's backingstore and 346 * then computing the equivalent address in kernel space. 347 */ 348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 350 shift = ia64_rse_slot_num(slot0_kaddr); 351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 352 rnat0_kaddr = rnat1_kaddr - 64; 353 354 if (ubspstore + 63 > urnat_addr) { 355 /* some bits need to be place in pt->ar_rnat: */ 356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); 358 mask &= ~umask; 359 if (!mask) 360 return; 361 } 362 /* 363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an 364 * rnat slot is ignored. so we don't have to clear it here. 365 */ 366 rnat0 = (urnat << shift); 367 m = mask << shift; 368 if (rnat0_kaddr >= kbsp) 369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); 370 else if (rnat0_kaddr > krbs) 371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); 372 373 rnat1 = (urnat >> (63 - shift)); 374 m = mask >> (63 - shift); 375 if (rnat1_kaddr >= kbsp) 376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); 377 else if (rnat1_kaddr > krbs) 378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); 379 } 380 381 static inline int 382 on_kernel_rbs (unsigned long addr, unsigned long bspstore, 383 unsigned long urbs_end) 384 { 385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) 386 urbs_end); 387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr); 388 } 389 390 /* 391 * Read a word from the user-level backing store of task CHILD. ADDR 392 * is the user-level address to read the word from, VAL a pointer to 393 * the return value, and USER_BSP gives the end of the user-level 394 * backing store (i.e., it's the address that would be in ar.bsp after 395 * the user executed a "cover" instruction). 396 * 397 * This routine takes care of accessing the kernel register backing 398 * store for those registers that got spilled there. It also takes 399 * care of calculating the appropriate RNaT collection words. 400 */ 401 long 402 ia64_peek (struct task_struct *child, struct switch_stack *child_stack, 403 unsigned long user_rbs_end, unsigned long addr, long *val) 404 { 405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; 406 struct pt_regs *child_regs; 407 size_t copied; 408 long ret; 409 410 urbs_end = (long *) user_rbs_end; 411 laddr = (unsigned long *) addr; 412 child_regs = task_pt_regs(child); 413 bspstore = (unsigned long *) child_regs->ar_bspstore; 414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 415 if (on_kernel_rbs(addr, (unsigned long) bspstore, 416 (unsigned long) urbs_end)) 417 { 418 /* 419 * Attempt to read the RBS in an area that's actually 420 * on the kernel RBS => read the corresponding bits in 421 * the kernel RBS. 422 */ 423 rnat_addr = ia64_rse_rnat_addr(laddr); 424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); 425 426 if (laddr == rnat_addr) { 427 /* return NaT collection word itself */ 428 *val = ret; 429 return 0; 430 } 431 432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { 433 /* 434 * It is implementation dependent whether the 435 * data portion of a NaT value gets saved on a 436 * st8.spill or RSE spill (e.g., see EAS 2.6, 437 * 4.4.4.6 Register Spill and Fill). To get 438 * consistent behavior across all possible 439 * IA-64 implementations, we return zero in 440 * this case. 441 */ 442 *val = 0; 443 return 0; 444 } 445 446 if (laddr < urbs_end) { 447 /* 448 * The desired word is on the kernel RBS and 449 * is not a NaT. 450 */ 451 regnum = ia64_rse_num_regs(bspstore, laddr); 452 *val = *ia64_rse_skip_regs(krbs, regnum); 453 return 0; 454 } 455 } 456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); 457 if (copied != sizeof(ret)) 458 return -EIO; 459 *val = ret; 460 return 0; 461 } 462 463 long 464 ia64_poke (struct task_struct *child, struct switch_stack *child_stack, 465 unsigned long user_rbs_end, unsigned long addr, long val) 466 { 467 unsigned long *bspstore, *krbs, regnum, *laddr; 468 unsigned long *urbs_end = (long *) user_rbs_end; 469 struct pt_regs *child_regs; 470 471 laddr = (unsigned long *) addr; 472 child_regs = task_pt_regs(child); 473 bspstore = (unsigned long *) child_regs->ar_bspstore; 474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 475 if (on_kernel_rbs(addr, (unsigned long) bspstore, 476 (unsigned long) urbs_end)) 477 { 478 /* 479 * Attempt to write the RBS in an area that's actually 480 * on the kernel RBS => write the corresponding bits 481 * in the kernel RBS. 482 */ 483 if (ia64_rse_is_rnat_slot(laddr)) 484 put_rnat(child, child_stack, krbs, laddr, val, 485 urbs_end); 486 else { 487 if (laddr < urbs_end) { 488 regnum = ia64_rse_num_regs(bspstore, laddr); 489 *ia64_rse_skip_regs(krbs, regnum) = val; 490 } 491 } 492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1) 493 != sizeof(val)) 494 return -EIO; 495 return 0; 496 } 497 498 /* 499 * Calculate the address of the end of the user-level register backing 500 * store. This is the address that would have been stored in ar.bsp 501 * if the user had executed a "cover" instruction right before 502 * entering the kernel. If CFMP is not NULL, it is used to return the 503 * "current frame mask" that was active at the time the kernel was 504 * entered. 505 */ 506 unsigned long 507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, 508 unsigned long *cfmp) 509 { 510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; 511 long ndirty; 512 513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 514 bspstore = (unsigned long *) pt->ar_bspstore; 515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 516 517 if (in_syscall(pt)) 518 ndirty += (cfm & 0x7f); 519 else 520 cfm &= ~(1UL << 63); /* clear valid bit */ 521 522 if (cfmp) 523 *cfmp = cfm; 524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); 525 } 526 527 /* 528 * Synchronize (i.e, write) the RSE backing store living in kernel 529 * space to the VM of the CHILD task. SW and PT are the pointers to 530 * the switch_stack and pt_regs structures, respectively. 