1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel support for the ptrace() and syscall tracing interfaces. 4 * 5 * Copyright (C) 1999-2005 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * Copyright (C) 2006 Intel Co 8 * 2006-08-12 - IA64 Native Utrace implementation support added by 9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 10 * 11 * Derived from the x86 and Alpha versions. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/task.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/mm.h> 18 #include <linux/errno.h> 19 #include <linux/ptrace.h> 20 #include <linux/user.h> 21 #include <linux/security.h> 22 #include <linux/audit.h> 23 #include <linux/signal.h> 24 #include <linux/regset.h> 25 #include <linux/elf.h> 26 #include <linux/tracehook.h> 27 28 #include <asm/pgtable.h> 29 #include <asm/processor.h> 30 #include <asm/ptrace_offsets.h> 31 #include <asm/rse.h> 32 #include <linux/uaccess.h> 33 #include <asm/unwind.h> 34 #ifdef CONFIG_PERFMON 35 #include <asm/perfmon.h> 36 #endif 37 38 #include "entry.h" 39 40 /* 41 * Bits in the PSR that we allow ptrace() to change: 42 * be, up, ac, mfl, mfh (the user mask; five bits total) 43 * db (debug breakpoint fault; one bit) 44 * id (instruction debug fault disable; one bit) 45 * dd (data debug fault disable; one bit) 46 * ri (restart instruction; two bits) 47 * is (instruction set; one bit) 48 */ 49 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ 50 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) 51 52 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ 53 #define PFM_MASK MASK(38) 54 55 #define PTRACE_DEBUG 0 56 57 #if PTRACE_DEBUG 58 # define dprintk(format...) printk(format) 59 # define inline 60 #else 61 # define dprintk(format...) 62 #endif 63 64 /* Return TRUE if PT was created due to kernel-entry via a system-call. */ 65 66 static inline int 67 in_syscall (struct pt_regs *pt) 68 { 69 return (long) pt->cr_ifs >= 0; 70 } 71 72 /* 73 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT 74 * bitset where bit i is set iff the NaT bit of register i is set. 75 */ 76 unsigned long 77 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) 78 { 79 # define GET_BITS(first, last, unat) \ 80 ({ \ 81 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 82 unsigned long nbits = (last - first + 1); \ 83 unsigned long mask = MASK(nbits) << first; \ 84 unsigned long dist; \ 85 if (bit < first) \ 86 dist = 64 + bit - first; \ 87 else \ 88 dist = bit - first; \ 89 ia64_rotr(unat, dist) & mask; \ 90 }) 91 unsigned long val; 92 93 /* 94 * Registers that are stored consecutively in struct pt_regs 95 * can be handled in parallel. If the register order in 96 * struct_pt_regs changes, this code MUST be updated. 97 */ 98 val = GET_BITS( 1, 1, scratch_unat); 99 val |= GET_BITS( 2, 3, scratch_unat); 100 val |= GET_BITS(12, 13, scratch_unat); 101 val |= GET_BITS(14, 14, scratch_unat); 102 val |= GET_BITS(15, 15, scratch_unat); 103 val |= GET_BITS( 8, 11, scratch_unat); 104 val |= GET_BITS(16, 31, scratch_unat); 105 return val; 106 107 # undef GET_BITS 108 } 109 110 /* 111 * Set the NaT bits for the scratch registers according to NAT and 112 * return the resulting unat (assuming the scratch registers are 113 * stored in PT). 114 */ 115 unsigned long 116 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) 117 { 118 # define PUT_BITS(first, last, nat) \ 119 ({ \ 120 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 121 unsigned long nbits = (last - first + 1); \ 122 unsigned long mask = MASK(nbits) << first; \ 123 long dist; \ 124 if (bit < first) \ 125 dist = 64 + bit - first; \ 126 else \ 127 dist = bit - first; \ 128 ia64_rotl(nat & mask, dist); \ 129 }) 130 unsigned long scratch_unat; 131 132 /* 133 * Registers that are stored consecutively in struct pt_regs 134 * can be handled in parallel. If the register order in 135 * struct_pt_regs changes, this code MUST be updated. 136 */ 137 scratch_unat = PUT_BITS( 1, 1, nat); 138 scratch_unat |= PUT_BITS( 2, 3, nat); 139 scratch_unat |= PUT_BITS(12, 13, nat); 140 scratch_unat |= PUT_BITS(14, 14, nat); 141 scratch_unat |= PUT_BITS(15, 15, nat); 142 scratch_unat |= PUT_BITS( 8, 11, nat); 143 scratch_unat |= PUT_BITS(16, 31, nat); 144 145 return scratch_unat; 146 147 # undef PUT_BITS 148 } 149 150 #define IA64_MLX_TEMPLATE 0x2 151 #define IA64_MOVL_OPCODE 6 152 153 void 154 ia64_increment_ip (struct pt_regs *regs) 155 { 156 unsigned long w0, ri = ia64_psr(regs)->ri + 1; 157 158 if (ri > 2) { 159 ri = 0; 160 regs->cr_iip += 16; 161 } else if (ri == 2) { 162 get_user(w0, (char __user *) regs->cr_iip + 0); 163 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 164 /* 165 * rfi'ing to slot 2 of an MLX bundle causes 166 * an illegal operation fault. We don't want 167 * that to happen... 168 */ 169 ri = 0; 170 regs->cr_iip += 16; 171 } 172 } 173 ia64_psr(regs)->ri = ri; 174 } 175 176 void 177 ia64_decrement_ip (struct pt_regs *regs) 178 { 179 unsigned long w0, ri = ia64_psr(regs)->ri - 1; 180 181 if (ia64_psr(regs)->ri == 0) { 182 regs->cr_iip -= 16; 183 ri = 2; 184 get_user(w0, (char __user *) regs->cr_iip + 0); 185 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 186 /* 187 * rfi'ing to slot 2 of an MLX bundle causes 188 * an illegal operation fault. We don't want 189 * that to happen... 190 */ 191 ri = 1; 192 } 193 } 194 ia64_psr(regs)->ri = ri; 195 } 196 197 /* 198 * This routine is used to read an rnat bits that are stored on the 199 * kernel backing store. Since, in general, the alignment of the user 200 * and kernel are different, this is not completely trivial. In 201 * essence, we need to construct the user RNAT based on up to two 202 * kernel RNAT values and/or the RNAT value saved in the child's 203 * pt_regs. 204 * 205 * user rbs 206 * 207 * +--------+ <-- lowest address 208 * | slot62 | 209 * +--------+ 210 * | rnat | 0x....1f8 211 * +--------+ 212 * | slot00 | \ 213 * +--------+ | 214 * | slot01 | > child_regs->ar_rnat 215 * +--------+ | 216 * | slot02 | / kernel rbs 217 * +--------+ +--------+ 218 * <- child_regs->ar_bspstore | slot61 | <-- krbs 219 * +- - - - + +--------+ 220 * | slot62 | 221 * +- - - - + +--------+ 222 * | rnat | 223 * +- - - - + +--------+ 224 * vrnat | slot00 | 225 * +- - - - + +--------+ 226 * = = 227 * +--------+ 228 * | slot00 | \ 229 * +--------+ | 230 * | slot01 | > child_stack->ar_rnat 231 * +--------+ | 232 * | slot02 | / 233 * +--------+ 234 * <--- child_stack->ar_bspstore 235 * 236 * The way to think of this code is as follows: bit 0 in the user rnat 237 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat 238 * value. The kernel rnat value holding this bit is stored in 239 * variable rnat0. rnat1 is loaded with the kernel rnat value that 240 * form the upper bits of the user rnat value. 241 * 242 * Boundary cases: 243 * 244 * o when reading the rnat "below" the first rnat slot on the kernel 245 * backing store, rnat0/rnat1 are set to 0 and the low order bits are 246 * merged in from pt->ar_rnat. 247 * 248 * o when reading the rnat "above" the last rnat slot on the kernel 249 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. 250 */ 251 static unsigned long 252 get_rnat (struct task_struct *task, struct switch_stack *sw, 253 unsigned long *krbs, unsigned long *urnat_addr, 254 unsigned long *urbs_end) 255 { 256 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; 257 unsigned long umask = 0, mask, m; 258 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 259 long num_regs, nbits; 260 struct pt_regs *pt; 261 262 pt = task_pt_regs(task); 263 kbsp = (unsigned long *) sw->ar_bspstore; 264 ubspstore = (unsigned long *) pt->ar_bspstore; 265 266 if (urbs_end < urnat_addr) 267 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); 268 else 269 nbits = 63; 270 mask = MASK(nbits); 271 /* 272 * First, figure out which bit number slot 0 in user-land maps 273 * to in the kernel rnat. Do this by figuring out how many 274 * register slots we're beyond the user's backingstore and 275 * then computing the equivalent address in kernel space. 