xref: /openbmc/linux/arch/ia64/kernel/ptrace.c (revision 72ed5d5624af384eaf74d84915810d54486a75e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel support for the ptrace() and syscall tracing interfaces.
4  *
5  * Copyright (C) 1999-2005 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * Copyright (C) 2006 Intel Co
8  *  2006-08-12	- IA64 Native Utrace implementation support added by
9  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10  *
11  * Derived from the x86 and Alpha versions.
12  */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/mm.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/resume_user_mode.h>
27 
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
30 #include <asm/rse.h>
31 #include <linux/uaccess.h>
32 #include <asm/unwind.h>
33 
34 #include "entry.h"
35 
36 /*
37  * Bits in the PSR that we allow ptrace() to change:
38  *	be, up, ac, mfl, mfh (the user mask; five bits total)
39  *	db (debug breakpoint fault; one bit)
40  *	id (instruction debug fault disable; one bit)
41  *	dd (data debug fault disable; one bit)
42  *	ri (restart instruction; two bits)
43  *	is (instruction set; one bit)
44  */
45 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
46 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47 
48 #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
49 #define PFM_MASK	MASK(38)
50 
51 #define PTRACE_DEBUG	0
52 
53 #if PTRACE_DEBUG
54 # define dprintk(format...)	printk(format)
55 # define inline
56 #else
57 # define dprintk(format...)
58 #endif
59 
60 /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
61 
62 static inline int
63 in_syscall (struct pt_regs *pt)
64 {
65 	return (long) pt->cr_ifs >= 0;
66 }
67 
68 /*
69  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70  * bitset where bit i is set iff the NaT bit of register i is set.
71  */
72 unsigned long
73 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74 {
75 #	define GET_BITS(first, last, unat)				\
76 	({								\
77 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
78 		unsigned long nbits = (last - first + 1);		\
79 		unsigned long mask = MASK(nbits) << first;		\
80 		unsigned long dist;					\
81 		if (bit < first)					\
82 			dist = 64 + bit - first;			\
83 		else							\
84 			dist = bit - first;				\
85 		ia64_rotr(unat, dist) & mask;				\
86 	})
87 	unsigned long val;
88 
89 	/*
90 	 * Registers that are stored consecutively in struct pt_regs
91 	 * can be handled in parallel.  If the register order in
92 	 * struct_pt_regs changes, this code MUST be updated.
93 	 */
94 	val  = GET_BITS( 1,  1, scratch_unat);
95 	val |= GET_BITS( 2,  3, scratch_unat);
96 	val |= GET_BITS(12, 13, scratch_unat);
97 	val |= GET_BITS(14, 14, scratch_unat);
98 	val |= GET_BITS(15, 15, scratch_unat);
99 	val |= GET_BITS( 8, 11, scratch_unat);
100 	val |= GET_BITS(16, 31, scratch_unat);
101 	return val;
102 
103 #	undef GET_BITS
104 }
105 
106 /*
107  * Set the NaT bits for the scratch registers according to NAT and
108  * return the resulting unat (assuming the scratch registers are
109  * stored in PT).
110  */
111 unsigned long
112 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113 {
114 #	define PUT_BITS(first, last, nat)				\
115 	({								\
116 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
117 		unsigned long nbits = (last - first + 1);		\
118 		unsigned long mask = MASK(nbits) << first;		\
119 		long dist;						\
120 		if (bit < first)					\
121 			dist = 64 + bit - first;			\
122 		else							\
123 			dist = bit - first;				\
124 		ia64_rotl(nat & mask, dist);				\
125 	})
126 	unsigned long scratch_unat;
127 
128 	/*
129 	 * Registers that are stored consecutively in struct pt_regs
130 	 * can be handled in parallel.  If the register order in
131 	 * struct_pt_regs changes, this code MUST be updated.
132 	 */
133 	scratch_unat  = PUT_BITS( 1,  1, nat);
134 	scratch_unat |= PUT_BITS( 2,  3, nat);
135 	scratch_unat |= PUT_BITS(12, 13, nat);
136 	scratch_unat |= PUT_BITS(14, 14, nat);
137 	scratch_unat |= PUT_BITS(15, 15, nat);
138 	scratch_unat |= PUT_BITS( 8, 11, nat);
139 	scratch_unat |= PUT_BITS(16, 31, nat);
140 
141 	return scratch_unat;
142 
143 #	undef PUT_BITS
144 }
145 
146 #define IA64_MLX_TEMPLATE	0x2
147 #define IA64_MOVL_OPCODE	6
148 
149 void
150 ia64_increment_ip (struct pt_regs *regs)
151 {
152 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153 
154 	if (ri > 2) {
155 		ri = 0;
156 		regs->cr_iip += 16;
157 	} else if (ri == 2) {
158 		get_user(w0, (char __user *) regs->cr_iip + 0);
159 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 			/*
161 			 * rfi'ing to slot 2 of an MLX bundle causes
162 			 * an illegal operation fault.  We don't want
163 			 * that to happen...
164 			 */
165 			ri = 0;
166 			regs->cr_iip += 16;
167 		}
168 	}
169 	ia64_psr(regs)->ri = ri;
170 }
171 
172 void
173 ia64_decrement_ip (struct pt_regs *regs)
174 {
175 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176 
177 	if (ia64_psr(regs)->ri == 0) {
178 		regs->cr_iip -= 16;
179 		ri = 2;
180 		get_user(w0, (char __user *) regs->cr_iip + 0);
181 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 			/*
183 			 * rfi'ing to slot 2 of an MLX bundle causes
184 			 * an illegal operation fault.  We don't want
185 			 * that to happen...
186 			 */
187 			ri = 1;
188 		}
189 	}
190 	ia64_psr(regs)->ri = ri;
191 }
192 
193 /*
194  * This routine is used to read an rnat bits that are stored on the
195  * kernel backing store.  Since, in general, the alignment of the user
196  * and kernel are different, this is not completely trivial.  In
197  * essence, we need to construct the user RNAT based on up to two
198  * kernel RNAT values and/or the RNAT value saved in the child's
199  * pt_regs.
200  *
201  * user rbs
202  *
203  * +--------+ <-- lowest address
204  * | slot62 |
205  * +--------+
206  * |  rnat  | 0x....1f8
207  * +--------+
208  * | slot00 | \
209  * +--------+ |
210  * | slot01 | > child_regs->ar_rnat
211  * +--------+ |
212  * | slot02 | /				kernel rbs
213  * +--------+				+--------+
214  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
215  * +- - - - +				+--------+
216  *					| slot62 |
217  * +- - - - +				+--------+
218  *					|  rnat	 |
219  * +- - - - +				+--------+
220  *   vrnat				| slot00 |
221  * +- - - - +				+--------+
222  *					=	 =
223  *					+--------+
224  *					| slot00 | \
225  *					+--------+ |
226  *					| slot01 | > child_stack->ar_rnat
227  *					+--------+ |
228  *					| slot02 | /
229  *					+--------+
230  *						  <--- child_stack->ar_bspstore
231  *
232  * The way to think of this code is as follows: bit 0 in the user rnat
233  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234  * value.  The kernel rnat value holding this bit is stored in
235  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
236  * form the upper bits of the user rnat value.
237  *
238  * Boundary cases:
239  *
240  * o when reading the rnat "below" the first rnat slot on the kernel
241  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
242  *   merged in from pt->ar_rnat.
