1 /* 2 * Kernel support for the ptrace() and syscall tracing interfaces. 3 * 4 * Copyright (C) 1999-2005 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 7 * Derived from the x86 and Alpha versions. 8 */ 9 #include <linux/kernel.h> 10 #include <linux/sched.h> 11 #include <linux/slab.h> 12 #include <linux/mm.h> 13 #include <linux/errno.h> 14 #include <linux/ptrace.h> 15 #include <linux/smp_lock.h> 16 #include <linux/user.h> 17 #include <linux/security.h> 18 #include <linux/audit.h> 19 #include <linux/signal.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/processor.h> 23 #include <asm/ptrace_offsets.h> 24 #include <asm/rse.h> 25 #include <asm/system.h> 26 #include <asm/uaccess.h> 27 #include <asm/unwind.h> 28 #ifdef CONFIG_PERFMON 29 #include <asm/perfmon.h> 30 #endif 31 32 #include "entry.h" 33 34 /* 35 * Bits in the PSR that we allow ptrace() to change: 36 * be, up, ac, mfl, mfh (the user mask; five bits total) 37 * db (debug breakpoint fault; one bit) 38 * id (instruction debug fault disable; one bit) 39 * dd (data debug fault disable; one bit) 40 * ri (restart instruction; two bits) 41 * is (instruction set; one bit) 42 */ 43 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ 44 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) 45 46 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ 47 #define PFM_MASK MASK(38) 48 49 #define PTRACE_DEBUG 0 50 51 #if PTRACE_DEBUG 52 # define dprintk(format...) printk(format) 53 # define inline 54 #else 55 # define dprintk(format...) 56 #endif 57 58 /* Return TRUE if PT was created due to kernel-entry via a system-call. */ 59 60 static inline int 61 in_syscall (struct pt_regs *pt) 62 { 63 return (long) pt->cr_ifs >= 0; 64 } 65 66 /* 67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT 68 * bitset where bit i is set iff the NaT bit of register i is set. 69 */ 70 unsigned long 71 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) 72 { 73 # define GET_BITS(first, last, unat) \ 74 ({ \ 75 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 76 unsigned long nbits = (last - first + 1); \ 77 unsigned long mask = MASK(nbits) << first; \ 78 unsigned long dist; \ 79 if (bit < first) \ 80 dist = 64 + bit - first; \ 81 else \ 82 dist = bit - first; \ 83 ia64_rotr(unat, dist) & mask; \ 84 }) 85 unsigned long val; 86 87 /* 88 * Registers that are stored consecutively in struct pt_regs 89 * can be handled in parallel. If the register order in 90 * struct_pt_regs changes, this code MUST be updated. 91 */ 92 val = GET_BITS( 1, 1, scratch_unat); 93 val |= GET_BITS( 2, 3, scratch_unat); 94 val |= GET_BITS(12, 13, scratch_unat); 95 val |= GET_BITS(14, 14, scratch_unat); 96 val |= GET_BITS(15, 15, scratch_unat); 97 val |= GET_BITS( 8, 11, scratch_unat); 98 val |= GET_BITS(16, 31, scratch_unat); 99 return val; 100 101 # undef GET_BITS 102 } 103 104 /* 105 * Set the NaT bits for the scratch registers according to NAT and 106 * return the resulting unat (assuming the scratch registers are 107 * stored in PT). 108 */ 109 unsigned long 110 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) 111 { 112 # define PUT_BITS(first, last, nat) \ 113 ({ \ 114 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 115 unsigned long nbits = (last - first + 1); \ 116 unsigned long mask = MASK(nbits) << first; \ 117 long dist; \ 118 if (bit < first) \ 119 dist = 64 + bit - first; \ 120 else \ 121 dist = bit - first; \ 122 ia64_rotl(nat & mask, dist); \ 123 }) 124 unsigned long scratch_unat; 125 126 /* 127 * Registers that are stored consecutively in struct pt_regs 128 * can be handled in parallel. If the register order in 129 * struct_pt_regs changes, this code MUST be updated. 130 */ 131 scratch_unat = PUT_BITS( 1, 1, nat); 132 scratch_unat |= PUT_BITS( 2, 3, nat); 133 scratch_unat |= PUT_BITS(12, 13, nat); 134 scratch_unat |= PUT_BITS(14, 14, nat); 135 scratch_unat |= PUT_BITS(15, 15, nat); 136 scratch_unat |= PUT_BITS( 8, 11, nat); 137 scratch_unat |= PUT_BITS(16, 31, nat); 138 139 return scratch_unat; 140 141 # undef PUT_BITS 142 } 143 144 #define IA64_MLX_TEMPLATE 0x2 145 #define IA64_MOVL_OPCODE 6 146 147 void 148 ia64_increment_ip (struct pt_regs *regs) 149 { 150 unsigned long w0, ri = ia64_psr(regs)->ri + 1; 151 152 if (ri > 2) { 153 ri = 0; 154 regs->cr_iip += 16; 155 } else if (ri == 2) { 156 get_user(w0, (char __user *) regs->cr_iip + 0); 157 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 158 /* 159 * rfi'ing to slot 2 of an MLX bundle causes 160 * an illegal operation fault. We don't want 161 * that to happen... 162 */ 163 ri = 0; 164 regs->cr_iip += 16; 165 } 166 } 167 ia64_psr(regs)->ri = ri; 168 } 169 170 void 171 ia64_decrement_ip (struct pt_regs *regs) 172 { 173 unsigned long w0, ri = ia64_psr(regs)->ri - 1; 174 175 if (ia64_psr(regs)->ri == 0) { 176 regs->cr_iip -= 16; 177 ri = 2; 178 get_user(w0, (char __user *) regs->cr_iip + 0); 179 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 180 /* 181 * rfi'ing to slot 2 of an MLX bundle causes 182 * an illegal operation fault. We don't want 183 * that to happen... 184 */ 185 ri = 1; 186 } 187 } 188 ia64_psr(regs)->ri = ri; 189 } 190 191 /* 192 * This routine is used to read an rnat bits that are stored on the 193 * kernel backing store. Since, in general, the alignment of the user 194 * and kernel are different, this is not completely trivial. In 195 * essence, we need to construct the user RNAT based on up to two 196 * kernel RNAT values and/or the RNAT value saved in the child's 197 * pt_regs. 198 * 199 * user rbs 200 * 201 * +--------+ <-- lowest address 202 * | slot62 | 203 * +--------+ 204 * | rnat | 0x....1f8 205 * +--------+ 206 * | slot00 | \ 207 * +--------+ | 208 * | slot01 | > child_regs->ar_rnat 209 * +--------+ | 210 * | slot02 | / kernel rbs 211 * +--------+ +--------+ 212 * <- child_regs->ar_bspstore | slot61 | <-- krbs 213 * +- - - - + +--------+ 214 * | slot62 | 215 * +- - - - + +--------+ 216 * | rnat | 217 * +- - - - + +--------+ 218 * vrnat | slot00 | 219 * +- - - - + +--------+ 220 * = = 221 * +--------+ 222 * | slot00 | \ 223 * +--------+ | 224 * | slot01 | > child_stack->ar_rnat 225 * +--------+ | 226 * | slot02 | / 227 * +--------+ 228 * <--- child_stack->ar_bspstore 229 * 230 * The way to think of this code is as follows: bit 0 in the user rnat 231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat 232 * value. The kernel rnat value holding this bit is stored in 233 * variable rnat0. rnat1 is loaded with the kernel rnat value that 234 * form the upper bits of the user rnat value. 