1 /* 2 * Kernel support for the ptrace() and syscall tracing interfaces. 3 * 4 * Copyright (C) 1999-2005 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * Copyright (C) 2006 Intel Co 7 * 2006-08-12 - IA64 Native Utrace implementation support added by 8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> 9 * 10 * Derived from the x86 and Alpha versions. 11 */ 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/mm.h> 15 #include <linux/errno.h> 16 #include <linux/ptrace.h> 17 #include <linux/user.h> 18 #include <linux/security.h> 19 #include <linux/audit.h> 20 #include <linux/signal.h> 21 #include <linux/regset.h> 22 #include <linux/elf.h> 23 #include <linux/tracehook.h> 24 25 #include <asm/pgtable.h> 26 #include <asm/processor.h> 27 #include <asm/ptrace_offsets.h> 28 #include <asm/rse.h> 29 #include <asm/uaccess.h> 30 #include <asm/unwind.h> 31 #ifdef CONFIG_PERFMON 32 #include <asm/perfmon.h> 33 #endif 34 35 #include "entry.h" 36 37 /* 38 * Bits in the PSR that we allow ptrace() to change: 39 * be, up, ac, mfl, mfh (the user mask; five bits total) 40 * db (debug breakpoint fault; one bit) 41 * id (instruction debug fault disable; one bit) 42 * dd (data debug fault disable; one bit) 43 * ri (restart instruction; two bits) 44 * is (instruction set; one bit) 45 */ 46 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ 47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) 48 49 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ 50 #define PFM_MASK MASK(38) 51 52 #define PTRACE_DEBUG 0 53 54 #if PTRACE_DEBUG 55 # define dprintk(format...) printk(format) 56 # define inline 57 #else 58 # define dprintk(format...) 59 #endif 60 61 /* Return TRUE if PT was created due to kernel-entry via a system-call. */ 62 63 static inline int 64 in_syscall (struct pt_regs *pt) 65 { 66 return (long) pt->cr_ifs >= 0; 67 } 68 69 /* 70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT 71 * bitset where bit i is set iff the NaT bit of register i is set. 72 */ 73 unsigned long 74 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) 75 { 76 # define GET_BITS(first, last, unat) \ 77 ({ \ 78 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 79 unsigned long nbits = (last - first + 1); \ 80 unsigned long mask = MASK(nbits) << first; \ 81 unsigned long dist; \ 82 if (bit < first) \ 83 dist = 64 + bit - first; \ 84 else \ 85 dist = bit - first; \ 86 ia64_rotr(unat, dist) & mask; \ 87 }) 88 unsigned long val; 89 90 /* 91 * Registers that are stored consecutively in struct pt_regs 92 * can be handled in parallel. If the register order in 93 * struct_pt_regs changes, this code MUST be updated. 94 */ 95 val = GET_BITS( 1, 1, scratch_unat); 96 val |= GET_BITS( 2, 3, scratch_unat); 97 val |= GET_BITS(12, 13, scratch_unat); 98 val |= GET_BITS(14, 14, scratch_unat); 99 val |= GET_BITS(15, 15, scratch_unat); 100 val |= GET_BITS( 8, 11, scratch_unat); 101 val |= GET_BITS(16, 31, scratch_unat); 102 return val; 103 104 # undef GET_BITS 105 } 106 107 /* 108 * Set the NaT bits for the scratch registers according to NAT and 109 * return the resulting unat (assuming the scratch registers are 110 * stored in PT). 111 */ 112 unsigned long 113 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) 114 { 115 # define PUT_BITS(first, last, nat) \ 116 ({ \ 117 unsigned long bit = ia64_unat_pos(&pt->r##first); \ 118 unsigned long nbits = (last - first + 1); \ 119 unsigned long mask = MASK(nbits) << first; \ 120 long dist; \ 121 if (bit < first) \ 122 dist = 64 + bit - first; \ 123 else \ 124 dist = bit - first; \ 125 ia64_rotl(nat & mask, dist); \ 126 }) 127 unsigned long scratch_unat; 128 129 /* 130 * Registers that are stored consecutively in struct pt_regs 131 * can be handled in parallel. If the register order in 132 * struct_pt_regs changes, this code MUST be updated. 133 */ 134 scratch_unat = PUT_BITS( 1, 1, nat); 135 scratch_unat |= PUT_BITS( 2, 3, nat); 136 scratch_unat |= PUT_BITS(12, 13, nat); 137 scratch_unat |= PUT_BITS(14, 14, nat); 138 scratch_unat |= PUT_BITS(15, 15, nat); 139 scratch_unat |= PUT_BITS( 8, 11, nat); 140 scratch_unat |= PUT_BITS(16, 31, nat); 141 142 return scratch_unat; 143 144 # undef PUT_BITS 145 } 146 147 #define IA64_MLX_TEMPLATE 0x2 148 #define IA64_MOVL_OPCODE 6 149 150 void 151 ia64_increment_ip (struct pt_regs *regs) 152 { 153 unsigned long w0, ri = ia64_psr(regs)->ri + 1; 154 155 if (ri > 2) { 156 ri = 0; 157 regs->cr_iip += 16; 158 } else if (ri == 2) { 159 get_user(w0, (char __user *) regs->cr_iip + 0); 160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 161 /* 162 * rfi'ing to slot 2 of an MLX bundle causes 163 * an illegal operation fault. We don't want 164 * that to happen... 165 */ 166 ri = 0; 167 regs->cr_iip += 16; 168 } 169 } 170 ia64_psr(regs)->ri = ri; 171 } 172 173 void 174 ia64_decrement_ip (struct pt_regs *regs) 175 { 176 unsigned long w0, ri = ia64_psr(regs)->ri - 1; 177 178 if (ia64_psr(regs)->ri == 0) { 179 regs->cr_iip -= 16; 180 ri = 2; 181 get_user(w0, (char __user *) regs->cr_iip + 0); 182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { 183 /* 184 * rfi'ing to slot 2 of an MLX bundle causes 185 * an illegal operation fault. We don't want 186 * that to happen... 187 */ 188 ri = 1; 189 } 190 } 191 ia64_psr(regs)->ri = ri; 192 } 193 194 /* 195 * This routine is used to read an rnat bits that are stored on the 196 * kernel backing store. Since, in general, the alignment of the user 197 * and kernel are different, this is not completely trivial. In 198 * essence, we need to construct the user RNAT based on up to two 199 * kernel RNAT values and/or the RNAT value saved in the child's 200 * pt_regs. 201 * 202 * user rbs 203 * 204 * +--------+ <-- lowest address 205 * | slot62 | 206 * +--------+ 207 * | rnat | 0x....1f8 208 * +--------+ 209 * | slot00 | \ 210 * +--------+ | 211 * | slot01 | > child_regs->ar_rnat 212 * +--------+ | 213 * | slot02 | / kernel rbs 214 * +--------+ +--------+ 215 * <- child_regs->ar_bspstore | slot61 | <-- krbs 216 * +- - - - + +--------+ 217 * | slot62 | 218 * +- - - - + +--------+ 219 * | rnat | 220 * +- - - - + +--------+ 221 * vrnat | slot00 | 222 * +- - - - + +--------+ 223 * = = 224 * +--------+ 225 * | slot00 | \ 226 * +--------+ | 227 * | slot01 | > child_stack->ar_rnat 228 * +--------+ | 229 * | slot02 | / 230 * +--------+ 231 * <--- child_stack->ar_bspstore 232 * 233 * The way to think of this code is as follows: bit 0 in the user rnat 234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat 235 * value. The kernel rnat value holding this bit is stored in 236 * variable rnat0. rnat1 is loaded with the kernel rnat value that 237 * form the upper bits of the user rnat value. 