243  *
244  * o when reading the rnat "above" the last rnat slot on the kernel
245  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246  */
247 static unsigned long
248 get_rnat (struct task_struct *task, struct switch_stack *sw,
249 	  unsigned long *krbs, unsigned long *urnat_addr,
250 	  unsigned long *urbs_end)
251 {
252 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 	unsigned long umask = 0, mask, m;
254 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 	long num_regs, nbits;
256 	struct pt_regs *pt;
257 
258 	pt = task_pt_regs(task);
259 	kbsp = (unsigned long *) sw->ar_bspstore;
260 	ubspstore = (unsigned long *) pt->ar_bspstore;
261 
262 	if (urbs_end < urnat_addr)
263 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 	else
265 		nbits = 63;
266 	mask = MASK(nbits);
267 	/*
268 	 * First, figure out which bit number slot 0 in user-land maps
269 	 * to in the kernel rnat.  Do this by figuring out how many
270 	 * register slots we're beyond the user's backingstore and
271 	 * then computing the equivalent address in kernel space.
272 	 */
273 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 	shift = ia64_rse_slot_num(slot0_kaddr);
276 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 	rnat0_kaddr = rnat1_kaddr - 64;
278 
279 	if (ubspstore + 63 > urnat_addr) {
280 		/* some bits need to be merged in from pt->ar_rnat */
281 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 		urnat = (pt->ar_rnat & umask);
283 		mask &= ~umask;
284 		if (!mask)
285 			return urnat;
286 	}
287 
288 	m = mask << shift;
289 	if (rnat0_kaddr >= kbsp)
290 		rnat0 = sw->ar_rnat;
291 	else if (rnat0_kaddr > krbs)
292 		rnat0 = *rnat0_kaddr;
293 	urnat |= (rnat0 & m) >> shift;
294 
295 	m = mask >> (63 - shift);
296 	if (rnat1_kaddr >= kbsp)
297 		rnat1 = sw->ar_rnat;
298 	else if (rnat1_kaddr > krbs)
299 		rnat1 = *rnat1_kaddr;
300 	urnat |= (rnat1 & m) << (63 - shift);
301 	return urnat;
302 }
303 
304 /*
305  * The reverse of get_rnat.
306  */
307 static void
308 put_rnat (struct task_struct *task, struct switch_stack *sw,
309 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 	  unsigned long *urbs_end)
311 {
312 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 	long num_regs, nbits;
315 	struct pt_regs *pt;
316 	unsigned long cfm, *urbs_kargs;
317 
318 	pt = task_pt_regs(task);
319 	kbsp = (unsigned long *) sw->ar_bspstore;
320 	ubspstore = (unsigned long *) pt->ar_bspstore;
321 
322 	urbs_kargs = urbs_end;
323 	if (in_syscall(pt)) {
324 		/*
325 		 * If entered via syscall, don't allow user to set rnat bits
326 		 * for syscall args.
327 		 */
328 		cfm = pt->cr_ifs;
329 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 	}
331 
332 	if (urbs_kargs >= urnat_addr)
333 		nbits = 63;
334 	else {
335 		if ((urnat_addr - 63) >= urbs_kargs)
336 			return;
337 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 	}
339 	mask = MASK(nbits);
340 
341 	/*
342 	 * First, figure out which bit number slot 0 in user-land maps
343 	 * to in the kernel rnat.  Do this by figuring out how many
344 	 * register slots we're beyond the user's backingstore and
345 	 * then computing the equivalent address in kernel space.
346 	 */
347 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 	shift = ia64_rse_slot_num(slot0_kaddr);
350 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 	rnat0_kaddr = rnat1_kaddr - 64;
352 
353 	if (ubspstore + 63 > urnat_addr) {
354 		/* some bits need to be place in pt->ar_rnat: */
355 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 		mask &= ~umask;
358 		if (!mask)
359 			return;
360 	}
361 	/*
362 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 	 * rnat slot is ignored. so we don't have to clear it here.
364 	 */
365 	rnat0 = (urnat << shift);
366 	m = mask << shift;
367 	if (rnat0_kaddr >= kbsp)
368 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 	else if (rnat0_kaddr > krbs)
370 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371 
372 	rnat1 = (urnat >> (63 - shift));
373 	m = mask >> (63 - shift);
374 	if (rnat1_kaddr >= kbsp)
375 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 	else if (rnat1_kaddr > krbs)
377 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378 }
379 
380 static inline int
381 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 	       unsigned long urbs_end)
383 {
384 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 						      urbs_end);
386 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387 }
388 
389 /*
390  * Read a word from the user-level backing store of task CHILD.  ADDR
391  * is the user-level address to read the word from, VAL a pointer to
392  * the return value, and USER_BSP gives the end of the user-level
393  * backing store (i.e., it's the address that would be in ar.bsp after
394  * the user executed a "cover" instruction).
395  *
396  * This routine takes care of accessing the kernel register backing
397  * store for those registers that got spilled there.  It also takes
398  * care of calculating the appropriate RNaT collection words.
399  */
400 long
401 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 	   unsigned long user_rbs_end, unsigned long addr, long *val)
403 {
404 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 	struct pt_regs *child_regs;
406 	size_t copied;
407 	long ret;
408 
409 	urbs_end = (long *) user_rbs_end;
410 	laddr = (unsigned long *) addr;
411 	child_regs = task_pt_regs(child);
412 	bspstore = (unsigned long *) child_regs->ar_bspstore;
413 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 			  (unsigned long) urbs_end))
416 	{
417 		/*
418 		 * Attempt to read the RBS in an area that's actually
419 		 * on the kernel RBS => read the corresponding bits in
420 		 * the kernel RBS.
421 		 */
422 		rnat_addr = ia64_rse_rnat_addr(laddr);
423 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424 
425 		if (laddr == rnat_addr) {
426 			/* return NaT collection word itself */
427 			*val = ret;
428 			return 0;
429 		}
430 
431 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 			/*
433 			 * It is implementation dependent whether the
434 			 * data portion of a NaT value gets saved on a
435 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 			 * 4.4.4.6 Register Spill and Fill).  To get
437 			 * consistent behavior across all possible
438 			 * IA-64 implementations, we return zero in
439 			 * this case.
440 			 */
441 			*val = 0;
442 			return 0;
443 		}
444 
445 		if (laddr < urbs_end) {
446 			/*
447 			 * The desired word is on the kernel RBS and
448 			 * is not a NaT.
449 			 */
450 			regnum = ia64_rse_num_regs(bspstore, laddr);
451 			*val = *ia64_rse_skip_regs(krbs, regnum);
452 			return 0;
453 		}
454 	}
455 	copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 	if (copied != sizeof(ret))
457 		return -EIO;
458 	*val = ret;
459 	return 0;
460 }
461 
462 long
463 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 	   unsigned long user_rbs_end, unsigned long addr, long val)
465 {
466 	unsigned long *bspstore, *krbs, regnum, *laddr;
467 	unsigned long *urbs_end = (long *) user_rbs_end;
468 	struct pt_regs *child_regs;
469 
470 	laddr = (unsigned long *) addr;
471 	child_regs = task_pt_regs(child);
472 	bspstore = (unsigned long *) child_regs->ar_bspstore;
473 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 			  (unsigned long) urbs_end))
476 	{
477 		/*
478 		 * Attempt to write the RBS in an area that's actually
479 		 * on the kernel RBS => write the corresponding bits
480 		 * in the kernel RBS.