235 * 236 * Boundary cases: 237 * 238 * o when reading the rnat "below" the first rnat slot on the kernel 239 * backing store, rnat0/rnat1 are set to 0 and the low order bits are 240 * merged in from pt->ar_rnat. 241 * 242 * o when reading the rnat "above" the last rnat slot on the kernel 243 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. 244 */ 245 static unsigned long 246 get_rnat (struct task_struct *task, struct switch_stack *sw, 247 unsigned long *krbs, unsigned long *urnat_addr, 248 unsigned long *urbs_end) 249 { 250 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; 251 unsigned long umask = 0, mask, m; 252 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 253 long num_regs, nbits; 254 struct pt_regs *pt; 255 256 pt = task_pt_regs(task); 257 kbsp = (unsigned long *) sw->ar_bspstore; 258 ubspstore = (unsigned long *) pt->ar_bspstore; 259 260 if (urbs_end < urnat_addr) 261 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); 262 else 263 nbits = 63; 264 mask = MASK(nbits); 265 /* 266 * First, figure out which bit number slot 0 in user-land maps 267 * to in the kernel rnat. Do this by figuring out how many 268 * register slots we're beyond the user's backingstore and 269 * then computing the equivalent address in kernel space. 270 */ 271 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 272 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 273 shift = ia64_rse_slot_num(slot0_kaddr); 274 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 275 rnat0_kaddr = rnat1_kaddr - 64; 276 277 if (ubspstore + 63 > urnat_addr) { 278 /* some bits need to be merged in from pt->ar_rnat */ 279 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 280 urnat = (pt->ar_rnat & umask); 281 mask &= ~umask; 282 if (!mask) 283 return urnat; 284 } 285 286 m = mask << shift; 287 if (rnat0_kaddr >= kbsp) 288 rnat0 = sw->ar_rnat; 289 else if (rnat0_kaddr > krbs) 290 rnat0 = *rnat0_kaddr; 291 urnat |= (rnat0 & m) >> shift; 292 293 m = mask >> (63 - shift); 294 if (rnat1_kaddr >= kbsp) 295 rnat1 = sw->ar_rnat; 296 else if (rnat1_kaddr > krbs) 297 rnat1 = *rnat1_kaddr; 298 urnat |= (rnat1 & m) << (63 - shift); 299 return urnat; 300 } 301 302 /* 303 * The reverse of get_rnat. 304 */ 305 static void 306 put_rnat (struct task_struct *task, struct switch_stack *sw, 307 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, 308 unsigned long *urbs_end) 309 { 310 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; 311 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 312 long num_regs, nbits; 313 struct pt_regs *pt; 314 unsigned long cfm, *urbs_kargs; 315 316 pt = task_pt_regs(task); 317 kbsp = (unsigned long *) sw->ar_bspstore; 318 ubspstore = (unsigned long *) pt->ar_bspstore; 319 320 urbs_kargs = urbs_end; 321 if (in_syscall(pt)) { 322 /* 323 * If entered via syscall, don't allow user to set rnat bits 324 * for syscall args. 325 */ 326 cfm = pt->cr_ifs; 327 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); 328 } 329 330 if (urbs_kargs >= urnat_addr) 331 nbits = 63; 332 else { 333 if ((urnat_addr - 63) >= urbs_kargs) 334 return; 335 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); 336 } 337 mask = MASK(nbits); 338 339 /* 340 * First, figure out which bit number slot 0 in user-land maps 341 * to in the kernel rnat. Do this by figuring out how many 342 * register slots we're beyond the user's backingstore and 343 * then computing the equivalent address in kernel space. 344 */ 345 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 346 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 347 shift = ia64_rse_slot_num(slot0_kaddr); 348 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 349 rnat0_kaddr = rnat1_kaddr - 64; 350 351 if (ubspstore + 63 > urnat_addr) { 352 /* some bits need to be place in pt->ar_rnat: */ 353 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 354 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); 355 mask &= ~umask; 356 if (!mask) 357 return; 358 } 359 /* 360 * Note: Section 11.1 of the EAS guarantees that bit 63 of an 361 * rnat slot is ignored. so we don't have to clear it here. 362 */ 363 rnat0 = (urnat << shift); 364 m = mask << shift; 365 if (rnat0_kaddr >= kbsp) 366 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); 367 else if (rnat0_kaddr > krbs) 368 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); 369 370 rnat1 = (urnat >> (63 - shift)); 371 m = mask >> (63 - shift); 372 if (rnat1_kaddr >= kbsp) 373 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); 374 else if (rnat1_kaddr > krbs) 375 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); 376 } 377 378 static inline int 379 on_kernel_rbs (unsigned long addr, unsigned long bspstore, 380 unsigned long urbs_end) 381 { 382 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) 383 urbs_end); 384 return (addr >= bspstore && addr <= (unsigned long) rnat_addr); 385 } 386 387 /* 388 * Read a word from the user-level backing store of task CHILD. ADDR 389 * is the user-level address to read the word from, VAL a pointer to 390 * the return value, and USER_BSP gives the end of the user-level 391 * backing store (i.e., it's the address that would be in ar.bsp after 392 * the user executed a "cover" instruction). 393 * 394 * This routine takes care of accessing the kernel register backing 395 * store for those registers that got spilled there. It also takes 396 * care of calculating the appropriate RNaT collection words. 