238 * 239 * Boundary cases: 240 * 241 * o when reading the rnat "below" the first rnat slot on the kernel 242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are 243 * merged in from pt->ar_rnat. 244 * 245 * o when reading the rnat "above" the last rnat slot on the kernel 246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. 247 */ 248 static unsigned long 249 get_rnat (struct task_struct *task, struct switch_stack *sw, 250 unsigned long *krbs, unsigned long *urnat_addr, 251 unsigned long *urbs_end) 252 { 253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; 254 unsigned long umask = 0, mask, m; 255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 256 long num_regs, nbits; 257 struct pt_regs *pt; 258 259 pt = task_pt_regs(task); 260 kbsp = (unsigned long *) sw->ar_bspstore; 261 ubspstore = (unsigned long *) pt->ar_bspstore; 262 263 if (urbs_end < urnat_addr) 264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); 265 else 266 nbits = 63; 267 mask = MASK(nbits); 268 /* 269 * First, figure out which bit number slot 0 in user-land maps 270 * to in the kernel rnat. Do this by figuring out how many 271 * register slots we're beyond the user's backingstore and 272 * then computing the equivalent address in kernel space. 273 */ 274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 276 shift = ia64_rse_slot_num(slot0_kaddr); 277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 278 rnat0_kaddr = rnat1_kaddr - 64; 279 280 if (ubspstore + 63 > urnat_addr) { 281 /* some bits need to be merged in from pt->ar_rnat */ 282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 283 urnat = (pt->ar_rnat & umask); 284 mask &= ~umask; 285 if (!mask) 286 return urnat; 287 } 288 289 m = mask << shift; 290 if (rnat0_kaddr >= kbsp) 291 rnat0 = sw->ar_rnat; 292 else if (rnat0_kaddr > krbs) 293 rnat0 = *rnat0_kaddr; 294 urnat |= (rnat0 & m) >> shift; 295 296 m = mask >> (63 - shift); 297 if (rnat1_kaddr >= kbsp) 298 rnat1 = sw->ar_rnat; 299 else if (rnat1_kaddr > krbs) 300 rnat1 = *rnat1_kaddr; 301 urnat |= (rnat1 & m) << (63 - shift); 302 return urnat; 303 } 304 305 /* 306 * The reverse of get_rnat. 307 */ 308 static void 309 put_rnat (struct task_struct *task, struct switch_stack *sw, 310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, 311 unsigned long *urbs_end) 312 { 313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; 314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; 315 long num_regs, nbits; 316 struct pt_regs *pt; 317 unsigned long cfm, *urbs_kargs; 318 319 pt = task_pt_regs(task); 320 kbsp = (unsigned long *) sw->ar_bspstore; 321 ubspstore = (unsigned long *) pt->ar_bspstore; 322 323 urbs_kargs = urbs_end; 324 if (in_syscall(pt)) { 325 /* 326 * If entered via syscall, don't allow user to set rnat bits 327 * for syscall args. 328 */ 329 cfm = pt->cr_ifs; 330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); 331 } 332 333 if (urbs_kargs >= urnat_addr) 334 nbits = 63; 335 else { 336 if ((urnat_addr - 63) >= urbs_kargs) 337 return; 338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); 339 } 340 mask = MASK(nbits); 341 342 /* 343 * First, figure out which bit number slot 0 in user-land maps 344 * to in the kernel rnat. Do this by figuring out how many 345 * register slots we're beyond the user's backingstore and 346 * then computing the equivalent address in kernel space. 347 */ 348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); 349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); 350 shift = ia64_rse_slot_num(slot0_kaddr); 351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); 352 rnat0_kaddr = rnat1_kaddr - 64; 353 354 if (ubspstore + 63 > urnat_addr) { 355 /* some bits need to be place in pt->ar_rnat: */ 356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; 357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); 358 mask &= ~umask; 359 if (!mask) 360 return; 361 } 362 /* 363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an 364 * rnat slot is ignored. so we don't have to clear it here. 365 */ 366 rnat0 = (urnat << shift); 367 m = mask << shift; 368 if (rnat0_kaddr >= kbsp) 369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); 370 else if (rnat0_kaddr > krbs) 371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); 372 373 rnat1 = (urnat >> (63 - shift)); 374 m = mask >> (63 - shift); 375 if (rnat1_kaddr >= kbsp) 376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); 377 else if (rnat1_kaddr > krbs) 378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); 379 } 380 381 static inline int 382 on_kernel_rbs (unsigned long addr, unsigned long bspstore, 383 unsigned long urbs_end) 384 { 385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) 386 urbs_end); 387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr); 388 } 389 390 /* 391 * Read a word from the user-level backing store of task CHILD. ADDR 392 * is the user-level address to read the word from, VAL a pointer to 393 * the return value, and USER_BSP gives the end of the user-level 394 * backing store (i.e., it's the address that would be in ar.bsp after 395 * the user executed a "cover" instruction). 396 * 397 * This routine takes care of accessing the kernel register backing 398 * store for those registers that got spilled there. It also takes 399 * care of calculating the appropriate RNaT collection words. 