481 		 */
482 		if (ia64_rse_is_rnat_slot(laddr))
483 			put_rnat(child, child_stack, krbs, laddr, val,
484 				 urbs_end);
485 		else {
486 			if (laddr < urbs_end) {
487 				regnum = ia64_rse_num_regs(bspstore, laddr);
488 				*ia64_rse_skip_regs(krbs, regnum) = val;
489 			}
490 		}
491 	} else if (access_process_vm(child, addr, &val, sizeof(val),
492 				FOLL_FORCE | FOLL_WRITE)
493 		   != sizeof(val))
494 		return -EIO;
495 	return 0;
496 }
497 
498 /*
499  * Calculate the address of the end of the user-level register backing
500  * store.  This is the address that would have been stored in ar.bsp
501  * if the user had executed a "cover" instruction right before
502  * entering the kernel.  If CFMP is not NULL, it is used to return the
503  * "current frame mask" that was active at the time the kernel was
504  * entered.
505  */
506 unsigned long
507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 		       unsigned long *cfmp)
509 {
510 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 	long ndirty;
512 
513 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 	bspstore = (unsigned long *) pt->ar_bspstore;
515 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516 
517 	if (in_syscall(pt))
518 		ndirty += (cfm & 0x7f);
519 	else
520 		cfm &= ~(1UL << 63);	/* clear valid bit */
521 
522 	if (cfmp)
523 		*cfmp = cfm;
524 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525 }
526 
527 /*
528  * Synchronize (i.e, write) the RSE backing store living in kernel
529  * space to the VM of the CHILD task.  SW and PT are the pointers to
530  * the switch_stack and pt_regs structures, respectively.
531  * USER_RBS_END is the user-level address at which the backing store
532  * ends.
533  */
534 long
535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
537 {
538 	unsigned long addr, val;
539 	long ret;
540 
541 	/* now copy word for word from kernel rbs to user rbs: */
542 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 		if (ret < 0)
545 			return ret;
546 		if (access_process_vm(child, addr, &val, sizeof(val),
547 				FOLL_FORCE | FOLL_WRITE)
548 		    != sizeof(val))
549 			return -EIO;
550 	}
551 	return 0;
552 }
553 
554 static long
555 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 		unsigned long user_rbs_start, unsigned long user_rbs_end)
557 {
558 	unsigned long addr, val;
559 	long ret;
560 
561 	/* now copy word for word from user rbs to kernel rbs: */
562 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 		if (access_process_vm(child, addr, &val, sizeof(val),
564 				FOLL_FORCE)
565 				!= sizeof(val))
566 			return -EIO;
567 
568 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 		if (ret < 0)
570 			return ret;
571 	}
572 	return 0;
573 }
574 
575 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 			    unsigned long, unsigned long);
577 
578 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579 {
580 	struct pt_regs *pt;
581 	unsigned long urbs_end;
582 	syncfunc_t fn = arg;
583 
584 	if (unw_unwind_to_user(info) < 0)
585 		return;
586 	pt = task_pt_regs(info->task);
587 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588 
589 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590 }
591 
592 /*
593  * when a thread is stopped (ptraced), debugger might change thread's user
594  * stack (change memory directly), and we must avoid the RSE stored in kernel
595  * to override user stack (user space's RSE is newer than kernel's in the
596  * case). To workaround the issue, we copy kernel RSE to user RSE before the
597  * task is stopped, so user RSE has updated data.  we then copy user RSE to
598  * kernel after the task is resummed from traced stop and kernel will use the
599  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600  * synchronize user RSE to kernel.
601  */
602 void ia64_ptrace_stop(void)
603 {
604 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 		return;
606 	set_notify_resume(current);
607 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608 }
609 
610 /*
611  * This is called to read back the register backing store.
612  */
613 void ia64_sync_krbs(void)
614 {
615 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616 
617 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618 }
619 
620 /*
621  * Write f32-f127 back to task->thread.fph if it has been modified.
622  */
623 inline void
624 ia64_flush_fph (struct task_struct *task)
625 {
626 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
627 
628 	/*
629 	 * Prevent migrating this task while
630 	 * we're fiddling with the FPU state
631 	 */
632 	preempt_disable();
633 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
634 		psr->mfh = 0;
635 		task->thread.flags |= IA64_THREAD_FPH_VALID;
636 		ia64_save_fpu(&task->thread.fph[0]);
637 	}
638 	preempt_enable();
639 }
640 
641 /*
642  * Sync the fph state of the task so that it can be manipulated
643  * through thread.fph.  If necessary, f32-f127 are written back to
644  * thread.fph or, if the fph state hasn't been used before, thread.fph
645  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
646  * ensure that the task picks up the state from thread.fph when it
647  * executes again.
648  */
649 void
650 ia64_sync_fph (struct task_struct *task)
651 {
652 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
653 
654 	ia64_flush_fph(task);
655 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
656 		task->thread.flags |= IA64_THREAD_FPH_VALID;
657 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
658 	}
659 	ia64_drop_fpu(task);
660 	psr->dfh = 1;
661 }
662 
663 /*
664  * Change the machine-state of CHILD such that it will return via the normal
665  * kernel exit-path, rather than the syscall-exit path.
666  */
667 static void
668 convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
669 			unsigned long cfm)
670 {
671 	struct unw_frame_info info, prev_info;
672 	unsigned long ip, sp, pr;
673 
674 	unw_init_from_blocked_task(&info, child);
675 	while (1) {
676 		prev_info = info;
677 		if (unw_unwind(&info) < 0)
678 			return;
679 
680 		unw_get_sp(&info, &sp);
681 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
682 		    < IA64_PT_REGS_SIZE) {
683 			dprintk("ptrace.%s: ran off the top of the kernel "
684 				"stack\n", __func__);
685 			return;
686 		}
687 		if (unw_get_pr (&prev_info, &pr) < 0) {
688 			unw_get_rp(&prev_info, &ip);
689 			dprintk("ptrace.%s: failed to read "
690 				"predicate register (ip=0x%lx)\n",
691 				__func__, ip);
692 			return;
693 		}
694 		if (unw_is_intr_frame(&info)
695 		    && (pr & (1UL << PRED_USER_STACK)))
696 			break;
697 	}
698 
699 	/*
700 	 * Note: at the time of this call, the target task is blocked
701 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
702 	 * (aka, "pLvSys") we redirect execution from
703 	 * .work_pending_syscall_end to .work_processed_kernel.
704 	 */
705 	unw_get_pr(&prev_info, &pr);
706 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
707 	pr |=  (1UL << PRED_NON_SYSCALL);
708 	unw_set_pr(&prev_info, pr);
709 
710 	pt->cr_ifs = (1UL << 63) | cfm;
711 	/*
712 	 * Clear the memory that is NOT written on syscall-entry to
713 	 * ensure we do not leak kernel-state to user when execution
714 	 * resumes.