531 * USER_RBS_END is the user-level address at which the backing store 532 * ends. 533 */ 534 long 535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, 536 unsigned long user_rbs_start, unsigned long user_rbs_end) 537 { 538 unsigned long addr, val; 539 long ret; 540 541 /* now copy word for word from kernel rbs to user rbs: */ 542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val); 544 if (ret < 0) 545 return ret; 546 if (access_process_vm(child, addr, &val, sizeof(val), 1) 547 != sizeof(val)) 548 return -EIO; 549 } 550 return 0; 551 } 552 553 static long 554 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw, 555 unsigned long user_rbs_start, unsigned long user_rbs_end) 556 { 557 unsigned long addr, val; 558 long ret; 559 560 /* now copy word for word from user rbs to kernel rbs: */ 561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 562 if (access_process_vm(child, addr, &val, sizeof(val), 0) 563 != sizeof(val)) 564 return -EIO; 565 566 ret = ia64_poke(child, sw, user_rbs_end, addr, val); 567 if (ret < 0) 568 return ret; 569 } 570 return 0; 571 } 572 573 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *, 574 unsigned long, unsigned long); 575 576 static void do_sync_rbs(struct unw_frame_info *info, void *arg) 577 { 578 struct pt_regs *pt; 579 unsigned long urbs_end; 580 syncfunc_t fn = arg; 581 582 if (unw_unwind_to_user(info) < 0) 583 return; 584 pt = task_pt_regs(info->task); 585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL); 586 587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end); 588 } 589 590 /* 591 * when a thread is stopped (ptraced), debugger might change thread's user 592 * stack (change memory directly), and we must avoid the RSE stored in kernel 593 * to override user stack (user space's RSE is newer than kernel's in the 594 * case). To workaround the issue, we copy kernel RSE to user RSE before the 595 * task is stopped, so user RSE has updated data. we then copy user RSE to 596 * kernel after the task is resummed from traced stop and kernel will use the 597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need 598 * synchronize user RSE to kernel. 599 */ 600 void ia64_ptrace_stop(void) 601 { 602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE)) 603 return; 604 set_notify_resume(current); 605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs); 606 } 607 608 /* 609 * This is called to read back the register backing store. 610 */ 611 void ia64_sync_krbs(void) 612 { 613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE); 614 615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs); 616 } 617 618 /* 619 * After PTRACE_ATTACH, a thread's register backing store area in user 620 * space is assumed to contain correct data whenever the thread is 621 * stopped. arch_ptrace_stop takes care of this on tracing stops. 622 * But if the child was already stopped for job control when we attach 623 * to it, then it might not ever get into ptrace_stop by the time we 624 * want to examine the user memory containing the RBS. 625 */ 626 void 627 ptrace_attach_sync_user_rbs (struct task_struct *child) 628 { 629 int stopped = 0; 630 struct unw_frame_info info; 631 632 /* 633 * If the child is in TASK_STOPPED, we need to change that to 634 * TASK_TRACED momentarily while we operate on it. This ensures 635 * that the child won't be woken up and return to user mode while 636 * we are doing the sync. (It can only be woken up for SIGKILL.) 637 */ 638 639 read_lock(&tasklist_lock); 640 if (child->sighand) { 641 spin_lock_irq(&child->sighand->siglock); 642 if (child->state == TASK_STOPPED && 643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) { 644 set_notify_resume(child); 645 646 child->state = TASK_TRACED; 647 stopped = 1; 648 } 649 spin_unlock_irq(&child->sighand->siglock); 650 } 651 read_unlock(&tasklist_lock); 652 653 if (!stopped) 654 return; 655 656 unw_init_from_blocked_task(&info, child); 657 do_sync_rbs(&info, ia64_sync_user_rbs); 658 659 /* 660 * Now move the child back into TASK_STOPPED if it should be in a 661 * job control stop, so that SIGCONT can be used to wake it up. 662 */ 663 read_lock(&tasklist_lock); 664 if (child->sighand) { 665 spin_lock_irq(&child->sighand->siglock); 666 if (child->state == TASK_TRACED && 667 (child->signal->flags & SIGNAL_STOP_STOPPED)) { 668 child->state = TASK_STOPPED; 669 } 670 spin_unlock_irq(&child->sighand->siglock); 671 } 672 read_unlock(&tasklist_lock); 673 } 674 675 /* 676 * Write f32-f127 back to task->thread.fph if it has been modified. 677 */ 678 inline void 679 ia64_flush_fph (struct task_struct *task) 680 { 681 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 682 683 /* 684 * Prevent migrating this task while 685 * we're fiddling with the FPU state 686 */ 687 preempt_disable(); 688 if (ia64_is_local_fpu_owner(task) && psr->mfh) { 689 psr->mfh = 0; 690 task->thread.flags |= IA64_THREAD_FPH_VALID; 691 ia64_save_fpu(&task->thread.fph[0]); 692 } 693 preempt_enable(); 694 } 695 696 /* 697 * Sync the fph state of the task so that it can be manipulated 698 * through thread.fph. If necessary, f32-f127 are written back to 699 * thread.fph or, if the fph state hasn't been used before, thread.fph 700 * is cleared to zeroes. Also, access to f32-f127 is disabled to 701 * ensure that the task picks up the state from thread.fph when it 702 * executes again. 703 */ 704 void 705 ia64_sync_fph (struct task_struct *task) 706 { 707 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 708 709 ia64_flush_fph(task); 710 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { 711 task->thread.flags |= IA64_THREAD_FPH_VALID; 712 memset(&task->thread.fph, 0, sizeof(task->thread.fph)); 713 } 714 ia64_drop_fpu(task); 715 psr->dfh = 1; 716 } 717 718 /* 719 * Change the machine-state of CHILD such that it will return via the normal 720 * kernel exit-path, rather than the syscall-exit path. 721 */ 722 static void 723 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, 724 unsigned long cfm) 725 { 726 struct unw_frame_info info, prev_info; 727 unsigned long ip, sp, pr; 728 729 unw_init_from_blocked_task(&info, child); 730 while (1) { 731 prev_info = info; 732 if (unw_unwind(&info) < 0) 733 return; 734 735 unw_get_sp(&info, &sp); 736 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) 737 < IA64_PT_REGS_SIZE) { 738 dprintk("ptrace.%s: ran off the top of the kernel " 739 "stack\n", __func__); 740 return; 741 } 742 if (unw_get_pr (&prev_info, &pr) < 0) { 743 unw_get_rp(&prev_info, &ip); 744 dprintk("ptrace.%s: failed to read " 745 "predicate register (ip=0x%lx)\n", 746 __func__, ip); 747 return; 748 } 749 if (unw_is_intr_frame(&info) 750 && (pr & (1UL << PRED_USER_STACK))) 751 break; 752 } 753 754 /* 755 * Note: at the time of this call, the target task is blocked 756 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL 757 * (aka, "pLvSys") we redirect execution from 758 * .work_pending_syscall_end to .work_processed_kernel. 759 */ 760 unw_get_pr(&prev_info, &pr); 761 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); 762 pr |= (1UL << PRED_NON_SYSCALL); 763 unw_set_pr(&prev_info, pr); 764 765 pt->cr_ifs = (1UL << 63) | cfm; 766 /* 767 * Clear the memory that is NOT written on syscall-entry to 768 * ensure we do not leak kernel-state to user when execution 769 * resumes. 