276 */ 277 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 278 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 279 shift = ia64_rse_slot_num(slot0_kaddr); 280 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 281 rnat0_kaddr = rnat1_kaddr - 64; 282 283 if (ubspstore + 63 > urnat_addr) { 284 /* some bits need to be merged in from pt->ar_rnat */ 285 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 286 urnat = (pt->ar_rnat & umask); 287 mask &= ~umask; 288 if (!mask) 289 return urnat; 290 } 291 292 m = mask << shift; 293 if (rnat0_kaddr >= kbsp) 294 rnat0 = sw->ar_rnat; 295 else if (rnat0_kaddr > krbs) 296 rnat0 = *rnat0_kaddr; 297 urnat |= (rnat0 & m) >> shift; 298 299 m = mask >> (63 - shift); 300 if (rnat1_kaddr >= kbsp) 301 rnat1 = sw->ar_rnat; 302 else if (rnat1_kaddr > krbs) 303 rnat1 = *rnat1_kaddr; 304 urnat |= (rnat1 & m) << (63 - shift); 305 return urnat; 306 } 307 308 /* 309 * The reverse of get_rnat. 310 */ 311 static void 312 put_rnat (struct task_struct *task, struct switch_stack *sw, 313 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, 314 unsigned long *urbs_end) 315 { 316 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; 317 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 318 long num_regs, nbits; 319 struct pt_regs *pt; 320 unsigned long cfm, *urbs_kargs; 321 322 pt = task_pt_regs(task); 323 kbsp = (unsigned long *) sw->ar_bspstore; 324 ubspstore = (unsigned long *) pt->ar_bspstore; 325 326 urbs_kargs = urbs_end; 327 if (in_syscall(pt)) { 328 /* 329 * If entered via syscall, don't allow user to set rnat bits 330 * for syscall args. 331 */ 332 cfm = pt->cr_ifs; 333 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); 334 } 335 336 if (urbs_kargs >= urnat_addr) 337 nbits = 63; 338 else { 339 if ((urnat_addr - 63) >= urbs_kargs) 340 return; 341 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); 342 } 343 mask = MASK(nbits); 344 345 /* 346 * First, figure out which bit number slot 0 in user-land maps 347 * to in the kernel rnat. Do this by figuring out how many 348 * register slots we're beyond the user's backingstore and 349 * then computing the equivalent address in kernel space. 350 */ 351 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 352 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 353 shift = ia64_rse_slot_num(slot0_kaddr); 354 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 355 rnat0_kaddr = rnat1_kaddr - 64; 356 357 if (ubspstore + 63 > urnat_addr) { 358 /* some bits need to be place in pt->ar_rnat: */ 359 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 360 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); 361 mask &= ~umask; 362 if (!mask) 363 return; 364 } 365 /* 366 * Note: Section 11.1 of the EAS guarantees that bit 63 of an 367 * rnat slot is ignored. so we don't have to clear it here. 368 */ 369 rnat0 = (urnat << shift); 370 m = mask << shift; 371 if (rnat0_kaddr >= kbsp) 372 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); 373 else if (rnat0_kaddr > krbs) 374 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); 375 376 rnat1 = (urnat >> (63 - shift)); 377 m = mask >> (63 - shift); 378 if (rnat1_kaddr >= kbsp) 379 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); 380 else if (rnat1_kaddr > krbs) 381 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); 382 } 383 384 static inline int 385 on_kernel_rbs (unsigned long addr, unsigned long bspstore, 386 unsigned long urbs_end) 387 { 388 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) 389 urbs_end); 390 return (addr >= bspstore && addr <= (unsigned long) rnat_addr); 391 } 392 393 /* 394 * Read a word from the user-level backing store of task CHILD. ADDR 395 * is the user-level address to read the word from, VAL a pointer to 396 * the return value, and USER_BSP gives the end of the user-level 397 * backing store (i.e., it's the address that would be in ar.bsp after 398 * the user executed a "cover" instruction). 399 * 400 * This routine takes care of accessing the kernel register backing 401 * store for those registers that got spilled there. It also takes 402 * care of calculating the appropriate RNaT collection words. 403 */ 404 long 405 ia64_peek (struct task_struct *child, struct switch_stack *child_stack, 406 unsigned long user_rbs_end, unsigned long addr, long *val) 407 { 408 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; 409 struct pt_regs *child_regs; 410 size_t copied; 411 long ret; 412 413 urbs_end = (long *) user_rbs_end; 414 laddr = (unsigned long *) addr; 415 child_regs = task_pt_regs(child); 416 bspstore = (unsigned long *) child_regs->ar_bspstore; 417 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 418 if (on_kernel_rbs(addr, (unsigned long) bspstore, 419 (unsigned long) urbs_end)) 420 { 421 /* 422 * Attempt to read the RBS in an area that's actually 423 * on the kernel RBS => read the corresponding bits in 424 * the kernel RBS. 425 */ 426 rnat_addr = ia64_rse_rnat_addr(laddr); 427 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); 428 429 if (laddr == rnat_addr) { 430 /* return NaT collection word itself */ 431 *val = ret; 432 return 0; 433 } 434 435 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { 436 /* 437 * It is implementation dependent whether the 438 * data portion of a NaT value gets saved on a 439 * st8.spill or RSE spill (e.g., see EAS 2.6, 440 * 4.4.4.6 Register Spill and Fill). To get 441 * consistent behavior across all possible 442 * IA-64 implementations, we return zero in 443 * this case. 444 */ 445 *val = 0; 446 return 0; 447 } 448 449 if (laddr < urbs_end) { 450 /* 451 * The desired word is on the kernel RBS and 452 * is not a NaT. 453 */ 454 regnum = ia64_rse_num_regs(bspstore, laddr); 455 *val = *ia64_rse_skip_regs(krbs, regnum); 456 return 0; 457 } 458 } 459 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE); 460 if (copied != sizeof(ret)) 461 return -EIO; 462 *val = ret; 463 return 0; 464 } 465 466 long 467 ia64_poke (struct task_struct *child, struct switch_stack *child_stack, 468 unsigned long user_rbs_end, unsigned long addr, long val) 469 { 470 unsigned long *bspstore, *krbs, regnum, *laddr; 471 unsigned long *urbs_end = (long *) user_rbs_end; 472 struct pt_regs *child_regs; 473 474 laddr = (unsigned long *) addr; 475 child_regs = task_pt_regs(child); 476 bspstore = (unsigned long *) child_regs->ar_bspstore; 477 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 478 if (on_kernel_rbs(addr, (unsigned long) bspstore, 479 (unsigned long) urbs_end)) 480 { 481 /* 482 * Attempt to write the RBS in an area that's actually 483 * on the kernel RBS => write the corresponding bits 484 * in the kernel RBS. 485 */ 486 if (ia64_rse_is_rnat_slot(laddr)) 487 put_rnat(child, child_stack, krbs, laddr, val, 488 urbs_end); 489 else { 490 if (laddr < urbs_end) { 491 regnum = ia64_rse_num_regs(bspstore, laddr); 492 *ia64_rse_skip_regs(krbs, regnum) = val; 493 } 494 } 495 } else if (access_process_vm(child, addr, &val, sizeof(val), 496 FOLL_FORCE | FOLL_WRITE) 497 != sizeof(val)) 498 return -EIO; 499 return 0; 500 } 501 502 /* 503 * Calculate the address of the end of the user-level register backing 504 * store. This is the address that would have been stored in ar.bsp 505 * if the user had executed a "cover" instruction right before 506 * entering the kernel. If CFMP is not NULL, it is used to return the 507 * "current frame mask" that was active at the time the kernel was 508 * entered. 509 */ 510 unsigned long 511 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, 512 unsigned long *cfmp) 513 { 514 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; 515 long ndirty; 516 517 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 518 bspstore = (unsigned long *) pt->ar_bspstore; 519 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 520 521 if (in_syscall(pt)) 522 ndirty += (cfm & 0x7f); 523 else 524 cfm &= ~(1UL << 63); /* clear valid bit */ 525 526 if (cfmp) 527 *cfmp = cfm; 528 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); 529 } 530 531 /* 532 * Synchronize (i.e, write) the RSE backing store living in kernel 533 * space to the VM of the CHILD task. SW and PT are the pointers to 534 * the switch_stack and pt_regs structures, respectively. 