400 */ 401 long 402 ia64_peek (struct task_struct *child, struct switch_stack *child_stack, 403 unsigned long user_rbs_end, unsigned long addr, long *val) 404 { 405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; 406 struct pt_regs *child_regs; 407 size_t copied; 408 long ret; 409 410 urbs_end = (long *) user_rbs_end; 411 laddr = (unsigned long *) addr; 412 child_regs = task_pt_regs(child); 413 bspstore = (unsigned long *) child_regs->ar_bspstore; 414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 415 if (on_kernel_rbs(addr, (unsigned long) bspstore, 416 (unsigned long) urbs_end)) 417 { 418 /* 419 * Attempt to read the RBS in an area that's actually 420 * on the kernel RBS => read the corresponding bits in 421 * the kernel RBS. 422 */ 423 rnat_addr = ia64_rse_rnat_addr(laddr); 424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); 425 426 if (laddr == rnat_addr) { 427 /* return NaT collection word itself */ 428 *val = ret; 429 return 0; 430 } 431 432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { 433 /* 434 * It is implementation dependent whether the 435 * data portion of a NaT value gets saved on a 436 * st8.spill or RSE spill (e.g., see EAS 2.6, 437 * 4.4.4.6 Register Spill and Fill). To get 438 * consistent behavior across all possible 439 * IA-64 implementations, we return zero in 440 * this case. 441 */ 442 *val = 0; 443 return 0; 444 } 445 446 if (laddr < urbs_end) { 447 /* 448 * The desired word is on the kernel RBS and 449 * is not a NaT. 450 */ 451 regnum = ia64_rse_num_regs(bspstore, laddr); 452 *val = *ia64_rse_skip_regs(krbs, regnum); 453 return 0; 454 } 455 } 456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); 457 if (copied != sizeof(ret)) 458 return -EIO; 459 *val = ret; 460 return 0; 461 } 462 463 long 464 ia64_poke (struct task_struct *child, struct switch_stack *child_stack, 465 unsigned long user_rbs_end, unsigned long addr, long val) 466 { 467 unsigned long *bspstore, *krbs, regnum, *laddr; 468 unsigned long *urbs_end = (long *) user_rbs_end; 469 struct pt_regs *child_regs; 470 471 laddr = (unsigned long *) addr; 472 child_regs = task_pt_regs(child); 473 bspstore = (unsigned long *) child_regs->ar_bspstore; 474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 475 if (on_kernel_rbs(addr, (unsigned long) bspstore, 476 (unsigned long) urbs_end)) 477 { 478 /* 479 * Attempt to write the RBS in an area that's actually 480 * on the kernel RBS => write the corresponding bits 481 * in the kernel RBS. 482 */ 483 if (ia64_rse_is_rnat_slot(laddr)) 484 put_rnat(child, child_stack, krbs, laddr, val, 485 urbs_end); 486 else { 487 if (laddr < urbs_end) { 488 regnum = ia64_rse_num_regs(bspstore, laddr); 489 *ia64_rse_skip_regs(krbs, regnum) = val; 490 } 491 } 492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1) 493 != sizeof(val)) 494 return -EIO; 495 return 0; 496 } 497 498 /* 499 * Calculate the address of the end of the user-level register backing 500 * store. This is the address that would have been stored in ar.bsp 501 * if the user had executed a "cover" instruction right before 502 * entering the kernel. If CFMP is not NULL, it is used to return the 503 * "current frame mask" that was active at the time the kernel was 504 * entered. 505 */ 506 unsigned long 507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, 508 unsigned long *cfmp) 509 { 510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; 511 long ndirty; 512 513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; 514 bspstore = (unsigned long *) pt->ar_bspstore; 515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 516 517 if (in_syscall(pt)) 518 ndirty += (cfm & 0x7f); 519 else 520 cfm &= ~(1UL << 63); /* clear valid bit */ 521 522 if (cfmp) 523 *cfmp = cfm; 524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); 525 } 526 527 /* 528 * Synchronize (i.e, write) the RSE backing store living in kernel 529 * space to the VM of the CHILD task. SW and PT are the pointers to 530 * the switch_stack and pt_regs structures, respectively. 531 * USER_RBS_END is the user-level address at which the backing store 532 * ends. 533 */ 534 long 535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, 536 unsigned long user_rbs_start, unsigned long user_rbs_end) 537 { 538 unsigned long addr, val; 539 long ret; 540 541 /* now copy word for word from kernel rbs to user rbs: */ 542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val); 544 if (ret < 0) 545 return ret; 546 if (access_process_vm(child, addr, &val, sizeof(val), 1) 547 != sizeof(val)) 548 return -EIO; 549 } 550 return 0; 551 } 552 553 static long 554 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw, 555 unsigned long user_rbs_start, unsigned long user_rbs_end) 556 { 557 unsigned long addr, val; 558 long ret; 559 560 /* now copy word for word from user rbs to kernel rbs: */ 561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { 562 if (access_process_vm(child, addr, &val, sizeof(val), 0) 563 != sizeof(val)) 564 return -EIO; 565 566 ret = ia64_poke(child, sw, user_rbs_end, addr, val); 567 if (ret < 0) 568 return ret; 569 } 570 return 0; 571 } 572 573 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *, 574 unsigned long, unsigned long); 575 576 static void do_sync_rbs(struct unw_frame_info *info, void *arg) 577 { 578 struct pt_regs *pt; 579 unsigned long urbs_end; 580 syncfunc_t fn = arg; 581 582 if (unw_unwind_to_user(info) < 0) 583 return; 584 pt = task_pt_regs(info->task); 585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL); 586 587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end); 588 } 589 590 /* 591 * when a thread is stopped (ptraced), debugger might change thread's user 592 * stack (change memory directly), and we must avoid the RSE stored in kernel 593 * to override user stack (user space's RSE is newer than kernel's in the 594 * case). To workaround the issue, we copy kernel RSE to user RSE before the 595 * task is stopped, so user RSE has updated data. we then copy user RSE to 596 * kernel after the task is resummed from traced stop and kernel will use the 597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need 598 * synchronize user RSE to kernel. 599 */ 600 void ia64_ptrace_stop(void) 601 { 602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE)) 603 return; 604 set_notify_resume(current); 605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs); 606 } 607 608 /* 609 * This is called to read back the register backing store. 