770 */ 771 pt->r2 = 0; 772 pt->r3 = 0; 773 pt->r14 = 0; 774 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ 775 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ 776 pt->b7 = 0; 777 pt->ar_ccv = 0; 778 pt->ar_csd = 0; 779 pt->ar_ssd = 0; 780 } 781 782 static int 783 access_nat_bits (struct task_struct *child, struct pt_regs *pt, 784 struct unw_frame_info *info, 785 unsigned long *data, int write_access) 786 { 787 unsigned long regnum, nat_bits, scratch_unat, dummy = 0; 788 char nat = 0; 789 790 if (write_access) { 791 nat_bits = *data; 792 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); 793 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { 794 dprintk("ptrace: failed to set ar.unat\n"); 795 return -1; 796 } 797 for (regnum = 4; regnum <= 7; ++regnum) { 798 unw_get_gr(info, regnum, &dummy, &nat); 799 unw_set_gr(info, regnum, dummy, 800 (nat_bits >> regnum) & 1); 801 } 802 } else { 803 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { 804 dprintk("ptrace: failed to read ar.unat\n"); 805 return -1; 806 } 807 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); 808 for (regnum = 4; regnum <= 7; ++regnum) { 809 unw_get_gr(info, regnum, &dummy, &nat); 810 nat_bits |= (nat != 0) << regnum; 811 } 812 *data = nat_bits; 813 } 814 return 0; 815 } 816 817 static int 818 access_uarea (struct task_struct *child, unsigned long addr, 819 unsigned long *data, int write_access); 820 821 static long 822 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 823 { 824 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; 825 struct unw_frame_info info; 826 struct ia64_fpreg fpval; 827 struct switch_stack *sw; 828 struct pt_regs *pt; 829 long ret, retval = 0; 830 char nat = 0; 831 int i; 832 833 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) 834 return -EIO; 835 836 pt = task_pt_regs(child); 837 sw = (struct switch_stack *) (child->thread.ksp + 16); 838 unw_init_from_blocked_task(&info, child); 839 if (unw_unwind_to_user(&info) < 0) { 840 return -EIO; 841 } 842 843 if (((unsigned long) ppr & 0x7) != 0) { 844 dprintk("ptrace:unaligned register address %p\n", ppr); 845 return -EIO; 846 } 847 848 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 849 || access_uarea(child, PT_AR_EC, &ec, 0) < 0 850 || access_uarea(child, PT_AR_LC, &lc, 0) < 0 851 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 852 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 853 || access_uarea(child, PT_CFM, &cfm, 0) 854 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) 855 return -EIO; 856 857 /* control regs */ 858 859 retval |= __put_user(pt->cr_iip, &ppr->cr_iip); 860 retval |= __put_user(psr, &ppr->cr_ipsr); 861 862 /* app regs */ 863 864 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 865 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); 866 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 867 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 868 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 869 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 870 871 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); 872 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); 873 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); 874 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); 875 retval |= __put_user(cfm, &ppr->cfm); 876 877 /* gr1-gr3 */ 878 879 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); 880 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); 881 882 /* gr4-gr7 */ 883 884 for (i = 4; i < 8; i++) { 885 if (unw_access_gr(&info, i, &val, &nat, 0) < 0) 886 return -EIO; 887 retval |= __put_user(val, &ppr->gr[i]); 888 } 889 890 /* gr8-gr11 */ 891 892 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); 893 894 /* gr12-gr15 */ 895 896 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); 897 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); 898 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); 899 900 /* gr16-gr31 */ 901 902 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); 903 904 /* b0 */ 905 906 retval |= __put_user(pt->b0, &ppr->br[0]); 907 908 /* b1-b5 */ 909 910 for (i = 1; i < 6; i++) { 911 if (unw_access_br(&info, i, &val, 0) < 0) 912 return -EIO; 913 __put_user(val, &ppr->br[i]); 914 } 915 916 /* b6-b7 */ 917 918 retval |= __put_user(pt->b6, &ppr->br[6]); 919 retval |= __put_user(pt->b7, &ppr->br[7]); 920 921 /* fr2-fr5 */ 922 923 for (i = 2; i < 6; i++) { 924 if (unw_get_fr(&info, i, &fpval) < 0) 925 return -EIO; 926 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 927 } 928 929 /* fr6-fr11 */ 930 931 retval |= __copy_to_user(&ppr->fr[6], &pt->f6, 932 sizeof(struct ia64_fpreg) * 6); 933 934 /* fp scratch regs(12-15) */ 935 936 retval |= __copy_to_user(&ppr->fr[12], &sw->f12, 937 sizeof(struct ia64_fpreg) * 4); 938 939 /* fr16-fr31 */ 940 941 for (i = 16; i < 32; i++) { 942 if (unw_get_fr(&info, i, &fpval) < 0) 943 return -EIO; 944 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 945 } 946 947 /* fph */ 948 949 ia64_flush_fph(child); 950 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, 951 sizeof(ppr->fr[32]) * 96); 952 953 /* preds */ 954 955 retval |= __put_user(pt->pr, &ppr->pr); 956 957 /* nat bits */ 958 959 retval |= __put_user(nat_bits, &ppr->nat); 960 961 ret = retval ? -EIO : 0; 962 return ret; 963 } 964 965 static long 966 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 967 { 968 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; 969 struct unw_frame_info info; 970 struct switch_stack *sw; 971 struct ia64_fpreg fpval; 972 struct pt_regs *pt; 973 long ret, retval = 0; 974 int i; 975 976 memset(&fpval, 0, sizeof(fpval)); 977 978 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) 979 return -EIO; 980 981 pt = task_pt_regs(child); 982 sw = (struct switch_stack *) (child->thread.ksp + 16); 983 unw_init_from_blocked_task(&info, child); 984 if (unw_unwind_to_user(&info) < 0) { 985 return -EIO; 986 } 987 988 if (((unsigned long) ppr & 0x7) != 0) { 989 dprintk("ptrace:unaligned register address %p\n", ppr); 990 return -EIO; 991 } 992 993 /* control regs */ 994 995 retval |= __get_user(pt->cr_iip, &ppr->cr_iip); 996 retval |= __get_user(psr, &ppr->cr_ipsr); 997 998 /* app regs */ 999 1000 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 1001 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); 1002 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 1003 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 1004 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 1005 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 1006 1007 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); 1008 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); 