535 * USER_RBS_END is the user-level address at which the backing store 536 * ends. 537 */ 538 long 539 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, 540 unsigned long user_rbs_start, unsigned long user_rbs_end) 541 { 542 unsigned long addr, val; 543 long ret; 544 545 /* now copy word for word from kernel rbs to user rbs: */ 546 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 547 ret = ia64_peek(child, sw, user_rbs_end, addr, &val); 548 if (ret < 0) 549 return ret; 550 if (access_process_vm(child, addr, &val, sizeof(val), 551 FOLL_FORCE | FOLL_WRITE) 552 != sizeof(val)) 553 return -EIO; 554 } 555 return 0; 556 } 557 558 static long 559 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw, 560 unsigned long user_rbs_start, unsigned long user_rbs_end) 561 { 562 unsigned long addr, val; 563 long ret; 564 565 /* now copy word for word from user rbs to kernel rbs: */ 566 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 567 if (access_process_vm(child, addr, &val, sizeof(val), 568 FOLL_FORCE) 569 != sizeof(val)) 570 return -EIO; 571 572 ret = ia64_poke(child, sw, user_rbs_end, addr, val); 573 if (ret < 0) 574 return ret; 575 } 576 return 0; 577 } 578 579 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *, 580 unsigned long, unsigned long); 581 582 static void do_sync_rbs(struct unw_frame_info *info, void *arg) 583 { 584 struct pt_regs *pt; 585 unsigned long urbs_end; 586 syncfunc_t fn = arg; 587 588 if (unw_unwind_to_user(info) < 0) 589 return; 590 pt = task_pt_regs(info->task); 591 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL); 592 593 fn(info->task, info->sw, pt->ar_bspstore, urbs_end); 594 } 595 596 /* 597 * when a thread is stopped (ptraced), debugger might change thread's user 598 * stack (change memory directly), and we must avoid the RSE stored in kernel 599 * to override user stack (user space's RSE is newer than kernel's in the 600 * case). To workaround the issue, we copy kernel RSE to user RSE before the 601 * task is stopped, so user RSE has updated data. we then copy user RSE to 602 * kernel after the task is resummed from traced stop and kernel will use the 603 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need 604 * synchronize user RSE to kernel. 605 */ 606 void ia64_ptrace_stop(void) 607 { 608 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE)) 609 return; 610 set_notify_resume(current); 611 unw_init_running(do_sync_rbs, ia64_sync_user_rbs); 612 } 613 614 /* 615 * This is called to read back the register backing store. 616 */ 617 void ia64_sync_krbs(void) 618 { 619 clear_tsk_thread_flag(current, TIF_RESTORE_RSE); 620 621 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs); 622 } 623 624 /* 625 * After PTRACE_ATTACH, a thread's register backing store area in user 626 * space is assumed to contain correct data whenever the thread is 627 * stopped. arch_ptrace_stop takes care of this on tracing stops. 628 * But if the child was already stopped for job control when we attach 629 * to it, then it might not ever get into ptrace_stop by the time we 630 * want to examine the user memory containing the RBS. 631 */ 632 void 633 ptrace_attach_sync_user_rbs (struct task_struct *child) 634 { 635 int stopped = 0; 636 struct unw_frame_info info; 637 638 /* 639 * If the child is in TASK_STOPPED, we need to change that to 640 * TASK_TRACED momentarily while we operate on it. This ensures 641 * that the child won't be woken up and return to user mode while 642 * we are doing the sync. (It can only be woken up for SIGKILL.) 643 */ 644 645 read_lock(&tasklist_lock); 646 if (child->sighand) { 647 spin_lock_irq(&child->sighand->siglock); 648 if (child->state == TASK_STOPPED && 649 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) { 650 set_notify_resume(child); 651 652 child->state = TASK_TRACED; 653 stopped = 1; 654 } 655 spin_unlock_irq(&child->sighand->siglock); 656 } 657 read_unlock(&tasklist_lock); 658 659 if (!stopped) 660 return; 661 662 unw_init_from_blocked_task(&info, child); 663 do_sync_rbs(&info, ia64_sync_user_rbs); 664 665 /* 666 * Now move the child back into TASK_STOPPED if it should be in a 667 * job control stop, so that SIGCONT can be used to wake it up. 668 */ 669 read_lock(&tasklist_lock); 670 if (child->sighand) { 671 spin_lock_irq(&child->sighand->siglock); 672 if (child->state == TASK_TRACED && 673 (child->signal->flags & SIGNAL_STOP_STOPPED)) { 674 child->state = TASK_STOPPED; 675 } 676 spin_unlock_irq(&child->sighand->siglock); 677 } 678 read_unlock(&tasklist_lock); 679 } 680 681 /* 682 * Write f32-f127 back to task->thread.fph if it has been modified. 683 */ 684 inline void 685 ia64_flush_fph (struct task_struct *task) 686 { 687 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 688 689 /* 690 * Prevent migrating this task while 691 * we're fiddling with the FPU state 692 */ 693 preempt_disable(); 694 if (ia64_is_local_fpu_owner(task) && psr->mfh) { 695 psr->mfh = 0; 696 task->thread.flags |= IA64_THREAD_FPH_VALID; 697 ia64_save_fpu(&task->thread.fph[0]); 698 } 699 preempt_enable(); 700 } 701 702 /* 703 * Sync the fph state of the task so that it can be manipulated 704 * through thread.fph. If necessary, f32-f127 are written back to 705 * thread.fph or, if the fph state hasn't been used before, thread.fph 706 * is cleared to zeroes. Also, access to f32-f127 is disabled to 707 * ensure that the task picks up the state from thread.fph when it 708 * executes again. 709 */ 710 void 711 ia64_sync_fph (struct task_struct *task) 712 { 713 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 714 715 ia64_flush_fph(task); 716 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { 717 task->thread.flags |= IA64_THREAD_FPH_VALID; 718 memset(&task->thread.fph, 0, sizeof(task->thread.fph)); 719 } 720 ia64_drop_fpu(task); 721 psr->dfh = 1; 722 } 723 724 /* 725 * Change the machine-state of CHILD such that it will return via the normal 726 * kernel exit-path, rather than the syscall-exit path. 727 */ 728 static void 729 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, 730 unsigned long cfm) 731 { 732 struct unw_frame_info info, prev_info; 733 unsigned long ip, sp, pr; 734 735 unw_init_from_blocked_task(&info, child); 736 while (1) { 737 prev_info = info; 738 if (unw_unwind(&info) < 0) 739 return; 740 741 unw_get_sp(&info, &sp); 742 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) 743 < IA64_PT_REGS_SIZE) { 744 dprintk("ptrace.%s: ran off the top of the kernel " 745 "stack\n", __func__); 746 return; 747 } 748 if (unw_get_pr (&prev_info, &pr) < 0) { 749 unw_get_rp(&prev_info, &ip); 750 dprintk("ptrace.%s: failed to read " 751 "predicate register (ip=0x%lx)\n", 752 __func__, ip); 753 return; 754 } 755 if (unw_is_intr_frame(&info) 756 && (pr & (1UL << PRED_USER_STACK))) 757 break; 758 } 759 760 /* 761 * Note: at the time of this call, the target task is blocked 762 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL 763 * (aka, "pLvSys") we redirect execution from 764 * .work_pending_syscall_end to .work_processed_kernel. 765 */ 766 unw_get_pr(&prev_info, &pr); 767 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); 768 pr |= (1UL << PRED_NON_SYSCALL); 769 unw_set_pr(&prev_info, pr); 770 771 pt->cr_ifs = (1UL << 63) | cfm; 772 /* 773 * Clear the memory that is NOT written on syscall-entry to 774 * ensure we do not leak kernel-state to user when execution 775 * resumes. 