397 */ 398 long 399 ia64_peek (struct task_struct *child, struct switch_stack *child_stack, 400 unsigned long user_rbs_end, unsigned long addr, long *val) 401 { 402 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; 403 struct pt_regs *child_regs; 404 size_t copied; 405 long ret; 406 407 urbs_end = (long *) user_rbs_end; 408 laddr = (unsigned long *) addr; 409 child_regs = task_pt_regs(child); 410 bspstore = (unsigned long *) child_regs->ar_bspstore; 411 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 412 if (on_kernel_rbs(addr, (unsigned long) bspstore, 413 (unsigned long) urbs_end)) 414 { 415 /* 416 * Attempt to read the RBS in an area that's actually 417 * on the kernel RBS => read the corresponding bits in 418 * the kernel RBS. 419 */ 420 rnat_addr = ia64_rse_rnat_addr(laddr); 421 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); 422 423 if (laddr == rnat_addr) { 424 /* return NaT collection word itself */ 425 *val = ret; 426 return 0; 427 } 428 429 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { 430 /* 431 * It is implementation dependent whether the 432 * data portion of a NaT value gets saved on a 433 * st8.spill or RSE spill (e.g., see EAS 2.6, 434 * 4.4.4.6 Register Spill and Fill). To get 435 * consistent behavior across all possible 436 * IA-64 implementations, we return zero in 437 * this case. 438 */ 439 *val = 0; 440 return 0; 441 } 442 443 if (laddr < urbs_end) { 444 /* 445 * The desired word is on the kernel RBS and 446 * is not a NaT. 447 */ 448 regnum = ia64_rse_num_regs(bspstore, laddr); 449 *val = *ia64_rse_skip_regs(krbs, regnum); 450 return 0; 451 } 452 } 453 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); 454 if (copied != sizeof(ret)) 455 return -EIO; 456 *val = ret; 457 return 0; 458 } 459 460 long 461 ia64_poke (struct task_struct *child, struct switch_stack *child_stack, 462 unsigned long user_rbs_end, unsigned long addr, long val) 463 { 464 unsigned long *bspstore, *krbs, regnum, *laddr; 465 unsigned long *urbs_end = (long *) user_rbs_end; 466 struct pt_regs *child_regs; 467 468 laddr = (unsigned long *) addr; 469 child_regs = task_pt_regs(child); 470 bspstore = (unsigned long *) child_regs->ar_bspstore; 471 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 472 if (on_kernel_rbs(addr, (unsigned long) bspstore, 473 (unsigned long) urbs_end)) 474 { 475 /* 476 * Attempt to write the RBS in an area that's actually 477 * on the kernel RBS => write the corresponding bits 478 * in the kernel RBS. 479 */ 480 if (ia64_rse_is_rnat_slot(laddr)) 481 put_rnat(child, child_stack, krbs, laddr, val, 482 urbs_end); 483 else { 484 if (laddr < urbs_end) { 485 regnum = ia64_rse_num_regs(bspstore, laddr); 486 *ia64_rse_skip_regs(krbs, regnum) = val; 487 } 488 } 489 } else if (access_process_vm(child, addr, &val, sizeof(val), 1) 490 != sizeof(val)) 491 return -EIO; 492 return 0; 493 } 494 495 /* 496 * Calculate the address of the end of the user-level register backing 497 * store. This is the address that would have been stored in ar.bsp 498 * if the user had executed a "cover" instruction right before 499 * entering the kernel. If CFMP is not NULL, it is used to return the 500 * "current frame mask" that was active at the time the kernel was 501 * entered. 502 */ 503 unsigned long 504 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, 505 unsigned long *cfmp) 506 { 507 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; 508 long ndirty; 509 510 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 511 bspstore = (unsigned long *) pt->ar_bspstore; 512 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 513 514 if (in_syscall(pt)) 515 ndirty += (cfm & 0x7f); 516 else 517 cfm &= ~(1UL << 63); /* clear valid bit */ 518 519 if (cfmp) 520 *cfmp = cfm; 521 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); 522 } 523 524 /* 525 * Synchronize (i.e, write) the RSE backing store living in kernel 526 * space to the VM of the CHILD task. SW and PT are the pointers to 527 * the switch_stack and pt_regs structures, respectively. 528 * USER_RBS_END is the user-level address at which the backing store 529 * ends. 530 */ 531 long 532 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, 533 unsigned long user_rbs_start, unsigned long user_rbs_end) 534 { 535 unsigned long addr, val; 536 long ret; 537 538 /* now copy word for word from kernel rbs to user rbs: */ 539 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 540 ret = ia64_peek(child, sw, user_rbs_end, addr, &val); 541 if (ret < 0) 542 return ret; 543 if (access_process_vm(child, addr, &val, sizeof(val), 1) 544 != sizeof(val)) 545 return -EIO; 546 } 547 return 0; 548 } 549 550 static inline int 551 thread_matches (struct task_struct *thread, unsigned long addr) 552 { 553 unsigned long thread_rbs_end; 554 struct pt_regs *thread_regs; 555 556 if (ptrace_check_attach(thread, 0) < 0) 557 /* 558 * If the thread is not in an attachable state, we'll 559 * ignore it. The net effect is that if ADDR happens 560 * to overlap with the portion of the thread's 561 * register backing store that is currently residing 562 * on the thread's kernel stack, then ptrace() may end 563 * up accessing a stale value. But if the thread 564 * isn't stopped, that's a problem anyhow, so we're 565 * doing as well as we can... 566 */ 567 return 0; 568 569 thread_regs = task_pt_regs(thread); 570 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL); 571 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end)) 572 return 0; 573 574 return 1; /* looks like we've got a winner */ 575 } 576 577 /* 578 * GDB apparently wants to be able to read the register-backing store 579 * of any thread when attached to a given process. If we are peeking 580 * or poking an address that happens to reside in the kernel-backing 581 * store of another thread, we need to attach to that thread, because 582 * otherwise we end up accessing stale data. 583 * 584 * task_list_lock must be read-locked before calling this routine! 585 */ 586 static struct task_struct * 587 find_thread_for_addr (struct task_struct *child, unsigned long addr) 588 { 589 struct task_struct *p; 590 struct mm_struct *mm; 591 struct list_head *this, *next; 592 int mm_users; 593 594 if (!