715 	 */
716 	pt->r2 = 0;
717 	pt->r3 = 0;
718 	pt->r14 = 0;
719 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
720 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
721 	pt->b7 = 0;
722 	pt->ar_ccv = 0;
723 	pt->ar_csd = 0;
724 	pt->ar_ssd = 0;
725 }
726 
727 static int
728 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
729 		 struct unw_frame_info *info,
730 		 unsigned long *data, int write_access)
731 {
732 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
733 	char nat = 0;
734 
735 	if (write_access) {
736 		nat_bits = *data;
737 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
738 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
739 			dprintk("ptrace: failed to set ar.unat\n");
740 			return -1;
741 		}
742 		for (regnum = 4; regnum <= 7; ++regnum) {
743 			unw_get_gr(info, regnum, &dummy, &nat);
744 			unw_set_gr(info, regnum, dummy,
745 				   (nat_bits >> regnum) & 1);
746 		}
747 	} else {
748 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
749 			dprintk("ptrace: failed to read ar.unat\n");
750 			return -1;
751 		}
752 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
753 		for (regnum = 4; regnum <= 7; ++regnum) {
754 			unw_get_gr(info, regnum, &dummy, &nat);
755 			nat_bits |= (nat != 0) << regnum;
756 		}
757 		*data = nat_bits;
758 	}
759 	return 0;
760 }
761 
762 static int
763 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
764 		unsigned long addr, unsigned long *data, int write_access);
765 
766 static long
767 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
768 {
769 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
770 	struct unw_frame_info info;
771 	struct ia64_fpreg fpval;
772 	struct switch_stack *sw;
773 	struct pt_regs *pt;
774 	long ret, retval = 0;
775 	char nat = 0;
776 	int i;
777 
778 	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
779 		return -EIO;
780 
781 	pt = task_pt_regs(child);
782 	sw = (struct switch_stack *) (child->thread.ksp + 16);
783 	unw_init_from_blocked_task(&info, child);
784 	if (unw_unwind_to_user(&info) < 0) {
785 		return -EIO;
786 	}
787 
788 	if (((unsigned long) ppr & 0x7) != 0) {
789 		dprintk("ptrace:unaligned register address %p\n", ppr);
790 		return -EIO;
791 	}
792 
793 	if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
794 	    access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
795 	    access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
796 	    access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
797 	    access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
798 	    access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
799 	    access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
800 		return -EIO;
801 
802 	/* control regs */
803 
804 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
805 	retval |= __put_user(psr, &ppr->cr_ipsr);
806 
807 	/* app regs */
808 
809 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
810 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
811 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
812 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
813 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
814 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
815 
816 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
817 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
818 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
819 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
820 	retval |= __put_user(cfm, &ppr->cfm);
821 
822 	/* gr1-gr3 */
823 
824 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
825 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
826 
827 	/* gr4-gr7 */
828 
829 	for (i = 4; i < 8; i++) {
830 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
831 			return -EIO;
832 		retval |= __put_user(val, &ppr->gr[i]);
833 	}
834 
835 	/* gr8-gr11 */
836 
837 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
838 
839 	/* gr12-gr15 */
840 
841 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
842 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
843 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
844 
845 	/* gr16-gr31 */
846 
847 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
848 
849 	/* b0 */
850 
851 	retval |= __put_user(pt->b0, &ppr->br[0]);
852 
853 	/* b1-b5 */
854 
855 	for (i = 1; i < 6; i++) {
856 		if (unw_access_br(&info, i, &val, 0) < 0)
857 			return -EIO;
858 		__put_user(val, &ppr->br[i]);
859 	}
860 
861 	/* b6-b7 */
862 
863 	retval |= __put_user(pt->b6, &ppr->br[6]);
864 	retval |= __put_user(pt->b7, &ppr->br[7]);
865 
866 	/* fr2-fr5 */
867 
868 	for (i = 2; i < 6; i++) {
869 		if (unw_get_fr(&info, i, &fpval) < 0)
870 			return -EIO;
871 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
872 	}
873 
874 	/* fr6-fr11 */
875 
876 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
877 				 sizeof(struct ia64_fpreg) * 6);
878 
879 	/* fp scratch regs(12-15) */
880 
881 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
882 				 sizeof(struct ia64_fpreg) * 4);
883 
884 	/* fr16-fr31 */
885 
886 	for (i = 16; i < 32; i++) {
887 		if (unw_get_fr(&info, i, &fpval) < 0)
888 			return -EIO;
889 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
890 	}
891 
892 	/* fph */
893 
894 	ia64_flush_fph(child);
895 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
896 				 sizeof(ppr->fr[32]) * 96);
897 
898 	/*  preds */
899 
900 	retval |= __put_user(pt->pr, &ppr->pr);
901 
902 	/* nat bits */
903 
904 	retval |= __put_user(nat_bits, &ppr->nat);
905 
906 	ret = retval ? -EIO : 0;
907 	return ret;
908 }
909 
910 static long
911 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
912 {
913 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
914 	struct unw_frame_info info;
915 	struct switch_stack *sw;
916 	struct ia64_fpreg fpval;
917 	struct pt_regs *pt;
918 	long retval = 0;
919 	int i;
920 
921 	memset(&fpval, 0, sizeof(fpval));
922 
923 	if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
924 		return -EIO;
925 
926 	pt = task_pt_regs(child);
927 	sw = (struct switch_stack *) (child->thread.ksp + 16);
928 	unw_init_from_blocked_task(&info, child);
929 	if (unw_unwind_to_user(&info) < 0) {
930 		return -EIO;
931 	}
932 
933 	if (((unsigned long) ppr & 0x7) != 0) {
934 		dprintk("ptrace:unaligned register address %p\n", ppr);
935 		return -EIO;
936 	}
937 
938 	/* control regs */
939 
940 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
941 	retval |= __get_user(psr, &ppr->cr_ipsr);
942 
943 	/* app regs */
944 
945 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
946 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
947 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
948 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
949 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
950 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
951 
952 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
953 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
954 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
955 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
956 	retval |= __get_user(cfm, &ppr->cfm);
957 
958 	/* gr1-gr3 */
959 
960 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
961 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
962 
963 	/* gr4-gr7 */
964 
965 	for (i = 4; i < 8; i++) {
966 		retval |= __get_user(val, &ppr->gr[i]);
967 		/* NaT bit will be set via PT_NAT_BITS: */
968 		if (unw_set_gr(&info, i, val, 0) < 0)
969 			return -EIO;
970 	}
971 
972 	/* gr8-gr11 */
973 
974 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
975 
976 	/* gr12-gr15 */
977 
978 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
979 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
980 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
981 
982 	/* gr16-gr31 */
983 
984 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
985 
986 	/* b0 */
987 
988 	retval |= __get_user(pt->b0, &ppr->br[0]);
989 
990 	/* b1-b5 */
991 
992 	for (i = 1; i < 6; i++) {
993 		retval |= __get_user(val, &ppr->br[i]);
994 		unw_set_br(&info, i, val);
995 	}
996 
997 	/* b6-b7 */
998 
999 	retval |= __get_user(pt->b6, &ppr->br[6]);
1000 	retval |= __get_user(pt->b7, &ppr->br[7]);
1001 
1002 	/* fr2-fr5 */
1003 
1004 	for (i = 2; i < 6; i++) {
1005 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1006 		if (unw_set_fr(&info, i, fpval) < 0)
1007 			return -EIO;
1008 	}
1009 
1010 	/* fr6-fr11 */
1011 
1012 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1013 				   sizeof(ppr->fr[6]) * 6);
1014 
1015 	/* fp scratch regs(12-15) */
1016 
1017 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1018 				   sizeof(ppr->fr[12]) * 4);
1019 
1020 	/* fr16-fr31 */
1021 
1022 	for (i = 16; i < 32; i++) {
1023 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1024 					   sizeof(fpval));
1025 		if (unw_set_fr(&info, i, fpval) < 0)
1026 			return -EIO;
1027 	}
1028 
1029 	/* fph */
1030 
1031 	ia64_sync_fph(child);
1032 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1033 				   sizeof(ppr->fr[32]) * 96);
1034 
1035 	/* preds */
1036 
1037 	retval |= __get_user(pt->pr, &ppr->pr);
1038 
1039 	/* nat bits */
1040 
1041 	retval |= __get_user(nat_bits, &ppr->nat);
1042 
1043 	retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1044 	retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1045 	retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1046 	retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1047 	retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1048 	retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1049 	retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1050 	retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1051 
1052 	return retval ? -EIO : 0;
1053 }
1054 
1055 void
1056 user_enable_single_step (struct task_struct *child)
1057 {
1058 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1059 
1060 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1061 	child_psr->ss = 1;
1062 }
1063 
1064 void
1065 user_enable_block_step (struct task_struct *child)
1066 {
1067 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1068 
1069 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
1070 	child_psr->tb = 1;
1071 }
1072 
1073 void
1074 user_disable_single_step (struct task_struct *child)
1075 {
1076 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1077 
1078 	/* make sure the single step/taken-branch trap bits are not set: */
1079 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1080 	child_psr->ss = 0;
1081 	child_psr->tb = 0;
1082 }
1083 
1084 /*
1085  * Called by kernel/ptrace.c when detaching..