1009 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); 1010 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); 1011 retval |= __get_user(cfm, &ppr->cfm); 1012 1013 /* gr1-gr3 */ 1014 1015 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); 1016 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); 1017 1018 /* gr4-gr7 */ 1019 1020 for (i = 4; i < 8; i++) { 1021 retval |= __get_user(val, &ppr->gr[i]); 1022 /* NaT bit will be set via PT_NAT_BITS: */ 1023 if (unw_set_gr(&info, i, val, 0) < 0) 1024 return -EIO; 1025 } 1026 1027 /* gr8-gr11 */ 1028 1029 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); 1030 1031 /* gr12-gr15 */ 1032 1033 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); 1034 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); 1035 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); 1036 1037 /* gr16-gr31 */ 1038 1039 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); 1040 1041 /* b0 */ 1042 1043 retval |= __get_user(pt->b0, &ppr->br[0]); 1044 1045 /* b1-b5 */ 1046 1047 for (i = 1; i < 6; i++) { 1048 retval |= __get_user(val, &ppr->br[i]); 1049 unw_set_br(&info, i, val); 1050 } 1051 1052 /* b6-b7 */ 1053 1054 retval |= __get_user(pt->b6, &ppr->br[6]); 1055 retval |= __get_user(pt->b7, &ppr->br[7]); 1056 1057 /* fr2-fr5 */ 1058 1059 for (i = 2; i < 6; i++) { 1060 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); 1061 if (unw_set_fr(&info, i, fpval) < 0) 1062 return -EIO; 1063 } 1064 1065 /* fr6-fr11 */ 1066 1067 retval |= __copy_from_user(&pt->f6, &ppr->fr[6], 1068 sizeof(ppr->fr[6]) * 6); 1069 1070 /* fp scratch regs(12-15) */ 1071 1072 retval |= __copy_from_user(&sw->f12, &ppr->fr[12], 1073 sizeof(ppr->fr[12]) * 4); 1074 1075 /* fr16-fr31 */ 1076 1077 for (i = 16; i < 32; i++) { 1078 retval |= __copy_from_user(&fpval, &ppr->fr[i], 1079 sizeof(fpval)); 1080 if (unw_set_fr(&info, i, fpval) < 0) 1081 return -EIO; 1082 } 1083 1084 /* fph */ 1085 1086 ia64_sync_fph(child); 1087 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], 1088 sizeof(ppr->fr[32]) * 96); 1089 1090 /* preds */ 1091 1092 retval |= __get_user(pt->pr, &ppr->pr); 1093 1094 /* nat bits */ 1095 1096 retval |= __get_user(nat_bits, &ppr->nat); 1097 1098 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); 1099 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); 1100 retval |= access_uarea(child, PT_AR_EC, &ec, 1); 1101 retval |= access_uarea(child, PT_AR_LC, &lc, 1); 1102 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); 1103 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); 1104 retval |= access_uarea(child, PT_CFM, &cfm, 1); 1105 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); 1106 1107 ret = retval ? -EIO : 0; 1108 return ret; 1109 } 1110 1111 void 1112 user_enable_single_step (struct task_struct *child) 1113 { 1114 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1115 1116 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1117 child_psr->ss = 1; 1118 } 1119 1120 void 1121 user_enable_block_step (struct task_struct *child) 1122 { 1123 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1124 1125 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1126 child_psr->tb = 1; 1127 } 1128 1129 void 1130 user_disable_single_step (struct task_struct *child) 1131 { 1132 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1133 1134 /* make sure the single step/taken-branch trap bits are not set: */ 1135 clear_tsk_thread_flag(child, TIF_SINGLESTEP); 1136 child_psr->ss = 0; 1137 child_psr->tb = 0; 1138 } 1139 1140 /* 1141 * Called by kernel/ptrace.c when detaching.. 1142 * 1143 * Make sure the single step bit is not set. 1144 */ 1145 void 1146 ptrace_disable (struct task_struct *child) 1147 { 1148 user_disable_single_step(child); 1149 } 1150 1151 long 1152 arch_ptrace (struct task_struct *child, long request, 1153 unsigned long addr, unsigned long data) 1154 { 1155 switch (request) { 1156 case PTRACE_PEEKTEXT: 1157 case PTRACE_PEEKDATA: 1158 /* read word at location addr */ 1159 if (access_process_vm(child, addr, &data, sizeof(data), 0) 1160 != sizeof(data)) 1161 return -EIO; 1162 /* ensure return value is not mistaken for error code */ 1163 force_successful_syscall_return(); 1164 return data; 1165 1166 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled 1167 * by the generic ptrace_request(). 1168 */ 1169 1170 case PTRACE_PEEKUSR: 1171 /* read the word at addr in the USER area */ 1172 if (access_uarea(child, addr, &data, 0) < 0) 1173 return -EIO; 1174 /* ensure return value is not mistaken for error code */ 1175 force_successful_syscall_return(); 1176 return data; 1177 1178 case PTRACE_POKEUSR: 1179 /* write the word at addr in the USER area */ 1180 if (access_uarea(child, addr, &data, 1) < 0) 1181 return -EIO; 1182 return 0; 1183 1184 case PTRACE_OLD_GETSIGINFO: 1185 /* for backwards-compatibility */ 1186 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data); 1187 1188 case PTRACE_OLD_SETSIGINFO: 1189 /* for backwards-compatibility */ 1190 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data); 1191 1192 case PTRACE_GETREGS: 1193 return ptrace_getregs(child, 1194 (struct pt_all_user_regs __user *) data); 1195 1196 case PTRACE_SETREGS: 1197 return ptrace_setregs(child, 1198 (struct pt_all_user_regs __user *) data); 1199 1200 default: 1201 return ptrace_request(child, request, addr, data); 1202 } 1203 } 1204 1205 1206 /* "asmlinkage" so the input arguments are preserved... */ 1207 1208 asmlinkage long 1209 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, 1210 long arg4, long arg5, long arg6, long arg7, 1211 struct pt_regs regs) 1212 { 1213 if (test_thread_flag(TIF_SYSCALL_TRACE)) 1214 if (tracehook_report_syscall_entry(®s)) 1215 return -ENOSYS; 1216 1217 /* copy user rbs to kernel rbs */ 1218 if (test_thread_flag(TIF_RESTORE_RSE)) 1219 ia64_sync_krbs(); 1220 1221 1222 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3); 1223 1224 return 0; 1225 } 1226 1227 /* "asmlinkage" so the input arguments are preserved... */ 1228 1229 asmlinkage void 1230 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, 1231 long arg4, long arg5, long arg6, long arg7, 1232 struct pt_regs regs) 1233 { 1234 int step; 1235 1236 audit_syscall_exit(®s); 1237 1238 step = test_thread_flag(TIF_SINGLESTEP); 1239 if (step || test_thread_flag(TIF_SYSCALL_TRACE)) 1240 tracehook_report_syscall_exit(®s, step); 1241 1242 /* copy user rbs to kernel rbs */ 1243 if (test_thread_flag(TIF_RESTORE_RSE)) 1244 ia64_sync_krbs(); 1245 } 1246 1247 /* Utrace implementation starts here */ 1248 struct regset_get { 1249 void *kbuf; 1250 void __user *ubuf; 1251 }; 1252 1253 struct regset_set { 