(mm = get_task_mm(child))) 595 return child; 596 597 /* -1 because of our get_task_mm(): */ 598 mm_users = atomic_read(&mm->mm_users) - 1; 599 if (mm_users <= 1) 600 goto out; /* not multi-threaded */ 601 602 /* 603 * Traverse the current process' children list. Every task that 604 * one attaches to becomes a child. And it is only attached children 605 * of the debugger that are of interest (ptrace_check_attach checks 606 * for this). 607 */ 608 list_for_each_safe(this, next, ¤t->children) { 609 p = list_entry(this, struct task_struct, sibling); 610 if (p->tgid != child->tgid) 611 continue; 612 if (thread_matches(p, addr)) { 613 child = p; 614 goto out; 615 } 616 } 617 618 out: 619 mmput(mm); 620 return child; 621 } 622 623 /* 624 * Write f32-f127 back to task->thread.fph if it has been modified. 625 */ 626 inline void 627 ia64_flush_fph (struct task_struct *task) 628 { 629 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 630 631 /* 632 * Prevent migrating this task while 633 * we're fiddling with the FPU state 634 */ 635 preempt_disable(); 636 if (ia64_is_local_fpu_owner(task) && psr->mfh) { 637 psr->mfh = 0; 638 task->thread.flags |= IA64_THREAD_FPH_VALID; 639 ia64_save_fpu(&task->thread.fph[0]); 640 } 641 preempt_enable(); 642 } 643 644 /* 645 * Sync the fph state of the task so that it can be manipulated 646 * through thread.fph. If necessary, f32-f127 are written back to 647 * thread.fph or, if the fph state hasn't been used before, thread.fph 648 * is cleared to zeroes. Also, access to f32-f127 is disabled to 649 * ensure that the task picks up the state from thread.fph when it 650 * executes again. 651 */ 652 void 653 ia64_sync_fph (struct task_struct *task) 654 { 655 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 656 657 ia64_flush_fph(task); 658 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { 659 task->thread.flags |= IA64_THREAD_FPH_VALID; 660 memset(&task->thread.fph, 0, sizeof(task->thread.fph)); 661 } 662 ia64_drop_fpu(task); 663 psr->dfh = 1; 664 } 665 666 static int 667 access_fr (struct unw_frame_info *info, int regnum, int hi, 668 unsigned long *data, int write_access) 669 { 670 struct ia64_fpreg fpval; 671 int ret; 672 673 ret = unw_get_fr(info, regnum, &fpval); 674 if (ret < 0) 675 return ret; 676 677 if (write_access) { 678 fpval.u.bits[hi] = *data; 679 ret = unw_set_fr(info, regnum, fpval); 680 } else 681 *data = fpval.u.bits[hi]; 682 return ret; 683 } 684 685 /* 686 * Change the machine-state of CHILD such that it will return via the normal 687 * kernel exit-path, rather than the syscall-exit path. 688 */ 689 static void 690 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, 691 unsigned long cfm) 692 { 693 struct unw_frame_info info, prev_info; 694 unsigned long ip, sp, pr; 695 696 unw_init_from_blocked_task(&info, child); 697 while (1) { 698 prev_info = info; 699 if (unw_unwind(&info) < 0) 700 return; 701 702 unw_get_sp(&info, &sp); 703 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) 704 < IA64_PT_REGS_SIZE) { 705 dprintk("ptrace.%s: ran off the top of the kernel " 706 "stack\n", __FUNCTION__); 707 return; 708 } 709 if (unw_get_pr (&prev_info, &pr) < 0) { 710 unw_get_rp(&prev_info, &ip); 711 dprintk("ptrace.%s: failed to read " 712 "predicate register (ip=0x%lx)\n", 713 __FUNCTION__, ip); 714 return; 715 } 716 if (unw_is_intr_frame(&info) 717 && (pr & (1UL << PRED_USER_STACK))) 718 break; 719 } 720 721 /* 722 * Note: at the time of this call, the target task is blocked 723 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL 724 * (aka, "pLvSys") we redirect execution from 725 * .work_pending_syscall_end to .work_processed_kernel. 726 */ 727 unw_get_pr(&prev_info, &pr); 728 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); 729 pr |= (1UL << PRED_NON_SYSCALL); 730 unw_set_pr(&prev_info, pr); 731 732 pt->cr_ifs = (1UL << 63) | cfm; 733 /* 734 * Clear the memory that is NOT written on syscall-entry to 735 * ensure we do not leak kernel-state to user when execution 736 * resumes. 737 */ 738 pt->r2 = 0; 739 pt->r3 = 0; 740 pt->r14 = 0; 741 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ 742 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ 743 pt->b7 = 0; 744 pt->ar_ccv = 0; 745 pt->ar_csd = 0; 746 pt->ar_ssd = 0; 747 } 748 749 static int 750 access_nat_bits (struct task_struct *child, struct pt_regs *pt, 751 struct unw_frame_info *info, 752 unsigned long *data, int write_access) 753 { 754 unsigned long regnum, nat_bits, scratch_unat, dummy = 0; 755 char nat = 0; 756 757 if (write_access) { 758 nat_bits = *data; 759 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); 760 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { 761 dprintk("ptrace: failed to set ar.unat\n"); 762 return -1; 763 } 764 for (regnum = 4; regnum <= 7; ++regnum) { 765 unw_get_gr(info, regnum, &dummy, &nat); 766 unw_set_gr(info, regnum, dummy, 767 (nat_bits >> regnum) & 1); 768 } 769 } else { 770 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { 771 dprintk("ptrace: failed to read ar.unat\n"); 772 return -1; 773 } 774 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); 775 for (regnum = 4; regnum <= 7; ++regnum) { 776 unw_get_gr(info, regnum, &dummy, &nat); 777 nat_bits |= (nat != 0) << regnum; 778 } 779 *data = nat_bits; 780 } 781 return 0; 782 } 783 784 static int 785 access_uarea (struct task_struct *child, unsigned long addr, 786 unsigned long *data, int write_access) 787 { 788 unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm; 789 struct switch_stack *sw; 790 struct pt_regs *pt; 791 # define pt_reg_addr(pt, reg) ((void *) \ 792 ((unsigned long) (pt) \ 793 + offsetof(struct pt_regs, reg))) 794 795 796 pt = task_pt_regs(child); 797 sw = (struct switch_stack *) (child->thread.ksp + 16); 798 799 if ((addr & 0x7) != 0) { 800 dprintk("ptrace: unaligned register address 0x%lx\n", addr); 801 return -1; 802 } 803 804 if (addr < PT_F127 + 16) { 805 /* accessing fph */ 806 if (write_access) 807 ia64_sync_fph(child); 808 else 809 ia64_flush_fph(child); 810 ptr = (unsigned long *) 811 ((unsigned long) &child->thread.fph + addr); 812 } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) { 813 /* scratch registers untouched by kernel (saved in pt_regs) */ 814 ptr = pt_reg_addr(pt, f10) + (addr - PT_F10); 815 } else if (addr >= PT_F12 && addr < PT_F15 + 16) { 816 /* 817 * Scratch registers untouched by kernel (saved in 818 * switch_stack). 