610 */ 611 void ia64_sync_krbs(void) 612 { 613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE); 614 615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs); 616 } 617 618 /* 619 * After PTRACE_ATTACH, a thread's register backing store area in user 620 * space is assumed to contain correct data whenever the thread is 621 * stopped. arch_ptrace_stop takes care of this on tracing stops. 622 * But if the child was already stopped for job control when we attach 623 * to it, then it might not ever get into ptrace_stop by the time we 624 * want to examine the user memory containing the RBS. 625 */ 626 void 627 ptrace_attach_sync_user_rbs (struct task_struct *child) 628 { 629 int stopped = 0; 630 struct unw_frame_info info; 631 632 /* 633 * If the child is in TASK_STOPPED, we need to change that to 634 * TASK_TRACED momentarily while we operate on it. This ensures 635 * that the child won't be woken up and return to user mode while 636 * we are doing the sync. (It can only be woken up for SIGKILL.) 637 */ 638 639 read_lock(&tasklist_lock); 640 if (child->sighand) { 641 spin_lock_irq(&child->sighand->siglock); 642 if (child->state == TASK_STOPPED && 643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) { 644 set_notify_resume(child); 645 646 child->state = TASK_TRACED; 647 stopped = 1; 648 } 649 spin_unlock_irq(&child->sighand->siglock); 650 } 651 read_unlock(&tasklist_lock); 652 653 if (!stopped) 654 return; 655 656 unw_init_from_blocked_task(&info, child); 657 do_sync_rbs(&info, ia64_sync_user_rbs); 658 659 /* 660 * Now move the child back into TASK_STOPPED if it should be in a 661 * job control stop, so that SIGCONT can be used to wake it up. 662 */ 663 read_lock(&tasklist_lock); 664 if (child->sighand) { 665 spin_lock_irq(&child->sighand->siglock); 666 if (child->state == TASK_TRACED && 667 (child->signal->flags & SIGNAL_STOP_STOPPED)) { 668 child->state = TASK_STOPPED; 669 } 670 spin_unlock_irq(&child->sighand->siglock); 671 } 672 read_unlock(&tasklist_lock); 673 } 674 675 static inline int 676 thread_matches (struct task_struct *thread, unsigned long addr) 677 { 678 unsigned long thread_rbs_end; 679 struct pt_regs *thread_regs; 680 681 if (ptrace_check_attach(thread, 0) < 0) 682 /* 683 * If the thread is not in an attachable state, we'll 684 * ignore it. The net effect is that if ADDR happens 685 * to overlap with the portion of the thread's 686 * register backing store that is currently residing 687 * on the thread's kernel stack, then ptrace() may end 688 * up accessing a stale value. But if the thread 689 * isn't stopped, that's a problem anyhow, so we're 690 * doing as well as we can... 691 */ 692 return 0; 693 694 thread_regs = task_pt_regs(thread); 695 thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL); 696 if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end)) 697 return 0; 698 699 return 1; /* looks like we've got a winner */ 700 } 701 702 /* 703 * Write f32-f127 back to task->thread.fph if it has been modified. 704 */ 705 inline void 706 ia64_flush_fph (struct task_struct *task) 707 { 708 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 709 710 /* 711 * Prevent migrating this task while 712 * we're fiddling with the FPU state 713 */ 714 preempt_disable(); 715 if (ia64_is_local_fpu_owner(task) && psr->mfh) { 716 psr->mfh = 0; 717 task->thread.flags |= IA64_THREAD_FPH_VALID; 718 ia64_save_fpu(&task->thread.fph[0]); 719 } 720 preempt_enable(); 721 } 722 723 /* 724 * Sync the fph state of the task so that it can be manipulated 725 * through thread.fph. If necessary, f32-f127 are written back to 726 * thread.fph or, if the fph state hasn't been used before, thread.fph 727 * is cleared to zeroes. Also, access to f32-f127 is disabled to 728 * ensure that the task picks up the state from thread.fph when it 729 * executes again. 730 */ 731 void 732 ia64_sync_fph (struct task_struct *task) 733 { 734 struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); 735 736 ia64_flush_fph(task); 737 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { 738 task->thread.flags |= IA64_THREAD_FPH_VALID; 739 memset(&task->thread.fph, 0, sizeof(task->thread.fph)); 740 } 741 ia64_drop_fpu(task); 742 psr->dfh = 1; 743 } 744 745 /* 746 * Change the machine-state of CHILD such that it will return via the normal 747 * kernel exit-path, rather than the syscall-exit path. 748 */ 749 static void 750 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, 751 unsigned long cfm) 752 { 753 struct unw_frame_info info, prev_info; 754 unsigned long ip, sp, pr; 755 756 unw_init_from_blocked_task(&info, child); 757 while (1) { 758 prev_info = info; 759 if (unw_unwind(&info) < 0) 760 return; 761 762 unw_get_sp(&info, &sp); 763 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) 764 < IA64_PT_REGS_SIZE) { 765 dprintk("ptrace.%s: ran off the top of the kernel " 766 "stack\n", __func__); 767 return; 768 } 769 if (unw_get_pr (&prev_info, &pr) < 0) { 770 unw_get_rp(&prev_info, &ip); 771 dprintk("ptrace.%s: failed to read " 772 "predicate register (ip=0x%lx)\n", 773 __func__, ip); 774 return; 775 } 776 if (unw_is_intr_frame(&info) 777 && (pr & (1UL << PRED_USER_STACK))) 778 break; 779 } 780 781 /* 782 * Note: at the time of this call, the target task is blocked 783 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL 784 * (aka, "pLvSys") we redirect execution from 785 * .work_pending_syscall_end to .work_processed_kernel. 786 */ 787 unw_get_pr(&prev_info, &pr); 788 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); 789 pr |= (1UL << PRED_NON_SYSCALL); 790 unw_set_pr(&prev_info, pr); 791 792 pt->cr_ifs = (1UL << 63) | cfm; 793 /* 794 * Clear the memory that is NOT written on syscall-entry to 795 * ensure we do not leak kernel-state to user when execution 796 * resumes. 