1254 const void *kbuf; 1255 const void __user *ubuf; 1256 }; 1257 1258 struct regset_getset { 1259 struct task_struct *target; 1260 const struct user_regset *regset; 1261 union { 1262 struct regset_get get; 1263 struct regset_set set; 1264 } u; 1265 unsigned int pos; 1266 unsigned int count; 1267 int ret; 1268 }; 1269 1270 static int 1271 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info, 1272 unsigned long addr, unsigned long *data, int write_access) 1273 { 1274 struct pt_regs *pt; 1275 unsigned long *ptr = NULL; 1276 int ret; 1277 char nat = 0; 1278 1279 pt = task_pt_regs(target); 1280 switch (addr) { 1281 case ELF_GR_OFFSET(1): 1282 ptr = &pt->r1; 1283 break; 1284 case ELF_GR_OFFSET(2): 1285 case ELF_GR_OFFSET(3): 1286 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2)); 1287 break; 1288 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7): 1289 if (write_access) { 1290 /* read NaT bit first: */ 1291 unsigned long dummy; 1292 1293 ret = unw_get_gr(info, addr/8, &dummy, &nat); 1294 if (ret < 0) 1295 return ret; 1296 } 1297 return unw_access_gr(info, addr/8, data, &nat, write_access); 1298 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11): 1299 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8); 1300 break; 1301 case ELF_GR_OFFSET(12): 1302 case ELF_GR_OFFSET(13): 1303 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12); 1304 break; 1305 case ELF_GR_OFFSET(14): 1306 ptr = &pt->r14; 1307 break; 1308 case ELF_GR_OFFSET(15): 1309 ptr = &pt->r15; 1310 } 1311 if (write_access) 1312 *ptr = *data; 1313 else 1314 *data = *ptr; 1315 return 0; 1316 } 1317 1318 static int 1319 access_elf_breg(struct task_struct *target, struct unw_frame_info *info, 1320 unsigned long addr, unsigned long *data, int write_access) 1321 { 1322 struct pt_regs *pt; 1323 unsigned long *ptr = NULL; 1324 1325 pt = task_pt_regs(target); 1326 switch (addr) { 1327 case ELF_BR_OFFSET(0): 1328 ptr = &pt->b0; 1329 break; 1330 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5): 1331 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8, 1332 data, write_access); 1333 case ELF_BR_OFFSET(6): 1334 ptr = &pt->b6; 1335 break; 1336 case ELF_BR_OFFSET(7): 1337 ptr = &pt->b7; 1338 } 1339 if (write_access) 1340 *ptr = *data; 1341 else 1342 *data = *ptr; 1343 return 0; 1344 } 1345 1346 static int 1347 access_elf_areg(struct task_struct *target, struct unw_frame_info *info, 1348 unsigned long addr, unsigned long *data, int write_access) 1349 { 1350 struct pt_regs *pt; 1351 unsigned long cfm, urbs_end; 1352 unsigned long *ptr = NULL; 1353 1354 pt = task_pt_regs(target); 1355 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) { 1356 switch (addr) { 1357 case ELF_AR_RSC_OFFSET: 1358 /* force PL3 */ 1359 if (write_access) 1360 pt->ar_rsc = *data | (3 << 2); 1361 else 1362 *data = pt->ar_rsc; 1363 return 0; 1364 case ELF_AR_BSP_OFFSET: 1365 /* 1366 * By convention, we use PT_AR_BSP to refer to 1367 * the end of the user-level backing store. 1368 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) 1369 * to get the real value of ar.bsp at the time 1370 * the kernel was entered. 1371 * 1372 * Furthermore, when changing the contents of 1373 * PT_AR_BSP (or PT_CFM) while the task is 1374 * blocked in a system call, convert the state 1375 * so that the non-system-call exit 1376 * path is used. This ensures that the proper 1377 * state will be picked up when resuming 1378 * execution. However, it *also* means that 1379 * once we write PT_AR_BSP/PT_CFM, it won't be 1380 * possible to modify the syscall arguments of 1381 * the pending system call any longer. This 1382 * shouldn't be an issue because modifying 1383 * PT_AR_BSP/PT_CFM generally implies that 1384 * we're either abandoning the pending system 1385 * call or that we defer it's re-execution 1386 * (e.g., due to GDB doing an inferior 1387 * function call). 1388 */ 1389 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1390 if (write_access) { 1391 if (*data != urbs_end) { 1392 if (in_syscall(pt)) 1393 convert_to_non_syscall(target, 1394 pt, 1395 cfm); 1396 /* 1397 * Simulate user-level write 1398 * of ar.bsp: 1399 */ 1400 pt->loadrs = 0; 1401 pt->ar_bspstore = *data; 1402 } 1403 } else 1404 *data = urbs_end; 1405 return 0; 1406 case ELF_AR_BSPSTORE_OFFSET: 1407 ptr = &pt->ar_bspstore; 1408 break; 1409 case ELF_AR_RNAT_OFFSET: 1410 ptr = &pt->ar_rnat; 1411 break; 1412 case ELF_AR_CCV_OFFSET: 1413 ptr = &pt->ar_ccv; 1414 break; 1415 case ELF_AR_UNAT_OFFSET: 1416 ptr = &pt->ar_unat; 1417 break; 1418 case ELF_AR_FPSR_OFFSET: 1419 ptr = &pt->ar_fpsr; 1420 break; 1421 case ELF_AR_PFS_OFFSET: 1422 ptr = &pt->ar_pfs; 1423 break; 1424 case ELF_AR_LC_OFFSET: 1425 return unw_access_ar(info, UNW_AR_LC, data, 1426 write_access); 1427 case ELF_AR_EC_OFFSET: 1428 return unw_access_ar(info, UNW_AR_EC, data, 1429 write_access); 1430 case ELF_AR_CSD_OFFSET: 1431 ptr = &pt->ar_csd; 1432 break; 1433 case ELF_AR_SSD_OFFSET: 1434 ptr = &pt->ar_ssd; 1435 } 1436 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) { 1437 switch (addr) { 1438 case ELF_CR_IIP_OFFSET: 1439 ptr = &pt->cr_iip; 1440 break; 1441 case ELF_CFM_OFFSET: 1442 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1443 if (write_access) { 1444 if (((cfm ^ *data) & PFM_MASK) != 0) { 1445 if (in_syscall(pt)) 1446 convert_to_non_syscall(target, 1447 pt, 1448 cfm); 1449 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) 1450 | (*data & PFM_MASK)); 1451 } 1452 } else 1453 *data = cfm; 1454 return 0; 1455 case ELF_CR_IPSR_OFFSET: 1456 if (write_access) { 1457 unsigned long tmp = *data; 1458 /* psr.ri==3 is a reserved value: SDM 2:25 */ 1459 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) 1460 tmp &= ~IA64_PSR_RI; 1461 pt->cr_ipsr = ((tmp & IPSR_MASK) 1462 | (pt->cr_ipsr & ~IPSR_MASK)); 1463 } else 1464 *data = (pt->cr_ipsr & IPSR_MASK); 1465 return 0; 1466 } 1467 } else if (addr == ELF_NAT_OFFSET) 1468 return access_nat_bits(target, pt, info, 1469 data, write_access); 1470 else if (addr == ELF_PR_OFFSET) 1471 ptr = &pt->pr; 1472 else 1473 return -1; 1474 1475 if (write_access) 1476 *ptr = *data; 1477 else 1478 *data = *ptr; 1479 1480 return 0; 1481 } 1482 1483 static int 1484 access_elf_reg(struct task_struct *target, struct unw_frame_info *info, 1485 unsigned long addr, unsigned long *data, int write_access) 1486 { 1487 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15)) 1488 return access_elf_gpreg(target, info, addr, data, write_access); 1489 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7)) 1490 return access_elf_breg(target, info, addr, data, write_access); 1491 else 1492 return access_elf_areg(target, info, addr, data, write_access); 