819 */ 820 ptr = (unsigned long *) ((long) sw 821 + (addr - PT_NAT_BITS - 32)); 822 } else if (addr < PT_AR_LC + 8) { 823 /* preserved state: */ 824 struct unw_frame_info info; 825 char nat = 0; 826 int ret; 827 828 unw_init_from_blocked_task(&info, child); 829 if (unw_unwind_to_user(&info) < 0) 830 return -1; 831 832 switch (addr) { 833 case PT_NAT_BITS: 834 return access_nat_bits(child, pt, &info, 835 data, write_access); 836 837 case PT_R4: case PT_R5: case PT_R6: case PT_R7: 838 if (write_access) { 839 /* read NaT bit first: */ 840 unsigned long dummy; 841 842 ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, 843 &dummy, &nat); 844 if (ret < 0) 845 return ret; 846 } 847 return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, 848 &nat, write_access); 849 850 case PT_B1: case PT_B2: case PT_B3: 851 case PT_B4: case PT_B5: 852 return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, 853 write_access); 854 855 case PT_AR_EC: 856 return unw_access_ar(&info, UNW_AR_EC, data, 857 write_access); 858 859 case PT_AR_LC: 860 return unw_access_ar(&info, UNW_AR_LC, data, 861 write_access); 862 863 default: 864 if (addr >= PT_F2 && addr < PT_F5 + 16) 865 return access_fr(&info, (addr - PT_F2)/16 + 2, 866 (addr & 8) != 0, data, 867 write_access); 868 else if (addr >= PT_F16 && addr < PT_F31 + 16) 869 return access_fr(&info, 870 (addr - PT_F16)/16 + 16, 871 (addr & 8) != 0, 872 data, write_access); 873 else { 874 dprintk("ptrace: rejecting access to register " 875 "address 0x%lx\n", addr); 876 return -1; 877 } 878 } 879 } else if (addr < PT_F9+16) { 880 /* scratch state */ 881 switch (addr) { 882 case PT_AR_BSP: 883 /* 884 * By convention, we use PT_AR_BSP to refer to 885 * the end of the user-level backing store. 886 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) 887 * to get the real value of ar.bsp at the time 888 * the kernel was entered. 889 * 890 * Furthermore, when changing the contents of 891 * PT_AR_BSP (or PT_CFM) we MUST copy any 892 * users-level stacked registers that are 893 * stored on the kernel stack back to 894 * user-space because otherwise, we might end 895 * up clobbering kernel stacked registers. 896 * Also, if this happens while the task is 897 * blocked in a system call, which convert the 898 * state such that the non-system-call exit 899 * path is used. This ensures that the proper 900 * state will be picked up when resuming 901 * execution. However, it *also* means that 902 * once we write PT_AR_BSP/PT_CFM, it won't be 903 * possible to modify the syscall arguments of 904 * the pending system call any longer. This 905 * shouldn't be an issue because modifying 906 * PT_AR_BSP/PT_CFM generally implies that 907 * we're either abandoning the pending system 908 * call or that we defer it's re-execution 909 * (e.g., due to GDB doing an inferior 910 * function call). 911 */ 912 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); 913 if (write_access) { 914 if (*data != urbs_end) { 915 if (ia64_sync_user_rbs(child, sw, 916 pt->ar_bspstore, 917 urbs_end) < 0) 918 return -1; 919 if (in_syscall(pt)) 920 convert_to_non_syscall(child, 921 pt, 922 cfm); 923 /* 924 * Simulate user-level write 925 * of ar.bsp: 926 */ 927 pt->loadrs = 0; 928 pt->ar_bspstore = *data; 929 } 930 } else 931 *data = urbs_end; 932 return 0; 933 934 case PT_CFM: 935 urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); 936 if (write_access) { 937 if (((cfm ^ *data) & PFM_MASK) != 0) { 938 if (ia64_sync_user_rbs(child, sw, 939 pt->ar_bspstore, 940 urbs_end) < 0) 941 return -1; 942 if (in_syscall(pt)) 943 convert_to_non_syscall(child, 944 pt, 945 cfm); 946 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) 947 | (*data & PFM_MASK)); 948 } 949 } else 950 *data = cfm; 951 return 0; 952 953 case PT_CR_IPSR: 954 if (write_access) { 955 unsigned long tmp = *data; 956 /* psr.ri==3 is a reserved value: SDM 2:25 */ 957 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) 958 tmp &= ~IA64_PSR_RI; 959 pt->cr_ipsr = ((tmp & IPSR_MASK) 960 | (pt->cr_ipsr & ~IPSR_MASK)); 961 } else 962 *data = (pt->cr_ipsr & IPSR_MASK); 963 return 0; 964 965 case PT_AR_RSC: 966 if (write_access) 967 pt->ar_rsc = *data | (3 << 2); /* force PL3 */ 968 else 969 *data = pt->ar_rsc; 970 return 0; 971 972 case PT_AR_RNAT: 973 urbs_end = ia64_get_user_rbs_end(child, pt, NULL); 974 rnat_addr = (long) ia64_rse_rnat_addr((long *) 975 urbs_end); 976 if (write_access) 977 return ia64_poke(child, sw, urbs_end, 978 rnat_addr, *data); 979 else 980 return ia64_peek(child, sw, urbs_end, 981 rnat_addr, data); 982 983 case PT_R1: 984 ptr = pt_reg_addr(pt, r1); 985 break; 986 case PT_R2: case PT_R3: 987 ptr = pt_reg_addr(pt, r2) + (addr - PT_R2); 988 break; 989 case PT_R8: case PT_R9: case PT_R10: case PT_R11: 990 ptr = pt_reg_addr(pt, r8) + (addr - PT_R8); 991 break; 992 case PT_R12: case PT_R13: 993 ptr = pt_reg_addr(pt, r12) + (addr - PT_R12); 994 break; 995 case PT_R14: 996 ptr = pt_reg_addr(pt, r14); 997 break; 998 case PT_R15: 999 ptr = pt_reg_addr(pt, r15); 1000 break; 1001 case PT_R16: case PT_R17: case PT_R18: case PT_R19: 1002 case PT_R20: case PT_R21: case PT_R22: case PT_R23: 1003 case PT_R24: case PT_R25: case PT_R26: case PT_R27: 1004 case PT_R28: case PT_R29: case PT_R30: case PT_R31: 1005 ptr = pt_reg_addr(pt, r16) + (addr - PT_R16); 1006 break; 1007 case PT_B0: 1008 ptr = pt_reg_addr(pt, b0); 1009 break; 1010 case PT_B6: 1011 ptr = pt_reg_addr(pt, b6); 1012 break; 1013 case PT_B7: 1014 ptr = pt_reg_addr(pt, b7); 1015 break; 1016 case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8: 1017 