797 */ 798 pt->r2 = 0; 799 pt->r3 = 0; 800 pt->r14 = 0; 801 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ 802 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ 803 pt->b7 = 0; 804 pt->ar_ccv = 0; 805 pt->ar_csd = 0; 806 pt->ar_ssd = 0; 807 } 808 809 static int 810 access_nat_bits (struct task_struct *child, struct pt_regs *pt, 811 struct unw_frame_info *info, 812 unsigned long *data, int write_access) 813 { 814 unsigned long regnum, nat_bits, scratch_unat, dummy = 0; 815 char nat = 0; 816 817 if (write_access) { 818 nat_bits = *data; 819 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); 820 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { 821 dprintk("ptrace: failed to set ar.unat\n"); 822 return -1; 823 } 824 for (regnum = 4; regnum <= 7; ++regnum) { 825 unw_get_gr(info, regnum, &dummy, &nat); 826 unw_set_gr(info, regnum, dummy, 827 (nat_bits >> regnum) & 1); 828 } 829 } else { 830 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { 831 dprintk("ptrace: failed to read ar.unat\n"); 832 return -1; 833 } 834 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); 835 for (regnum = 4; regnum <= 7; ++regnum) { 836 unw_get_gr(info, regnum, &dummy, &nat); 837 nat_bits |= (nat != 0) << regnum; 838 } 839 *data = nat_bits; 840 } 841 return 0; 842 } 843 844 static int 845 access_uarea (struct task_struct *child, unsigned long addr, 846 unsigned long *data, int write_access); 847 848 static long 849 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 850 { 851 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; 852 struct unw_frame_info info; 853 struct ia64_fpreg fpval; 854 struct switch_stack *sw; 855 struct pt_regs *pt; 856 long ret, retval = 0; 857 char nat = 0; 858 int i; 859 860 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) 861 return -EIO; 862 863 pt = task_pt_regs(child); 864 sw = (struct switch_stack *) (child->thread.ksp + 16); 865 unw_init_from_blocked_task(&info, child); 866 if (unw_unwind_to_user(&info) < 0) { 867 return -EIO; 868 } 869 870 if (((unsigned long) ppr & 0x7) != 0) { 871 dprintk("ptrace:unaligned register address %p\n", ppr); 872 return -EIO; 873 } 874 875 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 876 || access_uarea(child, PT_AR_EC, &ec, 0) < 0 877 || access_uarea(child, PT_AR_LC, &lc, 0) < 0 878 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 879 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 880 || access_uarea(child, PT_CFM, &cfm, 0) 881 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) 882 return -EIO; 883 884 /* control regs */ 885 886 retval |= __put_user(pt->cr_iip, &ppr->cr_iip); 887 retval |= __put_user(psr, &ppr->cr_ipsr); 888 889 /* app regs */ 890 891 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 892 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); 893 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 894 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 895 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 896 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 897 898 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); 899 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); 900 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); 901 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); 902 retval |= __put_user(cfm, &ppr->cfm); 903 904 /* gr1-gr3 */ 905 906 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); 907 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); 908 909 /* gr4-gr7 */ 910 911 for (i = 4; i < 8; i++) { 912 if (unw_access_gr(&info, i, &val, &nat, 0) < 0) 913 return -EIO; 914 retval |= __put_user(val, &ppr->gr[i]); 915 } 916 917 /* gr8-gr11 */ 918 919 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); 920 921 /* gr12-gr15 */ 922 923 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); 924 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); 925 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); 926 927 /* gr16-gr31 */ 928 929 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); 930 931 /* b0 */ 932 933 retval |= __put_user(pt->b0, &ppr->br[0]); 934 935 /* b1-b5 */ 936 937 for (i = 1; i < 6; i++) { 938 if (unw_access_br(&info, i, &val, 0) < 0) 939 return -EIO; 940 __put_user(val, &ppr->br[i]); 941 } 942 943 /* b6-b7 */ 944 945 retval |= __put_user(pt->b6, &ppr->br[6]); 946 retval |= __put_user(pt->b7, &ppr->br[7]); 947 948 /* fr2-fr5 */ 949 950 for (i = 2; i < 6; i++) { 951 if (unw_get_fr(&info, i, &fpval) < 0) 952 return -EIO; 953 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 954 } 955 956 /* fr6-fr11 */ 957 958 retval |= __copy_to_user(&ppr->fr[6], &pt->f6, 959 sizeof(struct ia64_fpreg) * 6); 960 961 /* fp scratch regs(12-15) */ 962 963 retval |= __copy_to_user(&ppr->fr[12], &sw->f12, 964 sizeof(struct ia64_fpreg) * 4); 965 966 /* fr16-fr31 */ 967 968 for (i = 16; i < 32; i++) { 969 if (unw_get_fr(&info, i, &fpval) < 0) 970 return -EIO; 971 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); 972 } 973 974 /* fph */ 975 976 ia64_flush_fph(child); 977 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, 978 sizeof(ppr->fr[32]) * 96); 979 980 /* preds */ 981 982 retval |= __put_user(pt->pr, &ppr->pr); 983 984 /* nat bits */ 985 986 retval |= __put_user(nat_bits, &ppr->nat); 987 988 ret = retval ? -EIO : 0; 989 return ret; 990 } 991 992 static long 993 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) 994 { 995 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; 996 struct unw_frame_info info; 997 struct switch_stack *sw; 998 struct ia64_fpreg fpval; 999 struct pt_regs *pt; 1000 long ret, retval = 0; 1001 int i; 1002 1003 memset(&fpval, 0, sizeof(fpval)); 1004 1005 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) 1006 return -EIO; 1007 1008 pt = task_pt_regs(child); 1009 sw = (struct switch_stack *) (child->thread.ksp + 16); 1010 unw_init_from_blocked_task(&info, child); 1011 if (unw_unwind_to_user(&info) < 0) { 1012 return -EIO; 1013 } 1014 1015 if (((unsigned long) ppr & 0x7) != 0) { 1016 dprintk("ptrace:unaligned register address %p\n", ppr); 1017 return -EIO; 1018 } 1019 1020 /* control regs */ 1021 1022 retval |= __get_user(pt->cr_iip, &ppr->cr_iip); 1023 retval |= __get_user(psr, &ppr->cr_ipsr); 1024 1025 /* app regs */ 1026 1027 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); 1028 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); 1029 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); 1030 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); 1031 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); 1032 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); 1033 1034 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); 1035 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); 1036 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); 