1493 } 1494 1495 void do_gpregs_get(struct unw_frame_info *info, void *arg) 1496 { 1497 struct pt_regs *pt; 1498 struct regset_getset *dst = arg; 1499 elf_greg_t tmp[16]; 1500 unsigned int i, index, min_copy; 1501 1502 if (unw_unwind_to_user(info) < 0) 1503 return; 1504 1505 /* 1506 * coredump format: 1507 * r0-r31 1508 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 1509 * predicate registers (p0-p63) 1510 * b0-b7 1511 * ip cfm user-mask 1512 * ar.rsc ar.bsp ar.bspstore ar.rnat 1513 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 1514 */ 1515 1516 1517 /* Skip r0 */ 1518 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1519 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1520 &dst->u.get.kbuf, 1521 &dst->u.get.ubuf, 1522 0, ELF_GR_OFFSET(1)); 1523 if (dst->ret || dst->count == 0) 1524 return; 1525 } 1526 1527 /* gr1 - gr15 */ 1528 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1529 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1530 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ? 1531 (dst->pos + dst->count) : ELF_GR_OFFSET(16); 1532 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1533 index++) 1534 if (access_elf_reg(dst->target, info, i, 1535 &tmp[index], 0) < 0) { 1536 dst->ret = -EIO; 1537 return; 1538 } 1539 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1540 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1541 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1542 if (dst->ret || dst->count == 0) 1543 return; 1544 } 1545 1546 /* r16-r31 */ 1547 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1548 pt = task_pt_regs(dst->target); 1549 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1550 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16, 1551 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1552 if (dst->ret || dst->count == 0) 1553 return; 1554 } 1555 1556 /* nat, pr, b0 - b7 */ 1557 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1558 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1559 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ? 1560 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET; 1561 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1562 index++) 1563 if (access_elf_reg(dst->target, info, i, 1564 &tmp[index], 0) < 0) { 1565 dst->ret = -EIO; 1566 return; 1567 } 1568 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1569 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1570 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1571 if (dst->ret || dst->count == 0) 1572 return; 1573 } 1574 1575 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1577 */ 1578 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1579 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1580 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ? 1581 (dst->pos + dst->count) : ELF_AR_END_OFFSET; 1582 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1583 index++) 1584 if (access_elf_reg(dst->target, info, i, 1585 &tmp[index], 0) < 0) { 1586 dst->ret = -EIO; 1587 return; 1588 } 1589 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1590 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1591 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1592 } 1593 } 1594 1595 void do_gpregs_set(struct unw_frame_info *info, void *arg) 1596 { 1597 struct pt_regs *pt; 1598 struct regset_getset *dst = arg; 1599 elf_greg_t tmp[16]; 1600 unsigned int i, index; 1601 1602 if (unw_unwind_to_user(info) < 0) 1603 return; 1604 1605 /* Skip r0 */ 1606 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1607 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1608 &dst->u.set.kbuf, 1609 &dst->u.set.ubuf, 1610 0, ELF_GR_OFFSET(1)); 1611 if (dst->ret || dst->count == 0) 1612 return; 1613 } 1614 1615 /* gr1-gr15 */ 1616 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1617 i = dst->pos; 1618 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1619 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1620 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1621 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1622 if (dst->ret) 1623 return; 1624 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1625 if (access_elf_reg(dst->target, info, i, 1626 &tmp[index], 1) < 0) { 1627 dst->ret = -EIO; 1628 return; 1629 } 1630 if (dst->count == 0) 1631 return; 1632 } 1633 1634 /* gr16-gr31 */ 1635 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1636 pt = task_pt_regs(dst->target); 1637 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1638 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16, 1639 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1640 if (dst->ret || dst->count == 0) 1641 return; 1642 } 1643 1644 /* nat, pr, b0 - b7 */ 1645 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1646 i = dst->pos; 1647 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1648 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1649 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1650 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1651 if (dst->ret) 1652 return; 1653 for (; i < dst->pos; i += sizeof(elf_greg_t), index++) 1654 if (access_elf_reg(dst->target, info, i, 1655 &tmp[index], 1) < 0) { 1656 dst->ret = -EIO; 1657 return; 1658 } 1659 if (dst->count == 0) 1660 return; 1661 } 1662 1663 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1664 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1665 */ 1666 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1667 i = dst->pos; 1668 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1669 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1670 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1671 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1672 if (dst->ret) 1673 return; 1674 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1675 if (access_elf_reg(dst->target, info, i, 1676 &tmp[index], 1) < 0) { 1677 dst->ret = -EIO; 1678 return; 1679 } 1680 } 1681 } 1682 1683 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t)) 1684 1685 void do_fpregs_get(struct unw_frame_info *info, void *arg) 1686 { 1687 struct regset_getset *dst = arg; 1688 struct task_struct *task = dst->target; 1689 elf_fpreg_t tmp[30]; 1690 int index, min_copy, i; 1691 1692 if (unw_unwind_to_user(info) < 0) 1693 return; 1694 1695 /* Skip pos 0 and 1 */ 1696 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1697 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1698 &dst->u.get.kbuf, 1699 &dst->u.get.ubuf, 1700 0, ELF_FP_OFFSET(2)); 1701 if (dst->count == 0 || dst->ret) 1702 return; 1703 } 1704 1705 /* fr2-fr31 */ 1706 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1707 