776 */ 777 pt->r2 = 0; 778 pt->r3 = 0; 779 pt->r14 = 0; 780 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ 781 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ 782 pt->b7 = 0; 783 pt->ar_ccv = 0; 784 pt->ar_csd = 0; 785 pt->ar_ssd = 0; 786 } 787 788 static int 789 access_nat_bits (struct task_struct *child, struct pt_regs *pt, 790 struct unw_frame_info *info, 791 unsigned long *data, int write_access) 792 { 793 unsigned long regnum, nat_bits, scratch_unat, dummy = 0; 794 char nat = 0; 795 796 if (write_access) { 797 nat_bits = *data; 798 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); 799 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { 800 dprintk("ptrace: failed to set ar.unat\n"); 801 return -1; 802 } 803 for (regnum = 4; regnum <= 7; ++regnum) { 804 unw_get_gr(info, regnum, &dummy, &nat); 805 unw_set_gr(info, regnum, dummy, 806 (nat_bits >> regnum) & 1); 807 } 808 } else { 809 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { 810 dprintk("ptrace: failed to read ar.unat\n"); 811 return -1; 812 } 813 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); 814 for (regnum = 4; regnum <= 7; ++regnum) { 815 unw_get_gr(info, regnum, &dummy, &nat); 816 nat_bits |= (nat != 0) << regnum; 817 } 818 *data = nat_bits; 819 } 820 return 0; 821 } 822 823 static int 824 access_uarea (struct task_struct *child, unsigned long addr, 825 unsigned long *data, int write_access); 826 827 static long 828 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 829 { 830 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; 831 struct unw_frame_info info; 832 struct ia64_fpreg fpval; 833 struct switch_stack *sw; 834 struct pt_regs *pt; 835 long ret, retval = 0; 836 char nat = 0; 837 int i; 838 839 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) 840 return -EIO; 841 842 pt = task_pt_regs(child); 843 sw = (struct switch_stack *) (child->thread.ksp + 16); 844 unw_init_from_blocked_task(&info, child); 845 if (unw_unwind_to_user(&info) < 0) { 846 return -EIO; 847 } 848 849 if (((unsigned long) ppr & 0x7) != 0) { 850 dprintk("ptrace:unaligned register address %p\n", ppr); 851 return -EIO; 852 } 853 854 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 855 || access_uarea(child, PT_AR_EC, &ec, 0) < 0 856 || access_uarea(child, PT_AR_LC, &lc, 0) < 0 857 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 858 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 859 || access_uarea(child, PT_CFM, &cfm, 0) 860 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) 861 return -EIO; 862 863 /* control regs */ 864 865 retval |= __put_user(pt->cr_iip, &ppr->cr_iip); 866 retval |= __put_user(psr, &ppr->cr_ipsr); 867 868 /* app regs */ 869 870 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 871 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); 872 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 873 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 874 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 875 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 876 877 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); 878 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); 879 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); 880 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); 881 retval |= __put_user(cfm, &ppr->cfm); 882 883 /* gr1-gr3 */ 884 885 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); 886 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); 887 888 /* gr4-gr7 */ 889 890 for (i = 4; i < 8; i++) { 891 if (unw_access_gr(&info, i, &val, &nat, 0) < 0) 892 return -EIO; 893 retval |= __put_user(val, &ppr->gr[i]); 894 } 895 896 /* gr8-gr11 */ 897 898 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); 899 900 /* gr12-gr15 */ 901 902 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); 903 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); 904 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); 905 906 /* gr16-gr31 */ 907 908 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); 909 910 /* b0 */ 911 912 retval |= __put_user(pt->b0, &ppr->br[0]); 913 914 /* b1-b5 */ 915 916 for (i = 1; i < 6; i++) { 917 if (unw_access_br(&info, i, &val, 0) < 0) 918 return -EIO; 919 __put_user(val, &ppr->br[i]); 920 } 921 922 /* b6-b7 */ 923 924 retval |= __put_user(pt->b6, &ppr->br[6]); 925 retval |= __put_user(pt->b7, &ppr->br[7]); 926 927 /* fr2-fr5 */ 928 929 for (i = 2; i < 6; i++) { 930 if (unw_get_fr(&info, i, &fpval) < 0) 931 return -EIO; 932 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 933 } 934 935 /* fr6-fr11 */ 936 937 retval |= __copy_to_user(&ppr->fr[6], &pt->f6, 938 sizeof(struct ia64_fpreg) * 6); 939 940 /* fp scratch regs(12-15) */ 941 942 retval |= __copy_to_user(&ppr->fr[12], &sw->f12, 943 sizeof(struct ia64_fpreg) * 4); 944 945 /* fr16-fr31 */ 946 947 for (i = 16; i < 32; i++) { 948 if (unw_get_fr(&info, i, &fpval) < 0) 949 return -EIO; 950 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 951 } 952 953 /* fph */ 954 955 ia64_flush_fph(child); 956 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, 957 sizeof(ppr->fr[32]) * 96); 958 959 /* preds */ 960 961 retval |= __put_user(pt->pr, &ppr->pr); 962 963 /* nat bits */ 964 965 retval |= __put_user(nat_bits, &ppr->nat); 966 967 ret = retval ? -EIO : 0; 968 return ret; 969 } 970 971 static long 972 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 973 { 974 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; 975 struct unw_frame_info info; 976 struct switch_stack *sw; 977 struct ia64_fpreg fpval; 978 struct pt_regs *pt; 979 long ret, retval = 0; 980 int i; 981 982 memset(&fpval, 0, sizeof(fpval)); 983 984 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) 985 return -EIO; 986 987 pt = task_pt_regs(child); 988 sw = (struct switch_stack *) (child->thread.ksp + 16); 989 unw_init_from_blocked_task(&info, child); 990 if (unw_unwind_to_user(&info) < 0) { 991 return -EIO; 992 } 993 994 if (((unsigned long) ppr & 0x7) != 0) { 995 dprintk("ptrace:unaligned register address %p\n", ppr); 996 return -EIO; 997 } 998 999 /* control regs */ 1000 1001 retval |= __get_user(pt->cr_iip, &ppr->cr_iip); 1002 retval |= __get_user(psr, &ppr->cr_ipsr); 1003 1004 /* app regs */ 1005 1006 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 1007 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); 1008 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 1009 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 1010 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 1011 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 1012 1013 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); 1014 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); 1015 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); 1016 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); 1017 retval |= __get_user(cfm, &ppr->cfm); 1018 1019 /* gr1-gr3 */ 1020 1021 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); 1022 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); 1023 1024 /* gr4-gr7 */ 1025 1026 for (i = 4; i < 8; i++) { 1027 retval |= __get_user(val, &ppr->gr[i]); 1028 /* NaT bit will be set via PT_NAT_BITS: */ 1029 if (unw_set_gr(&info, i, val, 0) < 0) 1030 return -EIO; 1031 } 1032 1033 /* gr8-gr11 */ 1034 1035 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); 1036 1037 /* gr12-gr15 */ 1038 1039 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); 1040 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); 1041 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); 1042 1043 /* gr16-gr31 */ 1044 1045 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); 1046 1047 /* b0 */ 1048 1049 retval |= __get_user(pt->b0, &ppr->br[0]); 1050 1051 /* b1-b5 */ 1052 1053 for (i = 1; i < 6; i++) { 1054 retval |= __get_user(val, &ppr->br[i]); 1055 unw_set_br(&info, i, val); 1056 } 1057 1058 /* b6-b7 */ 1059 1060 retval |= __get_user(pt->b6, &ppr->br[6]); 1061 retval |= __get_user(pt->b7, &ppr->br[7]); 1062 1063 /* fr2-fr5 */ 1064 1065 for (i = 2; i < 6; i++) { 1066 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); 1067 if (unw_set_fr(&info, i, fpval) < 0) 1068 return -EIO; 1069 } 1070 1071 /* fr6-fr11 */ 1072 1073 retval |= __copy_from_user(&pt->f6, &ppr->fr[6], 1074 sizeof(ppr->fr[6]) * 6); 1075 1076 /* fp scratch regs(12-15) */ 1077 1078 retval |= __copy_from_user(&sw->f12, &ppr->fr[12], 1079 sizeof(ppr->fr[12]) * 4); 1080 1081 /* fr16-fr31 */ 1082 1083 for (i = 16; i < 32; i++) { 1084 retval |= __copy_from_user(&fpval, &ppr->fr[i], 1085 sizeof(fpval)); 1086 if (unw_set_fr(&info, i, fpval) < 0) 1087 return -EIO; 1088 } 1089 1090 /* fph */ 1091 1092 ia64_sync_fph(child); 1093 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], 1094 sizeof(ppr->fr[32]) * 96); 1095 1096 /* preds */ 1097 1098 retval |= __get_user(pt->pr, &ppr->pr); 1099 1100 /* nat bits */ 1101 1102 retval |= __get_user(nat_bits, &ppr->nat); 1103 1104 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); 1105 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); 1106 retval |= access_uarea(child, PT_AR_EC, &ec, 1); 1107 retval |= access_uarea(child, PT_AR_LC, &lc, 1); 1108 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); 1109 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); 1110 retval |= access_uarea(child, PT_CFM, &cfm, 1); 1111 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); 1112 1113 ret = retval ? -EIO : 0; 1114 return ret; 1115 } 1116 1117 void 1118 user_enable_single_step (struct task_struct *child) 1119 { 1120 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1121 1122 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1123 child_psr->ss = 1; 1124 } 1125 1126 void 1127 user_enable_block_step (struct task_struct *child) 1128 { 1129 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1130 1131 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1132 child_psr->tb = 1; 1133 } 1134 1135 void 1136 user_disable_single_step (struct task_struct *child) 1137 { 1138 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1139 1140 /* make sure the single step/taken-branch trap bits are not set: */ 1141 clear_tsk_thread_flag(child, TIF_SINGLESTEP); 1142 child_psr->ss = 0; 1143 child_psr->tb = 0; 1144 } 1145 1146 /* 1147 * Called by kernel/ptrace.c when detaching.. 1148 * 1149 * Make sure the single step bit is not set. 1150 */ 1151 void 1152 ptrace_disable (struct task_struct *child) 1153 { 1154 user_disable_single_step(child); 1155 } 1156 1157 long 1158 arch_ptrace (struct task_struct *child, long request, 1159 unsigned long addr, unsigned long data) 1160 { 1161 switch (request) { 1162 case PTRACE_PEEKTEXT: 1163 case PTRACE_PEEKDATA: 1164 /* read word at location addr */ 1165 if (ptrace_access_vm(child, addr, &data, sizeof(data), 1166 FOLL_FORCE) 1167 != sizeof(data)) 1168 return -EIO; 1169 /* ensure return value is not mistaken for error code */ 1170 force_successful_syscall_return(); 1171 return data; 1172 1173 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled 1174 * by the generic ptrace_request(). 1175 */ 1176 1177 case PTRACE_PEEKUSR: 1178 /* read the word at addr in the USER area */ 1179 if (access_uarea(child, addr, &data, 0) < 0) 1180 return -EIO; 1181 /* ensure return value is not mistaken for error code */ 1182 force_successful_syscall_return(); 1183 return data; 1184 1185 case PTRACE_POKEUSR: 1186 /* write the word at addr in the USER area */ 1187 if (access_uarea(child, addr, &data, 1) < 0) 1188 return -EIO; 1189 return 0; 1190 1191 case PTRACE_OLD_GETSIGINFO: 1192 /* for backwards-compatibility */ 1193 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data); 1194 1195 case PTRACE_OLD_SETSIGINFO: 1196 /* for backwards-compatibility */ 1197 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data); 1198 1199 case PTRACE_GETREGS: 1200 return ptrace_getregs(child, 1201 (struct pt_all_user_regs __user *) data); 1202 1203 case PTRACE_SETREGS: 1204 return ptrace_setregs(child, 1205 (struct pt_all_user_regs __user *) data); 1206 1207 default: 1208 return ptrace_request(child, request, addr, data); 1209 } 1210 } 1211 1212 1213 /* "asmlinkage" so the input arguments are preserved... */ 1214 1215 asmlinkage long 1216 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, 1217 long arg4, long arg5, long arg6, long arg7, 1218 struct pt_regs regs) 1219 { 1220 if (test_thread_flag(TIF_SYSCALL_TRACE)) 1221 if (tracehook_report_syscall_entry(®s)) 1222 return -ENOSYS; 1223 1224 /* copy user rbs to kernel rbs */ 1225 if (test_thread_flag(TIF_RESTORE_RSE)) 1226 ia64_sync_krbs(); 1227 1228 1229 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3); 1230 1231 return 0; 1232 } 1233 1234 /* "asmlinkage" so the input arguments are preserved... */ 1235 1236 asmlinkage void 1237 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, 1238 long arg4, long arg5, long arg6, long arg7, 1239 struct pt_regs regs) 1240 { 1241 int step; 1242 1243 audit_syscall_exit(®s); 1244 1245 step = test_thread_flag(TIF_SINGLESTEP); 1246 if (step || test_thread_flag(TIF_SYSCALL_TRACE)) 1247 tracehook_report_syscall_exit(®s, step); 1248 1249 /* copy user rbs to kernel rbs */ 1250 if (test_thread_flag(TIF_RESTORE_RSE)) 1251 ia64_sync_krbs(); 1252 } 1253 1254 /* Utrace implementation starts here */ 1255 struct regset_get { 1256 void *kbuf; 1257 void __user *ubuf; 1258 }; 1259 1260 struct regset_set { 1261 const void *kbuf; 1262 const void __user *ubuf; 1263 }; 1264 1265 struct regset_getset { 1266 struct task_struct *target; 1267 const struct user_regset *regset; 1268 union { 1269 struct regset_get get; 1270 struct regset_set set; 1271 } u; 1272 unsigned int pos; 1273 unsigned int count; 1274 int ret; 1275 }; 1276 1277 static int 1278 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info, 1279 unsigned long addr, unsigned long *data, int write_access) 1280 { 1281 struct pt_regs *pt; 1282 unsigned long *ptr = NULL; 1283 int ret; 1284 char nat = 0; 1285 1286 pt = task_pt_regs(target); 1287 switch (addr) { 1288 case ELF_GR_OFFSET(1): 1289 ptr = &pt->r1; 1290 break; 1291 case ELF_GR_OFFSET(2): 1292 case ELF_GR_OFFSET(3): 1293 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2)); 1294 break; 1295 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7): 1296 if (write_access) { 1297 /* read NaT bit first: */ 1298 unsigned long dummy; 1299 1300 ret = unw_get_gr(info, addr/8, &dummy, &nat); 1301 if (ret < 0) 1302 return ret; 1303 } 1304 return unw_access_gr(info, addr/8, data, &nat, write_access); 1305 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11): 1306 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8); 1307 break; 1308 case ELF_GR_OFFSET(12): 1309 case ELF_GR_OFFSET(13): 1310 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12); 1311 break; 1312 case ELF_GR_OFFSET(14): 1313 ptr = &pt->r14; 1314 break; 1315 case ELF_GR_OFFSET(15): 1316 ptr = &pt->r15; 1317 } 1318 if (write_access) 1319 *ptr = *data; 1320 else 1321 *data = *ptr; 1322 return 0; 1323 } 1324 1325 static int 1326 access_elf_breg(struct task_struct *target, struct unw_frame_info *info, 1327 unsigned long addr, unsigned long *data, int write_access) 1328 { 1329 struct pt_regs *pt; 1330 unsigned long *ptr = NULL; 1331 1332 pt = task_pt_regs(target); 1333 switch (addr) { 1334 case ELF_BR_OFFSET(0): 1335 ptr = &pt->b0; 1336 break; 1337 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5): 1338 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8, 1339 data, write_access); 1340 case ELF_BR_OFFSET(6): 1341 ptr = &pt->b6; 1342 break; 1343 case ELF_BR_OFFSET(7): 1344 ptr = &pt->b7; 1345 } 1346 if (write_access) 1347 *ptr = *data; 1348 else 1349 *data = *ptr; 1350 return 0; 1351 } 1352 1353 static int 1354 access_elf_areg(struct task_struct *target, struct unw_frame_info *info, 1355 unsigned long addr, unsigned long *data, int write_access) 1356 { 1357 struct pt_regs *pt; 1358 unsigned long cfm, urbs_end; 1359 unsigned long *ptr = NULL; 1360 1361 pt = task_pt_regs(target); 1362 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) { 1363 switch (addr) { 1364 case ELF_AR_RSC_OFFSET: 1365 /* force PL3 */ 1366 if (write_access) 1367 pt->ar_rsc = *data | (3 << 2); 1368 else 1369 *data = pt->ar_rsc; 1370 return 0; 1371 case ELF_AR_BSP_OFFSET: 1372 /* 1373 * By convention, we use PT_AR_BSP to refer to 1374 * the end of the user-level backing store. 