1037 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); 1038 retval |= __get_user(cfm, &ppr->cfm); 1039 1040 /* gr1-gr3 */ 1041 1042 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); 1043 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); 1044 1045 /* gr4-gr7 */ 1046 1047 for (i = 4; i < 8; i++) { 1048 retval |= __get_user(val, &ppr->gr[i]); 1049 /* NaT bit will be set via PT_NAT_BITS: */ 1050 if (unw_set_gr(&info, i, val, 0) < 0) 1051 return -EIO; 1052 } 1053 1054 /* gr8-gr11 */ 1055 1056 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); 1057 1058 /* gr12-gr15 */ 1059 1060 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); 1061 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); 1062 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); 1063 1064 /* gr16-gr31 */ 1065 1066 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); 1067 1068 /* b0 */ 1069 1070 retval |= __get_user(pt->b0, &ppr->br[0]); 1071 1072 /* b1-b5 */ 1073 1074 for (i = 1; i < 6; i++) { 1075 retval |= __get_user(val, &ppr->br[i]); 1076 unw_set_br(&info, i, val); 1077 } 1078 1079 /* b6-b7 */ 1080 1081 retval |= __get_user(pt->b6, &ppr->br[6]); 1082 retval |= __get_user(pt->b7, &ppr->br[7]); 1083 1084 /* fr2-fr5 */ 1085 1086 for (i = 2; i < 6; i++) { 1087 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); 1088 if (unw_set_fr(&info, i, fpval) < 0) 1089 return -EIO; 1090 } 1091 1092 /* fr6-fr11 */ 1093 1094 retval |= __copy_from_user(&pt->f6, &ppr->fr[6], 1095 sizeof(ppr->fr[6]) * 6); 1096 1097 /* fp scratch regs(12-15) */ 1098 1099 retval |= __copy_from_user(&sw->f12, &ppr->fr[12], 1100 sizeof(ppr->fr[12]) * 4); 1101 1102 /* fr16-fr31 */ 1103 1104 for (i = 16; i < 32; i++) { 1105 retval |= __copy_from_user(&fpval, &ppr->fr[i], 1106 sizeof(fpval)); 1107 if (unw_set_fr(&info, i, fpval) < 0) 1108 return -EIO; 1109 } 1110 1111 /* fph */ 1112 1113 ia64_sync_fph(child); 1114 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], 1115 sizeof(ppr->fr[32]) * 96); 1116 1117 /* preds */ 1118 1119 retval |= __get_user(pt->pr, &ppr->pr); 1120 1121 /* nat bits */ 1122 1123 retval |= __get_user(nat_bits, &ppr->nat); 1124 1125 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); 1126 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); 1127 retval |= access_uarea(child, PT_AR_EC, &ec, 1); 1128 retval |= access_uarea(child, PT_AR_LC, &lc, 1); 1129 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); 1130 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); 1131 retval |= access_uarea(child, PT_CFM, &cfm, 1); 1132 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); 1133 1134 ret = retval ? -EIO : 0; 1135 return ret; 1136 } 1137 1138 void 1139 user_enable_single_step (struct task_struct *child) 1140 { 1141 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1142 1143 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1144 child_psr->ss = 1; 1145 } 1146 1147 void 1148 user_enable_block_step (struct task_struct *child) 1149 { 1150 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1151 1152 set_tsk_thread_flag(child, TIF_SINGLESTEP); 1153 child_psr->tb = 1; 1154 } 1155 1156 void 1157 user_disable_single_step (struct task_struct *child) 1158 { 1159 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); 1160 1161 /* make sure the single step/taken-branch trap bits are not set: */ 1162 clear_tsk_thread_flag(child, TIF_SINGLESTEP); 1163 child_psr->ss = 0; 1164 child_psr->tb = 0; 1165 } 1166 1167 /* 1168 * Called by kernel/ptrace.c when detaching.. 1169 * 1170 * Make sure the single step bit is not set. 1171 */ 1172 void 1173 ptrace_disable (struct task_struct *child) 1174 { 1175 user_disable_single_step(child); 1176 } 1177 1178 long 1179 arch_ptrace (struct task_struct *child, long request, 1180 unsigned long addr, unsigned long data) 1181 { 1182 switch (request) { 1183 case PTRACE_PEEKTEXT: 1184 case PTRACE_PEEKDATA: 1185 /* read word at location addr */ 1186 if (access_process_vm(child, addr, &data, sizeof(data), 0) 1187 != sizeof(data)) 1188 return -EIO; 1189 /* ensure return value is not mistaken for error code */ 1190 force_successful_syscall_return(); 1191 return data; 1192 1193 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled 1194 * by the generic ptrace_request(). 1195 */ 1196 1197 case PTRACE_PEEKUSR: 1198 /* read the word at addr in the USER area */ 1199 if (access_uarea(child, addr, &data, 0) < 0) 1200 return -EIO; 1201 /* ensure return value is not mistaken for error code */ 1202 force_successful_syscall_return(); 1203 return data; 1204 1205 case PTRACE_POKEUSR: 1206 /* write the word at addr in the USER area */ 1207 if (access_uarea(child, addr, &data, 1) < 0) 1208 return -EIO; 1209 return 0; 1210 1211 case PTRACE_OLD_GETSIGINFO: 1212 /* for backwards-compatibility */ 1213 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data); 1214 1215 case PTRACE_OLD_SETSIGINFO: 1216 /* for backwards-compatibility */ 1217 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data); 1218 1219 case PTRACE_GETREGS: 1220 return ptrace_getregs(child, 1221 (struct pt_all_user_regs __user *) data); 1222 1223 case PTRACE_SETREGS: 1224 return ptrace_setregs(child, 1225 (struct pt_all_user_regs __user *) data); 1226 1227 default: 1228 return ptrace_request(child, request, addr, data); 1229 } 1230 } 1231 1232 1233 /* "asmlinkage" so the input arguments are preserved... */ 1234 1235 asmlinkage long 1236 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, 1237 long arg4, long arg5, long arg6, long arg7, 1238 struct pt_regs regs) 1239 { 1240 if (test_thread_flag(TIF_SYSCALL_TRACE)) 1241 if (tracehook_report_syscall_entry(®s)) 1242 return -ENOSYS; 1243 1244 /* copy user rbs to kernel rbs */ 1245 if (test_thread_flag(TIF_RESTORE_RSE)) 1246 ia64_sync_krbs(); 1247 1248 1249 audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3); 1250 1251 return 0; 1252 } 1253 1254 /* "asmlinkage" so the input arguments are preserved... */ 1255 1256 asmlinkage void 1257 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, 1258 long arg4, long arg5, long arg6, long arg7, 1259 struct pt_regs regs) 1260 { 1261 int step; 1262 1263 audit_syscall_exit(®s); 1264 1265 step = test_thread_flag(TIF_SINGLESTEP); 