case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8: 1018 ptr = pt_reg_addr(pt, f6) + (addr - PT_F6); 1019 break; 1020 case PT_AR_BSPSTORE: 1021 ptr = pt_reg_addr(pt, ar_bspstore); 1022 break; 1023 case PT_AR_UNAT: 1024 ptr = pt_reg_addr(pt, ar_unat); 1025 break; 1026 case PT_AR_PFS: 1027 ptr = pt_reg_addr(pt, ar_pfs); 1028 break; 1029 case PT_AR_CCV: 1030 ptr = pt_reg_addr(pt, ar_ccv); 1031 break; 1032 case PT_AR_FPSR: 1033 ptr = pt_reg_addr(pt, ar_fpsr); 1034 break; 1035 case PT_CR_IIP: 1036 ptr = pt_reg_addr(pt, cr_iip); 1037 break; 1038 case PT_PR: 1039 ptr = pt_reg_addr(pt, pr); 1040 break; 1041 /* scratch register */ 1042 1043 default: 1044 /* disallow accessing anything else... */ 1045 dprintk("ptrace: rejecting access to register " 1046 "address 0x%lx\n", addr); 1047 return -1; 1048 } 1049 } else if (addr <= PT_AR_SSD) { 1050 ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD); 1051 } else { 1052 /* access debug registers */ 1053 1054 if (addr >= PT_IBR) { 1055 regnum = (addr - PT_IBR) >> 3; 1056 ptr = &child->thread.ibr[0]; 1057 } else { 1058 regnum = (addr - PT_DBR) >> 3; 1059 ptr = &child->thread.dbr[0]; 1060 } 1061 1062 if (regnum >= 8) { 1063 dprintk("ptrace: rejecting access to register " 1064 "address 0x%lx\n", addr); 1065 return -1; 1066 } 1067 #ifdef CONFIG_PERFMON 1068 /* 1069 * Check if debug registers are used by perfmon. This 1070 * test must be done once we know that we can do the 1071 * operation, i.e. the arguments are all valid, but 1072 * before we start modifying the state. 1073 * 1074 * Perfmon needs to keep a count of how many processes 1075 * are trying to modify the debug registers for system 1076 * wide monitoring sessions. 1077 * 1078 * We also include read access here, because they may 1079 * cause the PMU-installed debug register state 1080 * (dbr[], ibr[]) to be reset. The two arrays are also 1081 * used by perfmon, but we do not use 1082 * IA64_THREAD_DBG_VALID. The registers are restored 1083 * by the PMU context switch code. 1084 */ 1085 if (pfm_use_debug_registers(child)) return -1; 1086 #endif 1087 1088 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { 1089 child->thread.flags |= IA64_THREAD_DBG_VALID; 1090 memset(child->thread.dbr, 0, 1091 sizeof(child->thread.dbr)); 1092 memset(child->thread.ibr, 0, 1093 sizeof(child->thread.ibr)); 1094 } 1095 1096 ptr += regnum; 1097 1098 if ((regnum & 1) && write_access) { 1099 /* don't let the user set kernel-level breakpoints: */ 1100 *ptr = *data & ~(7UL << 56); 1101 return 0; 1102 } 1103 } 1104 if (write_access) 1105 *ptr = *data; 1106 else 1107 *data = *ptr; 1108 return 0; 1109 } 1110 1111 static long 1112 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 1113 { 1114 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; 1115 struct unw_frame_info info; 1116 struct ia64_fpreg fpval; 1117 struct switch_stack *sw; 1118 struct pt_regs *pt; 1119 long ret, retval = 0; 1120 char nat = 0; 1121 int i; 1122 1123 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) 1124 return -EIO; 1125 1126 pt = task_pt_regs(child); 1127 sw = (struct switch_stack *) (child->thread.ksp + 16); 1128 unw_init_from_blocked_task(&info, child); 1129 if (unw_unwind_to_user(&info) < 0) { 1130 return -EIO; 1131 } 1132 1133 if (((unsigned long) ppr & 0x7) != 0) { 1134 dprintk("ptrace:unaligned register address %p\n", ppr); 1135 return -EIO; 1136 } 1137 1138 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 1139 || access_uarea(child, PT_AR_EC, &ec, 0) < 0 1140 || access_uarea(child, PT_AR_LC, &lc, 0) < 0 1141 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 1142 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 1143 || access_uarea(child, PT_CFM, &cfm, 0) 1144 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) 1145 return -EIO; 1146 1147 /* control regs */ 1148 1149 retval |= __put_user(pt->cr_iip, &ppr->cr_iip); 1150 retval |= __put_user(psr, &ppr->cr_ipsr); 1151 1152 /* app regs */ 1153 1154 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 1155 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); 1156 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 1157 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 1158 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 1159 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 1160 1161 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); 1162 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); 1163 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); 1164 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); 1165 retval |= __put_user(cfm, &ppr->cfm); 1166 1167 /* gr1-gr3 */ 1168 1169 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); 1170 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); 1171 1172 /* gr4-gr7 */ 1173 1174 for (i = 4; i < 8; i++) { 1175 if (unw_access_gr(&info, i, &val, &nat, 0) < 0) 1176 return -EIO; 1177 retval |= __put_user(val, &ppr->gr[i]); 1178 } 1179 1180 /* gr8-gr11 */ 1181 1182 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); 1183 1184 /* gr12-gr15 */ 1185 1186 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); 1187 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); 1188 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); 1189 1190 /* gr16-gr31 */ 1191 1192 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); 1193 1194 /* b0 */ 1195 1196 retval |= __put_user(pt->b0, &ppr->br[0]); 1197 1198 /* b1-b5 */ 1199 1200 for (i = 1; i < 6; i++) { 1201 if (unw_access_br(&info, i, &val, 0) < 0) 1202 return -EIO; 1203 __put_user(val, &ppr->br[i]); 1204 } 1205 1206 /* b6-b7 */ 1207 1208 retval |= __put_user(pt->b6, &ppr->br[6]); 1209 retval |= __put_user(pt->b7, &ppr->br[7]); 1210 1211 /* fr2-fr5 */ 1212 1213 for (i = 2; i < 6; i++) { 1214 if (unw_get_fr(&info, i, &fpval) < 0) 1215 return -EIO; 1216 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 1217 } 1218 1219 /* fr6-fr11 */ 1220 1221 retval |= __copy_to_user(&ppr->fr[6], &pt->f6, 1222 sizeof(struct ia64_fpreg) * 6); 1223 1224 /* fp scratch regs(12-15) */ 