1375 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) 1376 * to get the real value of ar.bsp at the time 1377 * the kernel was entered. 1378 * 1379 * Furthermore, when changing the contents of 1380 * PT_AR_BSP (or PT_CFM) while the task is 1381 * blocked in a system call, convert the state 1382 * so that the non-system-call exit 1383 * path is used. This ensures that the proper 1384 * state will be picked up when resuming 1385 * execution. However, it *also* means that 1386 * once we write PT_AR_BSP/PT_CFM, it won't be 1387 * possible to modify the syscall arguments of 1388 * the pending system call any longer. This 1389 * shouldn't be an issue because modifying 1390 * PT_AR_BSP/PT_CFM generally implies that 1391 * we're either abandoning the pending system 1392 * call or that we defer it's re-execution 1393 * (e.g., due to GDB doing an inferior 1394 * function call). 1395 */ 1396 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1397 if (write_access) { 1398 if (*data != urbs_end) { 1399 if (in_syscall(pt)) 1400 convert_to_non_syscall(target, 1401 pt, 1402 cfm); 1403 /* 1404 * Simulate user-level write 1405 * of ar.bsp: 1406 */ 1407 pt->loadrs = 0; 1408 pt->ar_bspstore = *data; 1409 } 1410 } else 1411 *data = urbs_end; 1412 return 0; 1413 case ELF_AR_BSPSTORE_OFFSET: 1414 ptr = &pt->ar_bspstore; 1415 break; 1416 case ELF_AR_RNAT_OFFSET: 1417 ptr = &pt->ar_rnat; 1418 break; 1419 case ELF_AR_CCV_OFFSET: 1420 ptr = &pt->ar_ccv; 1421 break; 1422 case ELF_AR_UNAT_OFFSET: 1423 ptr = &pt->ar_unat; 1424 break; 1425 case ELF_AR_FPSR_OFFSET: 1426 ptr = &pt->ar_fpsr; 1427 break; 1428 case ELF_AR_PFS_OFFSET: 1429 ptr = &pt->ar_pfs; 1430 break; 1431 case ELF_AR_LC_OFFSET: 1432 return unw_access_ar(info, UNW_AR_LC, data, 1433 write_access); 1434 case ELF_AR_EC_OFFSET: 1435 return unw_access_ar(info, UNW_AR_EC, data, 1436 write_access); 1437 case ELF_AR_CSD_OFFSET: 1438 ptr = &pt->ar_csd; 1439 break; 1440 case ELF_AR_SSD_OFFSET: 1441 ptr = &pt->ar_ssd; 1442 } 1443 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) { 1444 switch (addr) { 1445 case ELF_CR_IIP_OFFSET: 1446 ptr = &pt->cr_iip; 1447 break; 1448 case ELF_CFM_OFFSET: 1449 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1450 if (write_access) { 1451 if (((cfm ^ *data) & PFM_MASK) != 0) { 1452 if (in_syscall(pt)) 1453 convert_to_non_syscall(target, 1454 pt, 1455 cfm); 1456 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) 1457 | (*data & PFM_MASK)); 1458 } 1459 } else 1460 *data = cfm; 1461 return 0; 1462 case ELF_CR_IPSR_OFFSET: 1463 if (write_access) { 1464 unsigned long tmp = *data; 1465 /* psr.ri==3 is a reserved value: SDM 2:25 */ 1466 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) 1467 tmp &= ~IA64_PSR_RI; 1468 pt->cr_ipsr = ((tmp & IPSR_MASK) 1469 | (pt->cr_ipsr & ~IPSR_MASK)); 1470 } else 1471 *data = (pt->cr_ipsr & IPSR_MASK); 1472 return 0; 1473 } 1474 } else if (addr == ELF_NAT_OFFSET) 1475 return access_nat_bits(target, pt, info, 1476 data, write_access); 1477 else if (addr == ELF_PR_OFFSET) 1478 ptr = &pt->pr; 1479 else 1480 return -1; 1481 1482 if (write_access) 1483 *ptr = *data; 1484 else 1485 *data = *ptr; 1486 1487 return 0; 1488 } 1489 1490 static int 1491 access_elf_reg(struct task_struct *target, struct unw_frame_info *info, 1492 unsigned long addr, unsigned long *data, int write_access) 1493 { 1494 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15)) 1495 return access_elf_gpreg(target, info, addr, data, write_access); 1496 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7)) 1497 return access_elf_breg(target, info, addr, data, write_access); 1498 else 1499 return access_elf_areg(target, info, addr, data, write_access); 1500 } 1501 1502 void do_gpregs_get(struct unw_frame_info *info, void *arg) 1503 { 1504 struct pt_regs *pt; 1505 struct regset_getset *dst = arg; 1506 elf_greg_t tmp[16]; 1507 unsigned int i, index, min_copy; 1508 1509 if (unw_unwind_to_user(info) < 0) 1510 return; 1511 1512 /* 1513 * coredump format: 1514 * r0-r31 1515 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 1516 * predicate registers (p0-p63) 1517 * b0-b7 1518 * ip cfm user-mask 1519 * ar.rsc ar.bsp ar.bspstore ar.rnat 1520 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 1521 */ 1522 1523 1524 /* Skip r0 */ 1525 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1526 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1527 &dst->u.get.kbuf, 1528 &dst->u.get.ubuf, 1529 0, ELF_GR_OFFSET(1)); 1530 if (dst->ret || dst->count == 0) 1531 return; 1532 } 1533 1534 /* gr1 - gr15 */ 1535 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1536 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1537 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ? 1538 (dst->pos + dst->count) : ELF_GR_OFFSET(16); 1539 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1540 index++) 1541 if (access_elf_reg(dst->target, info, i, 1542 &tmp[index], 0) < 0) { 1543 dst->ret = -EIO; 1544 return; 1545 } 1546 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1547 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1548 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1549 if (dst->ret || dst->count == 0) 1550 return; 1551 } 1552 1553 /* r16-r31 */ 1554 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1555 pt = task_pt_regs(dst->target); 1556 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1557 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16, 1558 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1559 if (dst->ret || dst->count == 0) 1560 return; 1561 } 1562 1563 /* nat, pr, b0 - b7 */ 1564 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1565 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1566 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ? 1567 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET; 1568 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1569 index++) 1570 if (access_elf_reg(dst->target, info, i, 1571 &tmp[index], 0) < 0) { 1572 dst->ret = -EIO; 1573 return; 1574 } 1575 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1576 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1577 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1578 if (dst->ret || dst->count == 0) 1579 return; 1580 } 1581 1582 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1583 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1584 */ 1585 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1586 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1587 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ? 1588 (dst->pos + dst->count) : ELF_AR_END_OFFSET; 1589 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1590 index++) 1591 if (access_elf_reg(dst->target, info, i, 1592 &tmp[index], 0) < 0) { 1593 dst->ret = -EIO; 1594 return; 1595 } 1596 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1597 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1598 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1599 } 1600 } 1601 1602 void do_gpregs_set(struct unw_frame_info *info, void *arg) 1603 { 1604 struct pt_regs *pt; 1605 struct regset_getset *dst = arg; 1606 elf_greg_t tmp[16]; 1607 unsigned int i, index; 1608 1609 if (unw_unwind_to_user(info) < 0) 1610 return; 1611 1612 /* Skip r0 */ 1613 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1614 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1615 &dst->u.set.kbuf, 1616 &dst->u.set.ubuf, 1617 0, ELF_GR_OFFSET(1)); 1618 if (dst->ret || dst->count == 0) 1619 return; 1620 } 1621 1622 /* gr1-gr15 */ 1623 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1624 i = dst->pos; 1625 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1626 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1627 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1628 