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t); 1708 1709 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)), 1710 dst->pos + dst->count); 1711 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t), 1712 index++) 1713 if (unw_get_fr(info, i / sizeof(elf_fpreg_t), 1714 &tmp[index])) { 1715 dst->ret = -EIO; 1716 return; 1717 } 1718 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1719 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1720 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1721 if (dst->count == 0 || dst->ret) 1722 return; 1723 } 1724 1725 /* fph */ 1726 if (dst->count > 0) { 1727 ia64_flush_fph(dst->target); 1728 if (task->thread.flags & IA64_THREAD_FPH_VALID) 1729 dst->ret = user_regset_copyout( 1730 &dst->pos, &dst->count, 1731 &dst->u.get.kbuf, &dst->u.get.ubuf, 1732 &dst->target->thread.fph, 1733 ELF_FP_OFFSET(32), -1); 1734 else 1735 /* Zero fill instead. */ 1736 dst->ret = user_regset_copyout_zero( 1737 &dst->pos, &dst->count, 1738 &dst->u.get.kbuf, &dst->u.get.ubuf, 1739 ELF_FP_OFFSET(32), -1); 1740 } 1741 } 1742 1743 void do_fpregs_set(struct unw_frame_info *info, void *arg) 1744 { 1745 struct regset_getset *dst = arg; 1746 elf_fpreg_t fpreg, tmp[30]; 1747 int index, start, end; 1748 1749 if (unw_unwind_to_user(info) < 0) 1750 return; 1751 1752 /* Skip pos 0 and 1 */ 1753 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1754 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1755 &dst->u.set.kbuf, 1756 &dst->u.set.ubuf, 1757 0, ELF_FP_OFFSET(2)); 1758 if (dst->count == 0 || dst->ret) 1759 return; 1760 } 1761 1762 /* fr2-fr31 */ 1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1764 start = dst->pos; 1765 end = min(((unsigned int)ELF_FP_OFFSET(32)), 1766 dst->pos + dst->count); 1767 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1768 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1769 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1770 if (dst->ret) 1771 return; 1772 1773 if (start & 0xF) { /* only write high part */ 1774 if (unw_get_fr(info, start / sizeof(elf_fpreg_t), 1775 &fpreg)) { 1776 dst->ret = -EIO; 1777 return; 1778 } 1779 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0] 1780 = fpreg.u.bits[0]; 1781 start &= ~0xFUL; 1782 } 1783 if (end & 0xF) { /* only write low part */ 1784 if (unw_get_fr(info, end / sizeof(elf_fpreg_t), 1785 &fpreg)) { 1786 dst->ret = -EIO; 1787 return; 1788 } 1789 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1] 1790 = fpreg.u.bits[1]; 1791 end = (end + 0xF) & ~0xFUL; 1792 } 1793 1794 for ( ; start < end ; start += sizeof(elf_fpreg_t)) { 1795 index = start / sizeof(elf_fpreg_t); 1796 if (unw_set_fr(info, index, tmp[index - 2])) { 1797 dst->ret = -EIO; 1798 return; 1799 } 1800 } 1801 if (dst->ret || dst->count == 0) 1802 return; 1803 } 1804 1805 /* fph */ 1806 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) { 1807 ia64_sync_fph(dst->target); 1808 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1809 &dst->u.set.kbuf, 1810 &dst->u.set.ubuf, 1811 &dst->target->thread.fph, 1812 ELF_FP_OFFSET(32), -1); 1813 } 1814 } 1815 1816 static int 1817 do_regset_call(void (*call)(struct unw_frame_info *, void *), 1818 struct task_struct *target, 1819 const struct user_regset *regset, 1820 unsigned int pos, unsigned int count, 1821 const void *kbuf, const void __user *ubuf) 1822 { 1823 struct regset_getset info = { .target = target, .regset = regset, 1824 .pos = pos, .count = count, 1825 .u.set = { .kbuf = kbuf, .ubuf = ubuf }, 1826 .ret = 0 }; 1827 1828 if (target == current) 1829 unw_init_running(call, &info); 1830 else { 1831 struct unw_frame_info ufi; 1832 memset(&ufi, 0, sizeof(ufi)); 1833 unw_init_from_blocked_task(&ufi, target); 1834 (*call)(&ufi, &info); 1835 } 1836 1837 return info.ret; 1838 } 1839 1840 static int 1841 gpregs_get(struct task_struct *target, 1842 const struct user_regset *regset, 1843 unsigned int pos, unsigned int count, 1844 void *kbuf, void __user *ubuf) 1845 { 1846 return do_regset_call(do_gpregs_get, target, regset, pos, count, 1847 kbuf, ubuf); 1848 } 1849 1850 static int gpregs_set(struct task_struct *target, 1851 const struct user_regset *regset, 1852 unsigned int pos, unsigned int count, 1853 const void *kbuf, const void __user *ubuf) 1854 { 1855 return do_regset_call(do_gpregs_set, target, regset, pos, count, 1856 kbuf, ubuf); 1857 } 1858 1859 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg) 1860 { 1861 do_sync_rbs(info, ia64_sync_user_rbs); 1862 } 1863 1864 /* 1865 * This is called to write back the register backing store. 1866 * ptrace does this before it stops, so that a tracer reading the user 1867 * memory after the thread stops will get the current register data. 1868 */ 1869 static int 1870 gpregs_writeback(struct task_struct *target, 1871 const struct user_regset *regset, 1872 int now) 1873 { 1874 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE)) 1875 return 0; 1876 set_notify_resume(target); 1877 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0, 1878 NULL, NULL); 1879 } 1880 1881 static int 1882 fpregs_active(struct task_struct *target, const struct user_regset *regset) 1883 { 1884 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32; 1885 } 1886 1887 static int fpregs_get(struct task_struct *target, 1888 const struct user_regset *regset, 1889 unsigned int pos, unsigned int count, 1890 void *kbuf, void __user *ubuf) 1891 { 1892 return do_regset_call(do_fpregs_get, target, regset, pos, count, 1893 kbuf, ubuf); 1894 } 1895 1896 static int fpregs_set(struct task_struct *target, 1897 const struct user_regset *regset, 1898 unsigned int pos, unsigned int count, 1899 const void *kbuf, const void __user *ubuf) 1900 { 1901 return do_regset_call(do_fpregs_set, target, regset, pos, count, 1902 kbuf, ubuf); 1903 } 1904 1905 static int 1906 access_uarea(struct task_struct *child, unsigned long addr, 1907 unsigned long *data, int write_access) 1908 { 1909 unsigned int pos = -1; /* an invalid value */ 1910 int ret; 1911 unsigned long *ptr, regnum; 1912 1913 if ((addr & 0x7) != 0) { 1914 dprintk("ptrace: unaligned register address 0x%lx\n", addr); 1915 return -1; 1916 } 1917 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) || 1918 (addr >= PT_R7 + 8 && addr < PT_B1) || 1919 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) || 1920 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) { 1921 dprintk("ptrace: rejecting access to register " 1922 "address 0x%lx\n", addr); 1923 return -1; 1924 } 1925 1926 switch (addr) { 1927 case PT_F32 ... (PT_F127 + 15): 1928 pos = addr - PT_F32 + ELF_FP_OFFSET(32); 1929 break; 1930 case PT_F2 ... (PT_F5 + 