1086  *
1087  * Make sure the single step bit is not set.
1088  */
1089 void
1090 ptrace_disable (struct task_struct *child)
1091 {
1092 	user_disable_single_step(child);
1093 }
1094 
1095 static int
1096 access_uarea (struct task_struct *child, unsigned long addr,
1097 	      unsigned long *data, int write_access);
1098 
1099 long
1100 arch_ptrace (struct task_struct *child, long request,
1101 	     unsigned long addr, unsigned long data)
1102 {
1103 	switch (request) {
1104 	case PTRACE_PEEKTEXT:
1105 	case PTRACE_PEEKDATA:
1106 		/* read word at location addr */
1107 		if (ptrace_access_vm(child, addr, &data, sizeof(data),
1108 				FOLL_FORCE)
1109 		    != sizeof(data))
1110 			return -EIO;
1111 		/* ensure return value is not mistaken for error code */
1112 		force_successful_syscall_return();
1113 		return data;
1114 
1115 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1116 	 * by the generic ptrace_request().
1117 	 */
1118 
1119 	case PTRACE_PEEKUSR:
1120 		/* read the word at addr in the USER area */
1121 		if (access_uarea(child, addr, &data, 0) < 0)
1122 			return -EIO;
1123 		/* ensure return value is not mistaken for error code */
1124 		force_successful_syscall_return();
1125 		return data;
1126 
1127 	case PTRACE_POKEUSR:
1128 		/* write the word at addr in the USER area */
1129 		if (access_uarea(child, addr, &data, 1) < 0)
1130 			return -EIO;
1131 		return 0;
1132 
1133 	case PTRACE_OLD_GETSIGINFO:
1134 		/* for backwards-compatibility */
1135 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1136 
1137 	case PTRACE_OLD_SETSIGINFO:
1138 		/* for backwards-compatibility */
1139 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1140 
1141 	case PTRACE_GETREGS:
1142 		return ptrace_getregs(child,
1143 				      (struct pt_all_user_regs __user *) data);
1144 
1145 	case PTRACE_SETREGS:
1146 		return ptrace_setregs(child,
1147 				      (struct pt_all_user_regs __user *) data);
1148 
1149 	default:
1150 		return ptrace_request(child, request, addr, data);
1151 	}
1152 }
1153 
1154 
1155 /* "asmlinkage" so the input arguments are preserved... */
1156 
1157 asmlinkage long
1158 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1159 		     long arg4, long arg5, long arg6, long arg7,
1160 		     struct pt_regs regs)
1161 {
1162 	if (test_thread_flag(TIF_SYSCALL_TRACE))
1163 		if (ptrace_report_syscall_entry(&regs))
1164 			return -ENOSYS;
1165 
1166 	/* copy user rbs to kernel rbs */
1167 	if (test_thread_flag(TIF_RESTORE_RSE))
1168 		ia64_sync_krbs();
1169 
1170 
1171 	audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1172 
1173 	return 0;
1174 }
1175 
1176 /* "asmlinkage" so the input arguments are preserved... */
1177 
1178 asmlinkage void
1179 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1180 		     long arg4, long arg5, long arg6, long arg7,
1181 		     struct pt_regs regs)
1182 {
1183 	int step;
1184 
1185 	audit_syscall_exit(&regs);
1186 
1187 	step = test_thread_flag(TIF_SINGLESTEP);
1188 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1189 		ptrace_report_syscall_exit(&regs, step);
1190 
1191 	/* copy user rbs to kernel rbs */
1192 	if (test_thread_flag(TIF_RESTORE_RSE))
1193 		ia64_sync_krbs();
1194 }
1195 
1196 /* Utrace implementation starts here */
1197 struct regset_get {
1198 	void *kbuf;
1199 	void __user *ubuf;
1200 };
1201 
1202 struct regset_set {
1203 	const void *kbuf;
1204 	const void __user *ubuf;
1205 };
1206 
1207 struct regset_getset {
1208 	struct task_struct *target;
1209 	const struct user_regset *regset;
1210 	union {
1211 		struct regset_get get;
1212 		struct regset_set set;
1213 	} u;
1214 	unsigned int pos;
1215 	unsigned int count;
1216 	int ret;
1217 };
1218 
1219 static const ptrdiff_t pt_offsets[32] =
1220 {
1221 #define R(n) offsetof(struct pt_regs, r##n)
1222 	[0] = -1, R(1), R(2), R(3),
1223 	[4] = -1, [5] = -1, [6] = -1, [7] = -1,
1224 	R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1225 	R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1226 	R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1227 #undef R
1228 };
1229 
1230 static int
1231 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1232 		unsigned long addr, unsigned long *data, int write_access)
1233 {
1234 	struct pt_regs *pt = task_pt_regs(target);
1235 	unsigned reg = addr / sizeof(unsigned long);
1236 	ptrdiff_t d = pt_offsets[reg];
1237 
1238 	if (d >= 0) {
1239 		unsigned long *ptr = (void *)pt + d;
1240 		if (write_access)
1241 			*ptr = *data;
1242 		else
1243 			*data = *ptr;
1244 		return 0;
1245 	} else {
1246 		char nat = 0;
1247 		if (write_access) {
1248 			/* read NaT bit first: */
1249 			unsigned long dummy;
1250 			int ret = unw_get_gr(info, reg, &dummy, &nat);
1251 			if (ret < 0)
1252 				return ret;
1253 		}
1254 		return unw_access_gr(info, reg, data, &nat, write_access);
1255 	}
1256 }
1257 
1258 static int
1259 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1260 		unsigned long addr, unsigned long *data, int write_access)
1261 {
1262 	struct pt_regs *pt;
1263 	unsigned long *ptr = NULL;
1264 
1265 	pt = task_pt_regs(target);
1266 	switch (addr) {
1267 	case ELF_BR_OFFSET(0):
1268 		ptr = &pt->b0;
1269 		break;
1270 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1271 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1272 				     data, write_access);
1273 	case ELF_BR_OFFSET(6):
1274 		ptr = &pt->b6;
1275 		break;
1276 	case ELF_BR_OFFSET(7):
1277 		ptr = &pt->b7;
1278 	}
1279 	if (write_access)
1280 		*ptr = *data;
1281 	else
1282 		*data = *ptr;
1283 	return 0;
1284 }
1285 
1286 static int
1287 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1288 		unsigned long addr, unsigned long *data, int write_access)
1289 {
1290 	struct pt_regs *pt;
1291 	unsigned long cfm, urbs_end;
1292 	unsigned long *ptr = NULL;
1293 
1294 	pt = task_pt_regs(target);
1295 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1296 		switch (addr) {
1297 		case ELF_AR_RSC_OFFSET:
1298 			/* force PL3 */
1299 			if (write_access)
1300 				pt->ar_rsc = *data | (3 << 2);
1301 			else
1302 				*data = pt->ar_rsc;
1303 			return 0;
1304 		case ELF_AR_BSP_OFFSET:
1305 			/*
1306 			 * By convention, we use PT_AR_BSP to refer to
1307 			 * the end of the user-level backing store.