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1629 if (dst->ret) 1630 return; 1631 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1632 if (access_elf_reg(dst->target, info, i, 1633 &tmp[index], 1) < 0) { 1634 dst->ret = -EIO; 1635 return; 1636 } 1637 if (dst->count == 0) 1638 return; 1639 } 1640 1641 /* gr16-gr31 */ 1642 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1643 pt = task_pt_regs(dst->target); 1644 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1645 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16, 1646 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1647 if (dst->ret || dst->count == 0) 1648 return; 1649 } 1650 1651 /* nat, pr, b0 - b7 */ 1652 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1653 i = dst->pos; 1654 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1655 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1656 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1657 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1658 if (dst->ret) 1659 return; 1660 for (; i < dst->pos; i += sizeof(elf_greg_t), index++) 1661 if (access_elf_reg(dst->target, info, i, 1662 &tmp[index], 1) < 0) { 1663 dst->ret = -EIO; 1664 return; 1665 } 1666 if (dst->count == 0) 1667 return; 1668 } 1669 1670 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1671 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1672 */ 1673 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1674 i = dst->pos; 1675 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1676 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1677 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1678 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1679 if (dst->ret) 1680 return; 1681 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1682 if (access_elf_reg(dst->target, info, i, 1683 &tmp[index], 1) < 0) { 1684 dst->ret = -EIO; 1685 return; 1686 } 1687 } 1688 } 1689 1690 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t)) 1691 1692 void do_fpregs_get(struct unw_frame_info *info, void *arg) 1693 { 1694 struct regset_getset *dst = arg; 1695 struct task_struct *task = dst->target; 1696 elf_fpreg_t tmp[30]; 1697 int index, min_copy, i; 1698 1699 if (unw_unwind_to_user(info) < 0) 1700 return; 1701 1702 /* Skip pos 0 and 1 */ 1703 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1704 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1705 &dst->u.get.kbuf, 1706 &dst->u.get.ubuf, 1707 0, ELF_FP_OFFSET(2)); 1708 if (dst->count == 0 || dst->ret) 1709 return; 1710 } 1711 1712 /* fr2-fr31 */ 1713 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1714 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t); 1715 1716 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)), 1717 dst->pos + dst->count); 1718 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t), 1719 index++) 1720 if (unw_get_fr(info, i / sizeof(elf_fpreg_t), 1721 &tmp[index])) { 1722 dst->ret = -EIO; 1723 return; 1724 } 1725 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1726 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1727 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1728 if (dst->count == 0 || dst->ret) 1729 return; 1730 } 1731 1732 /* fph */ 1733 if (dst->count > 0) { 1734 ia64_flush_fph(dst->target); 1735 if (task->thread.flags & IA64_THREAD_FPH_VALID) 1736 dst->ret = user_regset_copyout( 1737 &dst->pos, &dst->count, 1738 &dst->u.get.kbuf, &dst->u.get.ubuf, 1739 &dst->target->thread.fph, 1740 ELF_FP_OFFSET(32), -1); 1741 else 1742 /* Zero fill instead. */ 1743 dst->ret = user_regset_copyout_zero( 1744 &dst->pos, &dst->count, 1745 &dst->u.get.kbuf, &dst->u.get.ubuf, 1746 ELF_FP_OFFSET(32), -1); 1747 } 1748 } 1749 1750 void do_fpregs_set(struct unw_frame_info *info, void *arg) 1751 { 1752 struct regset_getset *dst = arg; 1753 elf_fpreg_t fpreg, tmp[30]; 1754 int index, start, end; 1755 1756 if (unw_unwind_to_user(info) < 0) 1757 return; 1758 1759 /* Skip pos 0 and 1 */ 1760 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1761 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1762 &dst->u.set.kbuf, 1763 &dst->u.set.ubuf, 1764 0, ELF_FP_OFFSET(2)); 1765 if (dst->count == 0 || dst->ret) 1766 return; 1767 } 1768 1769 /* fr2-fr31 */ 1770 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1771 start = dst->pos; 1772 end = min(((unsigned int)ELF_FP_OFFSET(32)), 1773 dst->pos + dst->count); 1774 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1775 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1776 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1777 if (dst->ret) 1778 return; 1779 1780 if (start & 0xF) { /* only write high part */ 1781 if (unw_get_fr(info, start / sizeof(elf_fpreg_t), 1782 &fpreg)) { 1783 dst->ret = -EIO; 1784 return; 1785 } 1786 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0] 1787 = fpreg.u.bits[0]; 1788 start &= ~0xFUL; 1789 } 1790 if (end & 0xF) { /* only write low part */ 1791 if (unw_get_fr(info, end / sizeof(elf_fpreg_t), 1792 &fpreg)) { 1793 dst->ret = -EIO; 1794 return; 1795 } 1796 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1] 1797 = fpreg.u.bits[1]; 1798 end = (end + 0xF) & ~0xFUL; 1799 } 1800 1801 for ( ; start < end ; start += sizeof(elf_fpreg_t)) { 1802 index = start / sizeof(elf_fpreg_t); 1803 if (unw_set_fr(info, index, tmp[index - 2])) { 1804 dst->ret = -EIO; 1805 return; 1806 } 1807 } 1808 if (dst->ret || dst->count == 0) 1809 return; 1810 } 1811 1812 /* fph */ 1813 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) { 1814 ia64_sync_fph(dst->target); 1815 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1816 &dst->u.set.kbuf, 1817 &dst->u.set.ubuf, 1818 &dst->target->thread.fph, 1819 ELF_FP_OFFSET(32), -1); 1820 } 1821 } 1822 1823 static int 1824 do_regset_call(void (*call)(struct unw_frame_info *, void *), 1825 struct task_struct *target, 1826 const struct user_regset *regset, 1827 unsigned int pos, unsigned int count, 1828 const void *kbuf, const void __user *ubuf) 1829 { 1830 struct regset_getset info = { .target = target, .regset = regset, 1831 .pos = pos, .count = count, 1832 .u.set = { .kbuf = kbuf, .ubuf = ubuf }, 1833 .ret = 0 }; 1834 1835 if (target == current) 1836 unw_init_running(call, &info); 1837 else { 1838 struct unw_frame_info ufi; 1839 memset(&ufi, 0, sizeof(ufi)); 1840 unw_init_from_blocked_task(&ufi, target); 1841 (*call)(&ufi, &info); 1842 } 1843 1844 return info.ret; 1845 } 1846 1847 static int 1848 gpregs_get(struct task_struct *target, 1849 const struct user_regset *regset, 1850 unsigned int pos, unsigned int count, 1851 void *kbuf, void __user *ubuf) 1852 { 1853 return do_regset_call(do_gpregs_get, target, regset, pos, count, 1854 kbuf, ubuf); 1855 } 1856 1857 static int gpregs_set(struct task_struct *target, 1858 const struct user_regset *regset, 1859 unsigned int pos, unsigned int count, 1860 const void *kbuf, const void __user *ubuf) 1861 { 1862 return do_regset_call(do_gpregs_set, target, regset, pos, count, 1863 kbuf, ubuf); 1864 } 1865 1866 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg) 1867 { 1868 do_sync_rbs(info, ia64_sync_user_rbs); 1869 } 1870 1871 /* 1872 * This is called to write back the register backing store. 