15): 1931 pos = addr - PT_F2 + ELF_FP_OFFSET(2); 1932 break; 1933 case PT_F10 ... (PT_F31 + 15): 1934 pos = addr - PT_F10 + ELF_FP_OFFSET(10); 1935 break; 1936 case PT_F6 ... (PT_F9 + 15): 1937 pos = addr - PT_F6 + ELF_FP_OFFSET(6); 1938 break; 1939 } 1940 1941 if (pos != -1) { 1942 if (write_access) 1943 ret = fpregs_set(child, NULL, pos, 1944 sizeof(unsigned long), data, NULL); 1945 else 1946 ret = fpregs_get(child, NULL, pos, 1947 sizeof(unsigned long), data, NULL); 1948 if (ret != 0) 1949 return -1; 1950 return 0; 1951 } 1952 1953 switch (addr) { 1954 case PT_NAT_BITS: 1955 pos = ELF_NAT_OFFSET; 1956 break; 1957 case PT_R4 ... PT_R7: 1958 pos = addr - PT_R4 + ELF_GR_OFFSET(4); 1959 break; 1960 case PT_B1 ... PT_B5: 1961 pos = addr - PT_B1 + ELF_BR_OFFSET(1); 1962 break; 1963 case PT_AR_EC: 1964 pos = ELF_AR_EC_OFFSET; 1965 break; 1966 case PT_AR_LC: 1967 pos = ELF_AR_LC_OFFSET; 1968 break; 1969 case PT_CR_IPSR: 1970 pos = ELF_CR_IPSR_OFFSET; 1971 break; 1972 case PT_CR_IIP: 1973 pos = ELF_CR_IIP_OFFSET; 1974 break; 1975 case PT_CFM: 1976 pos = ELF_CFM_OFFSET; 1977 break; 1978 case PT_AR_UNAT: 1979 pos = ELF_AR_UNAT_OFFSET; 1980 break; 1981 case PT_AR_PFS: 1982 pos = ELF_AR_PFS_OFFSET; 1983 break; 1984 case PT_AR_RSC: 1985 pos = ELF_AR_RSC_OFFSET; 1986 break; 1987 case PT_AR_RNAT: 1988 pos = ELF_AR_RNAT_OFFSET; 1989 break; 1990 case PT_AR_BSPSTORE: 1991 pos = ELF_AR_BSPSTORE_OFFSET; 1992 break; 1993 case PT_PR: 1994 pos = ELF_PR_OFFSET; 1995 break; 1996 case PT_B6: 1997 pos = ELF_BR_OFFSET(6); 1998 break; 1999 case PT_AR_BSP: 2000 pos = ELF_AR_BSP_OFFSET; 2001 break; 2002 case PT_R1 ... PT_R3: 2003 pos = addr - PT_R1 + ELF_GR_OFFSET(1); 2004 break; 2005 case PT_R12 ... PT_R15: 2006 pos = addr - PT_R12 + ELF_GR_OFFSET(12); 2007 break; 2008 case PT_R8 ... PT_R11: 2009 pos = addr - PT_R8 + ELF_GR_OFFSET(8); 2010 break; 2011 case PT_R16 ... PT_R31: 2012 pos = addr - PT_R16 + ELF_GR_OFFSET(16); 2013 break; 2014 case PT_AR_CCV: 2015 pos = ELF_AR_CCV_OFFSET; 2016 break; 2017 case PT_AR_FPSR: 2018 pos = ELF_AR_FPSR_OFFSET; 2019 break; 2020 case PT_B0: 2021 pos = ELF_BR_OFFSET(0); 2022 break; 2023 case PT_B7: 2024 pos = ELF_BR_OFFSET(7); 2025 break; 2026 case PT_AR_CSD: 2027 pos = ELF_AR_CSD_OFFSET; 2028 break; 2029 case PT_AR_SSD: 2030 pos = ELF_AR_SSD_OFFSET; 2031 break; 2032 } 2033 2034 if (pos != -1) { 2035 if (write_access) 2036 ret = gpregs_set(child, NULL, pos, 2037 sizeof(unsigned long), data, NULL); 2038 else 2039 ret = gpregs_get(child, NULL, pos, 2040 sizeof(unsigned long), data, NULL); 2041 if (ret != 0) 2042 return -1; 2043 return 0; 2044 } 2045 2046 /* access debug registers */ 2047 if (addr >= PT_IBR) { 2048 regnum = (addr - PT_IBR) >> 3; 2049 ptr = &child->thread.ibr[0]; 2050 } else { 2051 regnum = (addr - PT_DBR) >> 3; 2052 ptr = &child->thread.dbr[0]; 2053 } 2054 2055 if (regnum >= 8) { 2056 dprintk("ptrace: rejecting access to register " 2057 "address 0x%lx\n", addr); 2058 return -1; 2059 } 2060 #ifdef CONFIG_PERFMON 2061 /* 2062 * Check if debug registers are used by perfmon. This 2063 * test must be done once we know that we can do the 2064 * operation, i.e. the arguments are all valid, but 2065 * before we start modifying the state. 2066 * 2067 * Perfmon needs to keep a count of how many processes 2068 * are trying to modify the debug registers for system 2069 * wide monitoring sessions. 2070 * 2071 * We also include read access here, because they may 2072 * cause the PMU-installed debug register state 2073 * (dbr[], ibr[]) to be reset. The two arrays are also 2074 * used by perfmon, but we do not use 2075 * IA64_THREAD_DBG_VALID. The registers are restored 2076 * by the PMU context switch code. 2077 */ 2078 if (pfm_use_debug_registers(child)) 2079 return -1; 2080 #endif 2081 2082 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { 2083 child->thread.flags |= IA64_THREAD_DBG_VALID; 2084 memset(child->thread.dbr, 0, 2085 sizeof(child->thread.dbr)); 2086 memset(child->thread.ibr, 0, 2087 sizeof(child->thread.ibr)); 2088 } 2089 2090 ptr += regnum; 2091 2092 if ((regnum & 1) && write_access) { 2093 /* don't let the user set kernel-level breakpoints: */ 2094 *ptr = *data & ~(7UL << 56); 2095 return 0; 2096 } 2097 if (write_access) 2098 *ptr = *data; 2099 else 2100 *data = *ptr; 2101 return 0; 2102 } 2103 2104 static const struct user_regset native_regsets[] = { 2105 { 2106 .core_note_type = NT_PRSTATUS, 2107 .n = ELF_NGREG, 2108 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t), 2109 .get = gpregs_get, .set = gpregs_set, 2110 .writeback = gpregs_writeback 2111 }, 2112 { 2113 .core_note_type = NT_PRFPREG, 2114 .n = ELF_NFPREG, 2115 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), 2116 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active 2117 }, 2118 }; 2119 2120 static const struct user_regset_view user_ia64_view = { 2121 .name = "ia64", 2122 .e_machine = EM_IA_64, 2123 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) 2124 }; 2125 2126 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk) 2127 { 2128 return &user_ia64_view; 2129 } 2130 2131 struct syscall_get_set_args { 2132 unsigned int i; 2133 unsigned int n; 2134 unsigned long *args; 2135 struct pt_regs *regs; 2136 int rw; 2137 }; 2138 2139 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data) 2140 { 2141 struct syscall_get_set_args *args = data; 2142 struct pt_regs *pt = args->regs; 2143 unsigned long *krbs, cfm, ndirty; 2144 int i, count; 2145 2146 if (unw_unwind_to_user(info) < 0) 2147 return; 2148 2149 cfm = pt->cr_ifs; 2150 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8; 2151 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 2152 2153 count = 0; 2154 if (in_syscall(pt)) 2155 count = min_t(int, args->n, cfm & 0x7f); 2156 2157 for (i = 0; i < count; i++) { 2158 if (args->rw) 2159 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) = 2160 args->args[i]; 2161 else 2162 args->args[i] = *ia64_rse_skip_regs(krbs, 2163 ndirty + i + args->i); 2164 } 2165 2166 if (!args->rw) { 2167 while (i < args->n) { 2168 args->args[i] = 0; 2169 i++; 2170 } 2171 } 2172 } 2173 2174 void ia64_syscall_get_set_arguments(struct task_struct *task, 2175 struct pt_regs *regs, unsigned int i, unsigned int n, 2176 unsigned long *args, int rw) 2177 { 2178 struct syscall_get_set_args data = { 2179 .i = i, 2180 .n = n, 2181 .args = args, 2182 .regs = regs, 2183 .rw = rw, 2184 }; 2185 2186 if (task == current) 2187 unw_init_running(syscall_get_set_args_cb, &data); 2188 else { 2189 struct unw_frame_info ufi; 2190 memset(&ufi, 0, sizeof(ufi)); 2191 unw_init_from_blocked_task(&ufi, task); 2192 syscall_get_set_args_cb(&ufi, &data); 2193 } 2194 } 2195