1308 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1309 			 * to get the real value of ar.bsp at the time
1310 			 * the kernel was entered.
1311 			 *
1312 			 * Furthermore, when changing the contents of
1313 			 * PT_AR_BSP (or PT_CFM) while the task is
1314 			 * blocked in a system call, convert the state
1315 			 * so that the non-system-call exit
1316 			 * path is used.  This ensures that the proper
1317 			 * state will be picked up when resuming
1318 			 * execution.  However, it *also* means that
1319 			 * once we write PT_AR_BSP/PT_CFM, it won't be
1320 			 * possible to modify the syscall arguments of
1321 			 * the pending system call any longer.  This
1322 			 * shouldn't be an issue because modifying
1323 			 * PT_AR_BSP/PT_CFM generally implies that
1324 			 * we're either abandoning the pending system
1325 			 * call or that we defer it's re-execution
1326 			 * (e.g., due to GDB doing an inferior
1327 			 * function call).
1328 			 */
1329 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1330 			if (write_access) {
1331 				if (*data != urbs_end) {
1332 					if (in_syscall(pt))
1333 						convert_to_non_syscall(target,
1334 								       pt,
1335 								       cfm);
1336 					/*
1337 					 * Simulate user-level write
1338 					 * of ar.bsp:
1339 					 */
1340 					pt->loadrs = 0;
1341 					pt->ar_bspstore = *data;
1342 				}
1343 			} else
1344 				*data = urbs_end;
1345 			return 0;
1346 		case ELF_AR_BSPSTORE_OFFSET:
1347 			ptr = &pt->ar_bspstore;
1348 			break;
1349 		case ELF_AR_RNAT_OFFSET:
1350 			ptr = &pt->ar_rnat;
1351 			break;
1352 		case ELF_AR_CCV_OFFSET:
1353 			ptr = &pt->ar_ccv;
1354 			break;
1355 		case ELF_AR_UNAT_OFFSET:
1356 			ptr = &pt->ar_unat;
1357 			break;
1358 		case ELF_AR_FPSR_OFFSET:
1359 			ptr = &pt->ar_fpsr;
1360 			break;
1361 		case ELF_AR_PFS_OFFSET:
1362 			ptr = &pt->ar_pfs;
1363 			break;
1364 		case ELF_AR_LC_OFFSET:
1365 			return unw_access_ar(info, UNW_AR_LC, data,
1366 					     write_access);
1367 		case ELF_AR_EC_OFFSET:
1368 			return unw_access_ar(info, UNW_AR_EC, data,
1369 					     write_access);
1370 		case ELF_AR_CSD_OFFSET:
1371 			ptr = &pt->ar_csd;
1372 			break;
1373 		case ELF_AR_SSD_OFFSET:
1374 			ptr = &pt->ar_ssd;
1375 		}
1376 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1377 		switch (addr) {
1378 		case ELF_CR_IIP_OFFSET:
1379 			ptr = &pt->cr_iip;
1380 			break;
1381 		case ELF_CFM_OFFSET:
1382 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1383 			if (write_access) {
1384 				if (((cfm ^ *data) & PFM_MASK) != 0) {
1385 					if (in_syscall(pt))
1386 						convert_to_non_syscall(target,
1387 								       pt,
1388 								       cfm);
1389 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1390 						      | (*data & PFM_MASK));
1391 				}
1392 			} else
1393 				*data = cfm;
1394 			return 0;
1395 		case ELF_CR_IPSR_OFFSET:
1396 			if (write_access) {
1397 				unsigned long tmp = *data;
1398 				/* psr.ri==3 is a reserved value: SDM 2:25 */
1399 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1400 					tmp &= ~IA64_PSR_RI;
1401 				pt->cr_ipsr = ((tmp & IPSR_MASK)
1402 					       | (pt->cr_ipsr & ~IPSR_MASK));
1403 			} else
1404 				*data = (pt->cr_ipsr & IPSR_MASK);
1405 			return 0;
1406 		}
1407 	} else if (addr == ELF_NAT_OFFSET)
1408 		return access_nat_bits(target, pt, info,
1409 				       data, write_access);
1410 	else if (addr == ELF_PR_OFFSET)
1411 		ptr = &pt->pr;
1412 	else
1413 		return -1;
1414 
1415 	if (write_access)
1416 		*ptr = *data;
1417 	else
1418 		*data = *ptr;
1419 
1420 	return 0;
1421 }
1422 
1423 static int
1424 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1425 		unsigned long addr, unsigned long *data, int write_access)
1426 {
1427 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1428 		return access_elf_gpreg(target, info, addr, data, write_access);
1429 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1430 		return access_elf_breg(target, info, addr, data, write_access);
1431 	else
1432 		return access_elf_areg(target, info, addr, data, write_access);
1433 }
1434 
1435 struct regset_membuf {
1436 	struct membuf to;
1437 	int ret;
1438 };
1439 
1440 static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1441 {
1442 	struct regset_membuf *dst = arg;
1443 	struct membuf to = dst->to;
1444 	unsigned int n;
1445 	elf_greg_t reg;
1446 
1447 	if (unw_unwind_to_user(info) < 0)
1448 		return;
1449 
1450 	/*
1451 	 * coredump format:
1452 	 *      r0-r31
1453 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1454 	 *      predicate registers (p0-p63)
1455 	 *      b0-b7
1456 	 *      ip cfm user-mask
1457 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
1458 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1459 	 */
1460 
1461 
1462 	/* Skip r0 */
1463 	membuf_zero(&to, 8);
1464 	for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1465 		if (access_elf_reg(info->task, info, n, &reg, 0) < 0) {
1466 			dst->ret = -EIO;
1467 			return;
1468 		}
1469 		membuf_store(&to, reg);
1470 	}
1471 }
1472 
1473 static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1474 {
1475 	struct regset_getset *dst = arg;
1476 
1477 	if (unw_unwind_to_user(info) < 0)
1478 		return;
1479 
1480 	if (!dst->count)
1481 		return;
1482 	/* Skip r0 */
1483 	if (dst->pos < ELF_GR_OFFSET(1)) {
1484 		user_regset_copyin_ignore(&dst->pos, &dst->count,
1485 					  &dst->u.set.kbuf, &dst->u.set.ubuf,
1486 					  0, ELF_GR_OFFSET(1));
1487 		dst->ret = 0;
1488 	}
1489 
1490 	while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1491 		unsigned int n, from, to;
1492 		elf_greg_t tmp[16];
1493 
1494 		from = dst->pos;
1495 		to = from + sizeof(tmp);
1496 		if (to > ELF_AR_END_OFFSET)
1497 			to = ELF_AR_END_OFFSET;
1498 		/* get up to 16 values */
1499 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1500 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1501 				from, to);
1502 		if (dst->ret)
1503 			return;
1504 		/* now copy them into registers */
1505 		for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1506 			if (access_elf_reg(dst->target, info, from,
1507 						&tmp[n], 1) < 0) {
1508 				dst->ret = -EIO;
1509 				return;
1510 			}
1511 	}
1512 }
1513 
1514 #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
1515 
1516 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1517 {
1518 	struct task_struct *task = info->task;
1519 	struct regset_membuf *dst = arg;
1520 	struct membuf to = dst->to;
1521 	elf_fpreg_t reg;
1522 	unsigned int n;
1523 
1524 	if (unw_unwind_to_user(info) < 0)
1525 		return;
1526 
1527 	/* Skip pos 0 and 1 */
1528 	membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1529 
1530 	/* fr2-fr31 */
1531 	for (n = 2; to.left && n < 32; n++) {
1532 		if (unw_get_fr(info, n, &reg)) {
1533 			dst->ret = -EIO;