1225 1226 retval |= __copy_to_user(&ppr->fr[12], &sw->f12, 1227 sizeof(struct ia64_fpreg) * 4); 1228 1229 /* fr16-fr31 */ 1230 1231 for (i = 16; i < 32; i++) { 1232 if (unw_get_fr(&info, i, &fpval) < 0) 1233 return -EIO; 1234 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 1235 } 1236 1237 /* fph */ 1238 1239 ia64_flush_fph(child); 1240 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, 1241 sizeof(ppr->fr[32]) * 96); 1242 1243 /* preds */ 1244 1245 retval |= __put_user(pt->pr, &ppr->pr); 1246 1247 /* nat bits */ 1248 1249 retval |= __put_user(nat_bits, &ppr->nat); 1250 1251 ret = retval ? -EIO : 0; 1252 return ret; 1253 } 1254 1255 static long 1256 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 1257 { 1258 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; 1259 struct unw_frame_info info; 1260 struct switch_stack *sw; 1261 struct ia64_fpreg fpval; 1262 struct pt_regs *pt; 1263 long ret, retval = 0; 1264 int i; 1265 1266 memset(&fpval, 0, sizeof(fpval)); 1267 1268 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) 1269 return -EIO; 1270 1271 pt = task_pt_regs(child); 1272 sw = (struct switch_stack *) (child->thread.ksp + 16); 1273 unw_init_from_blocked_task(&info, child); 1274 if (unw_unwind_to_user(&info) < 0) { 1275 return -EIO; 1276 } 1277 1278 if (((unsigned long) ppr & 0x7) != 0) { 1279 dprintk("ptrace:unaligned register address %p\n", ppr); 1280 return -EIO; 1281 } 1282 1283 /* control regs */ 1284 1285 retval |= __get_user(pt->cr_iip, &ppr->cr_iip); 1286 retval |= __get_user(psr, &ppr->cr_ipsr); 1287 1288 /* app regs */ 1289 1290 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 1291 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); 1292 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 1293 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 1294 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 1295 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 1296 1297 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); 1298 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); 1299 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); 1300 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); 1301 retval |= __get_user(cfm, &ppr->cfm); 1302 1303 /* gr1-gr3 */ 1304 1305 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); 1306 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); 1307 1308 /* gr4-gr7 */ 1309 1310 for (i = 4; i < 8; i++) { 1311 retval |= __get_user(val, &ppr->gr[i]); 1312 /* NaT bit will be set via PT_NAT_BITS: */ 1313 if (unw_set_gr(&info, i, val, 0) < 0) 1314 return -EIO; 1315 } 1316 1317 /* gr8-gr11 */ 1318 1319 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); 1320 1321 /* gr12-gr15 */ 1322 1323 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); 1324 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); 1325 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); 1326 1327 /* gr16-gr31 */ 1328 1329 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); 1330 1331 /* b0 */ 1332 1333 retval |= __get_user(pt->b0, &ppr->br[0]); 1334 1335 /* b1-b5 */ 1336 1337 for (i = 1; i < 6; i++) { 1338 retval |= __get_user(val, &ppr->br[i]); 1339 unw_set_br(&info, i, val); 1340 } 1341 1342 /* b6-b7 */ 1343 1344 retval |= __get_user(pt->b6, &ppr->br[6]); 1345 retval |= __get_user(pt->b7, &ppr->br[7]); 1346 1347 /* fr2-fr5 */ 1348 1349 for (i = 2; i < 6; i++) { 1350 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); 1351 if (unw_set_fr(&info, i, fpval) < 0) 1352 return -EIO; 1353 } 1354 1355 /* fr6-fr11 */ 1356 1357 retval |= __copy_from_user(&pt->f6, &ppr->fr[6], 1358 sizeof(ppr->fr[6]) * 6); 1359 1360 /* fp scratch regs(12-15) */ 1361 1362 retval |= __copy_from_user(&sw->f12, &ppr->fr[12], 1363 sizeof(ppr->fr[12]) * 4); 1364 1365 /* fr16-fr31 */ 1366 1367 for (i = 16; i < 32; i++) { 1368 retval |= __copy_from_user(&fpval, &ppr->fr[i], 1369 sizeof(fpval)); 1370 if (unw_set_fr(&info, i, fpval) < 0) 1371 return -EIO; 1372 } 1373 1374 /* fph */ 1375 1376 ia64_sync_fph(child); 1377 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], 1378 sizeof(ppr->fr[32]) * 96); 1379 1380 /* preds */ 1381 1382 retval |= __get_user(pt->pr, &ppr->pr); 1383 1384 /* nat bits */ 1385 1386 retval |= __get_user(nat_bits, &ppr->nat); 1387 1388 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); 1389 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); 1390 retval |= access_uarea(child, PT_AR_EC, &ec, 1); 1391 retval |= access_uarea(child, PT_AR_LC, &lc, 1); 1392 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); 1393 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); 1394 retval |= access_uarea(child, PT_CFM, &cfm, 1); 1395 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); 1396 1397 ret = retval ? -EIO : 0; 1398 return ret; 1399 } 1400 1401 /* 1402 * Called by kernel/ptrace.c when detaching.. 1403 * 1404 * Make sure the single step bit is not set. 1405 */ 1406 void 1407 ptrace_disable (struct task_struct *child) 1408 { 1409 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1410 1411 /* make sure the single step/taken-branch trap bits are not set: */ 1412 clear_tsk_thread_flag(child, TIF_SINGLESTEP); 1413 child_psr->ss = 0; 1414 child_psr->tb = 0; 1415 } 1416 1417 asmlinkage long 1418 sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data) 1419 { 1420 struct pt_regs *pt; 1421 unsigned long urbs_end, peek_or_poke; 1422 struct task_struct *child; 1423 struct switch_stack *sw; 1424 long ret; 1425 1426 lock_kernel(); 1427 ret = -EPERM; 1428 if (request == PTRACE_TRACEME) { 1429 ret = ptrace_traceme(); 1430 goto out; 1431 } 1432 1433 peek_or_poke = (request == PTRACE_PEEKTEXT 1434 || request == PTRACE_PEEKDATA 1435 || request == PTRACE_POKETEXT 1436 || request == PTRACE_POKEDATA); 1437 ret = -ESRCH; 1438 read_lock(&tasklist_lock); 1439 { 1440 child = find_task_by_pid(pid); 1441 if (child) { 1442 if (peek_or_poke) 1443 child = find_thread_for_addr(child, addr); 1444 get_task_struct(child); 1445 } 1446 } 1447 read_unlock(&tasklist_lock); 1448 