1873 * ptrace does this before it stops, so that a tracer reading the user 1874 * memory after the thread stops will get the current register data. 1875 */ 1876 static int 1877 gpregs_writeback(struct task_struct *target, 1878 const struct user_regset *regset, 1879 int now) 1880 { 1881 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE)) 1882 return 0; 1883 set_notify_resume(target); 1884 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0, 1885 NULL, NULL); 1886 } 1887 1888 static int 1889 fpregs_active(struct task_struct *target, const struct user_regset *regset) 1890 { 1891 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32; 1892 } 1893 1894 static int fpregs_get(struct task_struct *target, 1895 const struct user_regset *regset, 1896 unsigned int pos, unsigned int count, 1897 void *kbuf, void __user *ubuf) 1898 { 1899 return do_regset_call(do_fpregs_get, target, regset, pos, count, 1900 kbuf, ubuf); 1901 } 1902 1903 static int fpregs_set(struct task_struct *target, 1904 const struct user_regset *regset, 1905 unsigned int pos, unsigned int count, 1906 const void *kbuf, const void __user *ubuf) 1907 { 1908 return do_regset_call(do_fpregs_set, target, regset, pos, count, 1909 kbuf, ubuf); 1910 } 1911 1912 static int 1913 access_uarea(struct task_struct *child, unsigned long addr, 1914 unsigned long *data, int write_access) 1915 { 1916 unsigned int pos = -1; /* an invalid value */ 1917 int ret; 1918 unsigned long *ptr, regnum; 1919 1920 if ((addr & 0x7) != 0) { 1921 dprintk("ptrace: unaligned register address 0x%lx\n", addr); 1922 return -1; 1923 } 1924 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) || 1925 (addr >= PT_R7 + 8 && addr < PT_B1) || 1926 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) || 1927 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) { 1928 dprintk("ptrace: rejecting access to register " 1929 "address 0x%lx\n", addr); 1930 return -1; 1931 } 1932 1933 switch (addr) { 1934 case PT_F32 ... (PT_F127 + 15): 1935 pos = addr - PT_F32 + ELF_FP_OFFSET(32); 1936 break; 1937 case PT_F2 ... (PT_F5 + 15): 1938 pos = addr - PT_F2 + ELF_FP_OFFSET(2); 1939 break; 1940 case PT_F10 ... (PT_F31 + 15): 1941 pos = addr - PT_F10 + ELF_FP_OFFSET(10); 1942 break; 1943 case PT_F6 ... (PT_F9 + 15): 1944 pos = addr - PT_F6 + ELF_FP_OFFSET(6); 1945 break; 1946 } 1947 1948 if (pos != -1) { 1949 if (write_access) 1950 ret = fpregs_set(child, NULL, pos, 1951 sizeof(unsigned long), data, NULL); 1952 else 1953 ret = fpregs_get(child, NULL, pos, 1954 sizeof(unsigned long), data, NULL); 1955 if (ret != 0) 1956 return -1; 1957 return 0; 1958 } 1959 1960 switch (addr) { 1961 case PT_NAT_BITS: 1962 pos = ELF_NAT_OFFSET; 1963 break; 1964 case PT_R4 ... PT_R7: 1965 pos = addr - PT_R4 + ELF_GR_OFFSET(4); 1966 break; 1967 case PT_B1 ... PT_B5: 1968 pos = addr - PT_B1 + ELF_BR_OFFSET(1); 1969 break; 1970 case PT_AR_EC: 1971 pos = ELF_AR_EC_OFFSET; 1972 break; 1973 case PT_AR_LC: 1974 pos = ELF_AR_LC_OFFSET; 1975 break; 1976 case PT_CR_IPSR: 1977 pos = ELF_CR_IPSR_OFFSET; 1978 break; 1979 case PT_CR_IIP: 1980 pos = ELF_CR_IIP_OFFSET; 1981 break; 1982 case PT_CFM: 1983 pos = ELF_CFM_OFFSET; 1984 break; 1985 case PT_AR_UNAT: 1986 pos = ELF_AR_UNAT_OFFSET; 1987 break; 1988 case PT_AR_PFS: 1989 pos = ELF_AR_PFS_OFFSET; 1990 break; 1991 case PT_AR_RSC: 1992 pos = ELF_AR_RSC_OFFSET; 1993 break; 1994 case PT_AR_RNAT: 1995 pos = ELF_AR_RNAT_OFFSET; 1996 break; 1997 case PT_AR_BSPSTORE: 1998 pos = ELF_AR_BSPSTORE_OFFSET; 1999 break; 2000 case PT_PR: 2001 pos = ELF_PR_OFFSET; 2002 break; 2003 case PT_B6: 2004 pos = ELF_BR_OFFSET(6); 2005 break; 2006 case PT_AR_BSP: 2007 pos = ELF_AR_BSP_OFFSET; 2008 break; 2009 case PT_R1 ... PT_R3: 2010 pos = addr - PT_R1 + ELF_GR_OFFSET(1); 2011 break; 2012 case PT_R12 ... PT_R15: 2013 pos = addr - PT_R12 + ELF_GR_OFFSET(12); 2014 break; 2015 case PT_R8 ... PT_R11: 2016 pos = addr - PT_R8 + ELF_GR_OFFSET(8); 2017 break; 2018 case PT_R16 ... PT_R31: 2019 pos = addr - PT_R16 + ELF_GR_OFFSET(16); 2020 break; 2021 case PT_AR_CCV: 2022 pos = ELF_AR_CCV_OFFSET; 2023 break; 2024 case PT_AR_FPSR: 2025 pos = ELF_AR_FPSR_OFFSET; 2026 break; 2027 case PT_B0: 2028 pos = ELF_BR_OFFSET(0); 2029 break; 2030 case PT_B7: 2031 pos = ELF_BR_OFFSET(7); 2032 break; 2033 case PT_AR_CSD: 2034 pos = ELF_AR_CSD_OFFSET; 2035 break; 2036 case PT_AR_SSD: 2037 pos = ELF_AR_SSD_OFFSET; 2038 break; 2039 } 2040 2041 if (pos != -1) { 2042 if (write_access) 2043 ret = gpregs_set(child, NULL, pos, 2044 sizeof(unsigned long), data, NULL); 2045 else 2046 ret = gpregs_get(child, NULL, pos, 2047 sizeof(unsigned long), data, NULL); 2048 if (ret != 0) 2049 return -1; 2050 return 0; 2051 } 2052 2053 /* access debug registers */ 2054 if (addr >= PT_IBR) { 2055 regnum = (addr - PT_IBR) >> 3; 2056 ptr = &child->thread.ibr[0]; 2057 } else { 2058 regnum = (addr - PT_DBR) >> 3; 2059 ptr = &child->thread.dbr[0]; 2060 } 2061 2062 if (regnum >= 8) { 2063 dprintk("ptrace: rejecting access to register " 2064 "address 0x%lx\n", addr); 2065 return -1; 2066 } 2067 #ifdef CONFIG_PERFMON 2068 /* 2069 * Check if debug registers are used by perfmon. This 2070 * test must be done once we know that we can do the 2071 * operation, i.e. the arguments are all valid, but 2072 * before we start modifying the state. 2073 * 2074 * Perfmon needs to keep a count of how many processes 2075 * are trying to modify the debug registers for system 2076 * wide monitoring sessions. 2077 * 2078 * We also include read access here, because they may 2079 * cause the PMU-installed debug register state 2080 * (dbr[], ibr[]) to be reset. The two arrays are also 2081 * used by perfmon, but we do not use 2082 * IA64_THREAD_DBG_VALID. The registers are restored 2083 * by the PMU context switch code. 2084 */ 2085 if (pfm_use_debug_registers(child)) 2086 return -1; 2087 #endif 2088 2089 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { 2090 child->thread.flags |= IA64_THREAD_DBG_VALID; 2091 memset(child->thread.dbr, 0, 2092 sizeof(child->thread.dbr)); 2093 memset(child->thread.ibr, 0, 2094 sizeof(child->thread.ibr)); 2095 } 2096 2097 ptr += regnum; 2098 2099 if ((regnum & 1) && write_access) { 2100 /* don't let the user set kernel-level breakpoints: */ 2101 *ptr = *data & ~(7UL << 56); 2102 return 0; 2103 } 2104 if (write_access) 2105 *ptr = *data; 2106 else 2107 *data = *ptr; 2108 return 0; 2109 } 2110 2111 static const struct user_regset native_regsets[] = { 2112 { 2113 .core_note_type = NT_PRSTATUS, 2114 .n = ELF_NGREG, 2115 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t), 2116 .get = gpregs_get, .set = gpregs_set, 2117 .writeback = gpregs_writeback 2118 }, 2119 { 2120 .core_note_type = NT_PRFPREG, 2121 .n = ELF_NFPREG, 2122 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), 2123 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active 2124 }, 2125 }; 2126 2127 static const struct user_regset_view user_ia64_view = { 2128 .name = "ia64", 2129 .e_machine = EM_IA_64, 2130 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) 2131 }; 2132 2133 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk) 2134 { 2135 return &user_ia64_view; 2136 } 2137 2138 struct syscall_get_set_args { 2139 unsigned int i; 2140 unsigned int n; 2141 unsigned long *args; 2142 struct pt_regs *regs; 2143 int rw; 2144 }; 2145 2146 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data) 2147 { 2148 struct syscall_get_set_args *args = data; 2149 struct pt_regs *pt = args->regs; 2150 unsigned long *krbs, cfm, ndirty; 2151 int i, count; 2152 2153 if (unw_unwind_to_user(info) < 0) 2154 return; 2155 2156 cfm = pt->cr_ifs; 2157 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8; 2158 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 2159 2160 count = 0; 2161 if (in_syscall(pt)) 2162 count = min_t(int, args->n, cfm & 0x7f); 2163 2164 for (i = 0; i < count; i++) { 2165 if (args->rw) 2166 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) = 2167 args->args[i]; 2168 else 2169 args->args[i] = *ia64_rse_skip_regs(krbs, 2170 ndirty + i + args->i); 2171 } 2172 2173 if (!args->rw) { 2174 while (i < args->n) { 2175 args->args[i] = 0; 2176 i++; 2177 } 2178 } 2179 } 2180 2181 void ia64_syscall_get_set_arguments(struct task_struct *task, 2182 struct pt_regs *regs, unsigned int i, unsigned int n, 2183 unsigned long *args, int rw) 2184 { 2185 struct syscall_get_set_args data = { 2186 .i = i, 2187 .n = n, 2188 .args = args, 2189 .regs = regs, 2190 .rw = rw, 2191 }; 2192 2193 if (task == current) 2194 unw_init_running(syscall_get_set_args_cb, &data); 2195 else { 2196 struct unw_frame_info ufi; 2197 memset(&ufi, 0, sizeof(ufi)); 2198 unw_init_from_blocked_task(&ufi, task); 2199 syscall_get_set_args_cb(&ufi, &data); 2200 } 2201 } 2202