1534 			return;
1535 		}
1536 		membuf_write(&to, &reg, sizeof(reg));
1537 	}
1538 
1539 	/* fph */
1540 	if (!to.left)
1541 		return;
1542 
1543 	ia64_flush_fph(task);
1544 	if (task->thread.flags & IA64_THREAD_FPH_VALID)
1545 		membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1546 	else
1547 		membuf_zero(&to, 96 * sizeof(reg));
1548 }
1549 
1550 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1551 {
1552 	struct regset_getset *dst = arg;
1553 	elf_fpreg_t fpreg, tmp[30];
1554 	int index, start, end;
1555 
1556 	if (unw_unwind_to_user(info) < 0)
1557 		return;
1558 
1559 	/* Skip pos 0 and 1 */
1560 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1561 		user_regset_copyin_ignore(&dst->pos, &dst->count,
1562 					  &dst->u.set.kbuf, &dst->u.set.ubuf,
1563 					  0, ELF_FP_OFFSET(2));
1564 		dst->ret = 0;
1565 		if (dst->count == 0)
1566 			return;
1567 	}
1568 
1569 	/* fr2-fr31 */
1570 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1571 		start = dst->pos;
1572 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
1573 			 dst->pos + dst->count);
1574 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1575 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1576 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1577 		if (dst->ret)
1578 			return;
1579 
1580 		if (start & 0xF) { /* only write high part */
1581 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1582 					 &fpreg)) {
1583 				dst->ret = -EIO;
1584 				return;
1585 			}
1586 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1587 				= fpreg.u.bits[0];
1588 			start &= ~0xFUL;
1589 		}
1590 		if (end & 0xF) { /* only write low part */
1591 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1592 					&fpreg)) {
1593 				dst->ret = -EIO;
1594 				return;
1595 			}
1596 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1597 				= fpreg.u.bits[1];
1598 			end = (end + 0xF) & ~0xFUL;
1599 		}
1600 
1601 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
1602 			index = start / sizeof(elf_fpreg_t);
1603 			if (unw_set_fr(info, index, tmp[index - 2])) {
1604 				dst->ret = -EIO;
1605 				return;
1606 			}
1607 		}
1608 		if (dst->ret || dst->count == 0)
1609 			return;
1610 	}
1611 
1612 	/* fph */
1613 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1614 		ia64_sync_fph(dst->target);
1615 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1616 						&dst->u.set.kbuf,
1617 						&dst->u.set.ubuf,
1618 						&dst->target->thread.fph,
1619 						ELF_FP_OFFSET(32), -1);
1620 	}
1621 }
1622 
1623 static void
1624 unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1625 	       struct task_struct *target, void *data)
1626 {
1627 	if (target == current)
1628 		unw_init_running(call, data);
1629 	else {
1630 		struct unw_frame_info info;
1631 		memset(&info, 0, sizeof(info));
1632 		unw_init_from_blocked_task(&info, target);
1633 		(*call)(&info, data);
1634 	}
1635 }
1636 
1637 static int
1638 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1639 	       struct task_struct *target,
1640 	       const struct user_regset *regset,
1641 	       unsigned int pos, unsigned int count,
1642 	       const void *kbuf, const void __user *ubuf)
1643 {
1644 	struct regset_getset info = { .target = target, .regset = regset,
1645 				 .pos = pos, .count = count,
1646 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1647 				 .ret = 0 };
1648 	unwind_and_call(call, target, &info);
1649 	return info.ret;
1650 }
1651 
1652 static int
1653 gpregs_get(struct task_struct *target,
1654 	   const struct user_regset *regset,
1655 	   struct membuf to)
1656 {
1657 	struct regset_membuf info = {.to = to};
1658 	unwind_and_call(do_gpregs_get, target, &info);
1659 	return info.ret;
1660 }
1661 
1662 static int gpregs_set(struct task_struct *target,
1663 		const struct user_regset *regset,
1664 		unsigned int pos, unsigned int count,
1665 		const void *kbuf, const void __user *ubuf)
1666 {
1667 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
1668 		kbuf, ubuf);
1669 }
1670 
1671 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1672 {
1673 	do_sync_rbs(info, ia64_sync_user_rbs);
1674 }
1675 
1676 /*
1677  * This is called to write back the register backing store.
1678  * ptrace does this before it stops, so that a tracer reading the user
1679  * memory after the thread stops will get the current register data.
1680  */
1681 static int
1682 gpregs_writeback(struct task_struct *target,
1683 		 const struct user_regset *regset,
1684 		 int now)
1685 {
1686 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1687 		return 0;
1688 	set_notify_resume(target);
1689 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1690 		NULL, NULL);
1691 }
1692 
1693 static int
1694 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1695 {
1696 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1697 }
1698 
1699 static int fpregs_get(struct task_struct *target,
1700 		const struct user_regset *regset,
1701 		struct membuf to)
1702 {
1703 	struct regset_membuf info = {.to = to};
1704 	unwind_and_call(do_fpregs_get, target, &info);
1705 	return info.ret;
1706 }
1707 
1708 static int fpregs_set(struct task_struct *target,
1709 		const struct user_regset *regset,
1710 		unsigned int pos, unsigned int count,
1711 		const void *kbuf, const void __user *ubuf)
1712 {
1713 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
1714 		kbuf, ubuf);
1715 }
1716 
1717 static int
1718 access_uarea(struct task_struct *child, unsigned long addr,
1719 	      unsigned long *data, int write_access)
1720 {
1721 	unsigned int pos = -1; /* an invalid value */
1722 	unsigned long *ptr, regnum;
1723 
1724 	if ((addr & 0x7) != 0) {
1725 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1726 		return -1;
1727 	}
1728 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1729 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
1730 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1731 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1732 		dprintk("ptrace: rejecting access to register "
1733 					"address 0x%lx\n", addr);
1734 		return -1;
1735 	}
1736 
1737 	switch (addr) {
1738 	case PT_F32 ... (PT_F127 + 15):
1739 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1740 		break;
1741 	case PT_F2 ... (PT_F5 + 15):
1742 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1743 		break;
1744 	case PT_F10 ... (PT_F31 + 15):
1745 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1746 		break;
1747 	case PT_F6 ... (PT_F9 + 15):
1748 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1749 		break;
1750 	}
1751 
1752 	if (pos != -1) {
1753 		unsigned reg = pos / sizeof(elf_fpreg_t);
1754 		int which_half = (pos / sizeof(unsigned long)) & 1;
1755 
1756 		if (reg < 32) { /* fr2-fr31 */
1757 			struct unw_frame_info info;
1758 			elf_fpreg_t fpreg;