if (!child) 1449 goto out; 1450 ret = -EPERM; 1451 if (pid == 1) /* no messing around with init! */ 1452 goto out_tsk; 1453 1454 if (request == PTRACE_ATTACH) { 1455 ret = ptrace_attach(child); 1456 goto out_tsk; 1457 } 1458 1459 ret = ptrace_check_attach(child, request == PTRACE_KILL); 1460 if (ret < 0) 1461 goto out_tsk; 1462 1463 pt = task_pt_regs(child); 1464 sw = (struct switch_stack *) (child->thread.ksp + 16); 1465 1466 switch (request) { 1467 case PTRACE_PEEKTEXT: 1468 case PTRACE_PEEKDATA: 1469 /* read word at location addr */ 1470 urbs_end = ia64_get_user_rbs_end(child, pt, NULL); 1471 ret = ia64_peek(child, sw, urbs_end, addr, &data); 1472 if (ret == 0) { 1473 ret = data; 1474 /* ensure "ret" is not mistaken as an error code: */ 1475 force_successful_syscall_return(); 1476 } 1477 goto out_tsk; 1478 1479 case PTRACE_POKETEXT: 1480 case PTRACE_POKEDATA: 1481 /* write the word at location addr */ 1482 urbs_end = ia64_get_user_rbs_end(child, pt, NULL); 1483 ret = ia64_poke(child, sw, urbs_end, addr, data); 1484 goto out_tsk; 1485 1486 case PTRACE_PEEKUSR: 1487 /* read the word at addr in the USER area */ 1488 if (access_uarea(child, addr, &data, 0) < 0) { 1489 ret = -EIO; 1490 goto out_tsk; 1491 } 1492 ret = data; 1493 /* ensure "ret" is not mistaken as an error code */ 1494 force_successful_syscall_return(); 1495 goto out_tsk; 1496 1497 case PTRACE_POKEUSR: 1498 /* write the word at addr in the USER area */ 1499 if (access_uarea(child, addr, &data, 1) < 0) { 1500 ret = -EIO; 1501 goto out_tsk; 1502 } 1503 ret = 0; 1504 goto out_tsk; 1505 1506 case PTRACE_OLD_GETSIGINFO: 1507 /* for backwards-compatibility */ 1508 ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data); 1509 goto out_tsk; 1510 1511 case PTRACE_OLD_SETSIGINFO: 1512 /* for backwards-compatibility */ 1513 ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data); 1514 goto out_tsk; 1515 1516 case PTRACE_SYSCALL: 1517 /* continue and stop at next (return from) syscall */ 1518 case PTRACE_CONT: 1519 /* restart after signal. */ 1520 ret = -EIO; 1521 if (!valid_signal(data)) 1522 goto out_tsk; 1523 if (request == PTRACE_SYSCALL) 1524 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 1525 else 1526 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 1527 child->exit_code = data; 1528 1529 /* 1530 * Make sure the single step/taken-branch trap bits 1531 * are not set: 1532 */ 1533 clear_tsk_thread_flag(child, TIF_SINGLESTEP); 1534 ia64_psr(pt)->ss = 0; 1535 ia64_psr(pt)->tb = 0; 1536 1537 wake_up_process(child); 1538 ret = 0; 1539 goto out_tsk; 1540 1541 case PTRACE_KILL: 1542 /* 1543 * Make the child exit. Best I can do is send it a 1544 * sigkill. Perhaps it should be put in the status 1545 * that it wants to exit. 1546 */ 1547 if (child->exit_state == EXIT_ZOMBIE) 1548 /* already dead */ 1549 goto out_tsk; 1550 child->exit_code = SIGKILL; 1551 1552 ptrace_disable(child); 1553 wake_up_process(child); 1554 ret = 0; 1555 goto out_tsk; 1556 1557 case PTRACE_SINGLESTEP: 1558 /* let child execute for one instruction */ 1559 case PTRACE_SINGLEBLOCK: 1560 ret = -EIO; 1561 if (!valid_signal(data)) 1562 goto out_tsk; 1563 1564 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); 1565 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1566 if (request == PTRACE_SINGLESTEP) { 1567 ia64_psr(pt)->ss = 1; 1568 } else { 1569 ia64_psr(pt)->tb = 1; 1570 } 1571 child->exit_code = data; 1572 1573 /* give it a chance to run. */ 1574 wake_up_process(child); 1575 ret = 0; 1576 goto out_tsk; 1577 1578 case PTRACE_DETACH: 1579 /* detach a process that was attached. */ 1580 ret = ptrace_detach(child, data); 1581 goto out_tsk; 1582 1583 case PTRACE_GETREGS: 1584 ret = ptrace_getregs(child, 1585 (struct pt_all_user_regs __user *) data); 1586 goto out_tsk; 1587 1588 case PTRACE_SETREGS: 1589 ret = ptrace_setregs(child, 1590 (struct pt_all_user_regs __user *) data); 1591 goto out_tsk; 1592 1593 default: 1594 ret = ptrace_request(child, request, addr, data); 1595 goto out_tsk; 1596 } 1597 out_tsk: 1598 put_task_struct(child); 1599 out: 1600 unlock_kernel(); 1601 return ret; 1602 } 1603 1604 1605 static void 1606 syscall_trace (void) 1607 { 1608 /* 1609 * The 0x80 provides a way for the tracing parent to 1610 * distinguish between a syscall stop and SIGTRAP delivery. 1611 */ 1612 ptrace_notify(SIGTRAP 1613 | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); 1614 1615 /* 1616 * This isn't the same as continuing with a signal, but it 1617 * will do for normal use. strace only continues with a 1618 * signal if the stopping signal is not SIGTRAP. -brl 1619 */ 1620 if (current->exit_code) { 1621 send_sig(current->exit_code, current, 1); 1622 current->exit_code = 0; 1623 } 1624 } 1625 1626 /* "asmlinkage" so the input arguments are preserved... */ 1627 1628 asmlinkage void 1629 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, 1630 long arg4, long arg5, long arg6, long arg7, 1631 struct pt_regs regs) 1632 { 1633 if (test_thread_flag(TIF_SYSCALL_TRACE) 1634 && (current->ptrace & PT_PTRACED)) 1635 syscall_trace(); 1636 1637 if (unlikely(current->audit_context)) { 1638 long syscall; 1639 int arch; 1640 1641 if (IS_IA32_PROCESS(®s)) { 1642 syscall = regs.r1; 1643 arch = AUDIT_ARCH_I386; 1644 } else { 1645 syscall = regs.r15; 1646 arch = AUDIT_ARCH_IA64; 1647 } 1648 1649 audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3); 1650 } 1651 1652 } 1653 1654 /* "asmlinkage" so the input arguments are preserved... */ 1655 1656 asmlinkage void 1657 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, 1658 long arg4, long arg5, long arg6, long arg7, 1659 struct pt_regs regs) 1660 { 1661 if (unlikely(current->audit_context)) { 1662 int success = AUDITSC_RESULT(regs.r10); 1663 long result = regs.r8; 1664 1665 if (success != AUDITSC_SUCCESS) 1666 result = -result; 1667 audit_syscall_exit(success, result); 1668 } 1669 1670 if ((test_thread_flag(TIF_SYSCALL_TRACE) 1671 || test_thread_flag(TIF_SINGLESTEP)) 1672 && (current->ptrace & PT_PTRACED)) 1673 syscall_trace(); 1674 } 1675