1759 
1760 			memset(&info, 0, sizeof(info));
1761 			unw_init_from_blocked_task(&info, child);
1762 			if (unw_unwind_to_user(&info) < 0)
1763 				return 0;
1764 
1765 			if (unw_get_fr(&info, reg, &fpreg))
1766 				return -1;
1767 			if (write_access) {
1768 				fpreg.u.bits[which_half] = *data;
1769 				if (unw_set_fr(&info, reg, fpreg))
1770 					return -1;
1771 			} else {
1772 				*data = fpreg.u.bits[which_half];
1773 			}
1774 		} else { /* fph */
1775 			elf_fpreg_t *p = &child->thread.fph[reg - 32];
1776 			unsigned long *bits = &p->u.bits[which_half];
1777 
1778 			ia64_sync_fph(child);
1779 			if (write_access)
1780 				*bits = *data;
1781 			else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1782 				*data = *bits;
1783 			else
1784 				*data = 0;
1785 		}
1786 		return 0;
1787 	}
1788 
1789 	switch (addr) {
1790 	case PT_NAT_BITS:
1791 		pos = ELF_NAT_OFFSET;
1792 		break;
1793 	case PT_R4 ... PT_R7:
1794 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1795 		break;
1796 	case PT_B1 ... PT_B5:
1797 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1798 		break;
1799 	case PT_AR_EC:
1800 		pos = ELF_AR_EC_OFFSET;
1801 		break;
1802 	case PT_AR_LC:
1803 		pos = ELF_AR_LC_OFFSET;
1804 		break;
1805 	case PT_CR_IPSR:
1806 		pos = ELF_CR_IPSR_OFFSET;
1807 		break;
1808 	case PT_CR_IIP:
1809 		pos = ELF_CR_IIP_OFFSET;
1810 		break;
1811 	case PT_CFM:
1812 		pos = ELF_CFM_OFFSET;
1813 		break;
1814 	case PT_AR_UNAT:
1815 		pos = ELF_AR_UNAT_OFFSET;
1816 		break;
1817 	case PT_AR_PFS:
1818 		pos = ELF_AR_PFS_OFFSET;
1819 		break;
1820 	case PT_AR_RSC:
1821 		pos = ELF_AR_RSC_OFFSET;
1822 		break;
1823 	case PT_AR_RNAT:
1824 		pos = ELF_AR_RNAT_OFFSET;
1825 		break;
1826 	case PT_AR_BSPSTORE:
1827 		pos = ELF_AR_BSPSTORE_OFFSET;
1828 		break;
1829 	case PT_PR:
1830 		pos = ELF_PR_OFFSET;
1831 		break;
1832 	case PT_B6:
1833 		pos = ELF_BR_OFFSET(6);
1834 		break;
1835 	case PT_AR_BSP:
1836 		pos = ELF_AR_BSP_OFFSET;
1837 		break;
1838 	case PT_R1 ... PT_R3:
1839 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1840 		break;
1841 	case PT_R12 ... PT_R15:
1842 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1843 		break;
1844 	case PT_R8 ... PT_R11:
1845 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1846 		break;
1847 	case PT_R16 ... PT_R31:
1848 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1849 		break;
1850 	case PT_AR_CCV:
1851 		pos = ELF_AR_CCV_OFFSET;
1852 		break;
1853 	case PT_AR_FPSR:
1854 		pos = ELF_AR_FPSR_OFFSET;
1855 		break;
1856 	case PT_B0:
1857 		pos = ELF_BR_OFFSET(0);
1858 		break;
1859 	case PT_B7:
1860 		pos = ELF_BR_OFFSET(7);
1861 		break;
1862 	case PT_AR_CSD:
1863 		pos = ELF_AR_CSD_OFFSET;
1864 		break;
1865 	case PT_AR_SSD:
1866 		pos = ELF_AR_SSD_OFFSET;
1867 		break;
1868 	}
1869 
1870 	if (pos != -1) {
1871 		struct unw_frame_info info;
1872 
1873 		memset(&info, 0, sizeof(info));
1874 		unw_init_from_blocked_task(&info, child);
1875 		if (unw_unwind_to_user(&info) < 0)
1876 			return 0;
1877 
1878 		return access_elf_reg(child, &info, pos, data, write_access);
1879 	}
1880 
1881 	/* access debug registers */
1882 	if (addr >= PT_IBR) {
1883 		regnum = (addr - PT_IBR) >> 3;
1884 		ptr = &child->thread.ibr[0];
1885 	} else {
1886 		regnum = (addr - PT_DBR) >> 3;
1887 		ptr = &child->thread.dbr[0];
1888 	}
1889 
1890 	if (regnum >= 8) {
1891 		dprintk("ptrace: rejecting access to register "
1892 				"address 0x%lx\n", addr);
1893 		return -1;
1894 	}
1895 
1896 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1897 		child->thread.flags |= IA64_THREAD_DBG_VALID;
1898 		memset(child->thread.dbr, 0,
1899 				sizeof(child->thread.dbr));
1900 		memset(child->thread.ibr, 0,
1901 				sizeof(child->thread.ibr));
1902 	}
1903 
1904 	ptr += regnum;
1905 
1906 	if ((regnum & 1) && write_access) {
1907 		/* don't let the user set kernel-level breakpoints: */
1908 		*ptr = *data & ~(7UL << 56);
1909 		return 0;
1910 	}
1911 	if (write_access)
1912 		*ptr = *data;
1913 	else
1914 		*data = *ptr;
1915 	return 0;
1916 }
1917 
1918 static const struct user_regset native_regsets[] = {
1919 	{
1920 		.core_note_type = NT_PRSTATUS,
1921 		.n = ELF_NGREG,
1922 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1923 		.regset_get = gpregs_get, .set = gpregs_set,
1924 		.writeback = gpregs_writeback
1925 	},
1926 	{
1927 		.core_note_type = NT_PRFPREG,
1928 		.n = ELF_NFPREG,
1929 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1930 		.regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1931 	},
1932 };
1933 
1934 static const struct user_regset_view user_ia64_view = {
1935 	.name = "ia64",
1936 	.e_machine = EM_IA_64,
1937 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1938 };
1939 
1940 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
1941 {
1942 	return &user_ia64_view;
1943 }
1944 
1945 struct syscall_get_args {
1946 	unsigned int i;
1947 	unsigned int n;
1948 	unsigned long *args;
1949 	struct pt_regs *regs;
1950 };
1951 
1952 static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
1953 {
1954 	struct syscall_get_args *args = data;
1955 	struct pt_regs *pt = args->regs;
1956 	unsigned long *krbs, cfm, ndirty, nlocals, nouts;
1957 	int i, count;
1958 
1959 	if (unw_unwind_to_user(info) < 0)
1960 		return;
1961 
1962 	/*
1963 	 * We get here via a few paths:
1964 	 * - break instruction: cfm is shared with caller.
1965 	 *   syscall args are in out= regs, locals are non-empty.
1966 	 * - epsinstruction: cfm is set by br.call
1967 	 *   locals don't exist.
1968 	 *
1969 	 * For both cases arguments are reachable in cfm.sof - cfm.sol.
1970 	 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
1971 	 */
1972 	cfm = pt->cr_ifs;
1973 	nlocals = (cfm >> 7) & 0x7f; /* aka sol */
1974 	nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
1975 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
1976 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
1977 
1978 	count = 0;
1979 	if (in_syscall(pt))
1980 		count = min_t(int, args->n, nouts);
1981 
1982 	/* Iterate over outs. */
1983 	for (i = 0; i < count; i++) {
1984 		int j = ndirty + nlocals + i + args->i;
1985 		args->args[i] = *ia64_rse_skip_regs(krbs, j);
1986 	}
1987 
1988 	while (i < args->n) {
1989 		args->args[i] = 0;
1990 		i++;
1991 	}
1992 }
1993 
1994 void syscall_get_arguments(struct task_struct *task,
1995 	struct pt_regs *regs, unsigned long *args)
1996 {
1997 	struct syscall_get_args data = {
1998 		.i = 0,
1999 		.n = 6,
2000 		.args = args,
2001 		.regs = regs,
2002 	};
2003 
2004 	if (task == current)
2005 		unw_init_running(syscall_get_args_cb, &data);
2006 	else {
2007 		struct unw_frame_info ufi;
2008 		memset(&ufi, 0, sizeof(ufi));
2009 		unw_init_from_blocked_task(&ufi, task);
2010 		syscall_get_args_cb(&ufi, &data);
2011 	}
2012 }
2013