1266 if (step || test_thread_flag(TIF_SYSCALL_TRACE)) 1267 tracehook_report_syscall_exit(®s, step); 1268 1269 /* copy user rbs to kernel rbs */ 1270 if (test_thread_flag(TIF_RESTORE_RSE)) 1271 ia64_sync_krbs(); 1272 } 1273 1274 /* Utrace implementation starts here */ 1275 struct regset_get { 1276 void *kbuf; 1277 void __user *ubuf; 1278 }; 1279 1280 struct regset_set { 1281 const void *kbuf; 1282 const void __user *ubuf; 1283 }; 1284 1285 struct regset_getset { 1286 struct task_struct *target; 1287 const struct user_regset *regset; 1288 union { 1289 struct regset_get get; 1290 struct regset_set set; 1291 } u; 1292 unsigned int pos; 1293 unsigned int count; 1294 int ret; 1295 }; 1296 1297 static int 1298 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info, 1299 unsigned long addr, unsigned long *data, int write_access) 1300 { 1301 struct pt_regs *pt; 1302 unsigned long *ptr = NULL; 1303 int ret; 1304 char nat = 0; 1305 1306 pt = task_pt_regs(target); 1307 switch (addr) { 1308 case ELF_GR_OFFSET(1): 1309 ptr = &pt->r1; 1310 break; 1311 case ELF_GR_OFFSET(2): 1312 case ELF_GR_OFFSET(3): 1313 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2)); 1314 break; 1315 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7): 1316 if (write_access) { 1317 /* read NaT bit first: */ 1318 unsigned long dummy; 1319 1320 ret = unw_get_gr(info, addr/8, &dummy, &nat); 1321 if (ret < 0) 1322 return ret; 1323 } 1324 return unw_access_gr(info, addr/8, data, &nat, write_access); 1325 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11): 1326 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8); 1327 break; 1328 case ELF_GR_OFFSET(12): 1329 case ELF_GR_OFFSET(13): 1330 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12); 1331 break; 1332 case ELF_GR_OFFSET(14): 1333 ptr = &pt->r14; 1334 break; 1335 case ELF_GR_OFFSET(15): 1336 ptr = &pt->r15; 1337 } 1338 if (write_access) 1339 *ptr = *data; 1340 else 1341 *data = *ptr; 1342 return 0; 1343 } 1344 1345 static int 1346 access_elf_breg(struct task_struct *target, struct unw_frame_info *info, 1347 unsigned long addr, unsigned long *data, int write_access) 1348 { 1349 struct pt_regs *pt; 1350 unsigned long *ptr = NULL; 1351 1352 pt = task_pt_regs(target); 1353 switch (addr) { 1354 case ELF_BR_OFFSET(0): 1355 ptr = &pt->b0; 1356 break; 1357 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5): 1358 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8, 1359 data, write_access); 1360 case ELF_BR_OFFSET(6): 1361 ptr = &pt->b6; 1362 break; 1363 case ELF_BR_OFFSET(7): 1364 ptr = &pt->b7; 1365 } 1366 if (write_access) 1367 *ptr = *data; 1368 else 1369 *data = *ptr; 1370 return 0; 1371 } 1372 1373 static int 1374 access_elf_areg(struct task_struct *target, struct unw_frame_info *info, 1375 unsigned long addr, unsigned long *data, int write_access) 1376 { 1377 struct pt_regs *pt; 1378 unsigned long cfm, urbs_end; 1379 unsigned long *ptr = NULL; 1380 1381 pt = task_pt_regs(target); 1382 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) { 1383 switch (addr) { 1384 case ELF_AR_RSC_OFFSET: 1385 /* force PL3 */ 1386 if (write_access) 1387 pt->ar_rsc = *data | (3 << 2); 1388 else 1389 *data = pt->ar_rsc; 1390 return 0; 1391 case ELF_AR_BSP_OFFSET: 1392 /* 1393 * By convention, we use PT_AR_BSP to refer to 1394 * the end of the user-level backing store. 1395 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) 1396 * to get the real value of ar.bsp at the time 1397 * the kernel was entered. 1398 * 1399 * Furthermore, when changing the contents of 1400 * PT_AR_BSP (or PT_CFM) while the task is 1401 * blocked in a system call, convert the state 1402 * so that the non-system-call exit 1403 * path is used. This ensures that the proper 1404 * state will be picked up when resuming 1405 * execution. However, it *also* means that 1406 * once we write PT_AR_BSP/PT_CFM, it won't be 1407 * possible to modify the syscall arguments of 1408 * the pending system call any longer. This 1409 * shouldn't be an issue because modifying 1410 * PT_AR_BSP/PT_CFM generally implies that 1411 * we're either abandoning the pending system 1412 * call or that we defer it's re-execution 1413 * (e.g., due to GDB doing an inferior 1414 * function call). 1415 */ 1416 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1417 if (write_access) { 1418 if (*data != urbs_end) { 1419 if (in_syscall(pt)) 1420 convert_to_non_syscall(target, 1421 pt, 1422 cfm); 1423 /* 1424 * Simulate user-level write 1425 * of ar.bsp: 1426 */ 1427 pt->loadrs = 0; 1428 pt->ar_bspstore = *data; 1429 } 1430 } else 1431 *data = urbs_end; 1432 return 0; 1433 case ELF_AR_BSPSTORE_OFFSET: 1434 ptr = &pt->ar_bspstore; 1435 break; 1436 case ELF_AR_RNAT_OFFSET: 1437 ptr = &pt->ar_rnat; 1438 break; 1439 case ELF_AR_CCV_OFFSET: 1440 ptr = &pt->ar_ccv; 1441 break; 1442 case ELF_AR_UNAT_OFFSET: 1443 ptr = &pt->ar_unat; 1444 break; 1445 case ELF_AR_FPSR_OFFSET: 1446 ptr = &pt->ar_fpsr; 1447 break; 1448 case ELF_AR_PFS_OFFSET: 1449 ptr = &pt->ar_pfs; 1450 break; 1451 case ELF_AR_LC_OFFSET: 1452 return unw_access_ar(info, UNW_AR_LC, data, 1453 write_access); 1454 case ELF_AR_EC_OFFSET: 1455 return unw_access_ar(info, UNW_AR_EC, data, 1456 write_access); 1457 case ELF_AR_CSD_OFFSET: 1458 ptr = &pt->ar_csd; 1459 break; 1460 case ELF_AR_SSD_OFFSET: 1461 ptr = &pt->ar_ssd; 1462 } 1463 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) { 1464 switch (addr) { 1465 case ELF_CR_IIP_OFFSET: 1466 ptr = &pt->cr_iip; 1467 break; 1468 case ELF_CFM_OFFSET: 1469 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm); 1470 if (write_access) { 1471 if (((cfm ^ *data) & PFM_MASK) != 0) { 1472 if (in_syscall(pt)) 1473 convert_to_non_syscall(target, 1474 pt, 1475 cfm); 1476 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) 1477 | (*data & PFM_MASK)); 1478 } 1479 } else 1480 *data = cfm; 1481 return 0; 1482 case ELF_CR_IPSR_OFFSET: 1483 if (write_access) { 1484 unsigned long tmp = *data; 1485 /* psr.ri==3 is a reserved value: SDM 2:25 */ 1486 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) 1487 tmp &= ~IA64_PSR_RI; 1488 pt->cr_ipsr = ((tmp & IPSR_MASK) 1489 | (pt->cr_ipsr & ~IPSR_MASK)); 1490 } else 1491 *data = (pt->cr_ipsr & IPSR_MASK); 1492 return 0; 1493 } 1494 } else if (addr == ELF_NAT_OFFSET) 1495 return access_nat_bits(target, pt, info, 1496 data, write_access); 1497 else if (addr == ELF_PR_OFFSET) 1498 ptr = &pt->pr; 1499 else 1500 return -1; 1501 1502 if (write_access) 1503 *ptr = *data; 1504 else 1505 *data = *ptr; 1506 1507 return 0; 1508 } 1509 1510 static int 1511 access_elf_reg(struct task_struct *target, struct unw_frame_info *info, 1512 unsigned long addr, unsigned long *data, int write_access) 1513 { 1514 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15)) 1515 return access_elf_gpreg(target, info, addr, data, write_access); 1516 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7)) 1517 return access_elf_breg(target, info, addr, data, write_access); 1518 else 1519 return access_elf_areg(target, info, addr, data, write_access); 1520 } 1521 1522 void do_gpregs_get(struct unw_frame_info *info, void *arg) 1523 { 1524 struct pt_regs *pt; 1525 struct regset_getset *dst = arg; 1526 elf_greg_t tmp[16]; 1527 unsigned int i, index, min_copy; 1528 1529 if (unw_unwind_to_user(info) < 0) 1530 return; 1531 1532 /* 1533 * coredump format: 1534 * r0-r31 1535 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 1536 * predicate registers (p0-p63) 1537 * b0-b7 1538 * ip cfm user-mask 1539 * ar.rsc ar.bsp ar.bspstore ar.rnat 1540 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 1541 */ 1542 1543 1544 /* Skip r0 */ 1545 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1546 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1547 &dst->u.get.kbuf, 1548 &dst->u.get.ubuf, 1549 0, ELF_GR_OFFSET(1)); 1550 if (dst->ret || dst->count == 0) 1551 return; 1552 } 1553 1554 /* gr1 - gr15 */ 1555 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1556 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1557 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ? 1558 (dst->pos + dst->count) : ELF_GR_OFFSET(16); 1559 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1560 index++) 1561 if (access_elf_reg(dst->target, info, i, 1562 &tmp[index], 0) < 0) { 1563 dst->ret = -EIO; 1564 return; 1565 } 1566 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1567 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1568 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1569 if (dst->ret || dst->count == 0) 1570 return; 1571 } 1572 1573 /* r16-r31 */ 1574 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1575 pt = task_pt_regs(dst->target); 1576 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1577 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16, 1578 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1579 if (dst->ret || dst->count == 0) 1580 return; 1581 } 1582 1583 /* nat, pr, b0 - b7 */ 1584 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1585 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1586 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ? 1587 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET; 1588 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1589 index++) 1590 if (access_elf_reg(dst->target, info, i, 1591 &tmp[index], 0) < 0) { 1592 dst->ret = -EIO; 1593 return; 1594 } 1595 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1596 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1597 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1598 if (dst->ret || dst->count == 0) 1599 return; 1600 } 1601 1602 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1603 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1604 */ 1605 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1606 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1607 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ? 1608 (dst->pos + dst->count) : ELF_AR_END_OFFSET; 1609 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t), 1610 index++) 1611 if (access_elf_reg(dst->target, info, i, 1612 &tmp[index], 0) < 0) { 1613 dst->ret = -EIO; 1614 return; 1615 } 1616 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1617 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1618 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1619 } 1620 } 1621 1622 void do_gpregs_set(struct unw_frame_info *info, void *arg) 1623 { 1624 struct pt_regs *pt; 1625 struct regset_getset *dst = arg; 1626 elf_greg_t tmp[16]; 1627 unsigned int i, index; 1628 1629 if (unw_unwind_to_user(info) < 0) 1630 return; 1631 1632 /* Skip r0 */ 1633 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) { 1634 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1635 &dst->u.set.kbuf, 1636 &dst->u.set.ubuf, 1637 0, ELF_GR_OFFSET(1)); 1638 if (dst->ret || dst->count == 0) 1639 return; 1640 } 1641 1642 /* gr1-gr15 */ 1643 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) { 1644 i = dst->pos; 1645 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t); 1646 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1647 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1648 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16)); 1649 if (dst->ret) 1650 return; 1651 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1652 if (access_elf_reg(dst->target, info, i, 1653 &tmp[index], 1) < 0) { 1654 dst->ret = -EIO; 1655 return; 1656 } 1657 if (dst->count == 0) 1658 return; 1659 } 1660 1661 /* gr16-gr31 */ 1662 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) { 1663 pt = task_pt_regs(dst->target); 1664 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1665 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16, 1666 ELF_GR_OFFSET(16), ELF_NAT_OFFSET); 1667 if (dst->ret || dst->count == 0) 1668 return; 1669 } 1670 1671 /* nat, pr, b0 - b7 */ 1672 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) { 1673 i = dst->pos; 1674 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t); 1675 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1676 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1677 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET); 1678 if (dst->ret) 1679 return; 1680 for (; i < dst->pos; i += sizeof(elf_greg_t), index++) 1681 if (access_elf_reg(dst->target, info, i, 1682 &tmp[index], 1) < 0) { 1683 dst->ret = -EIO; 1684 return; 1685 } 1686 if (dst->count == 0) 1687 return; 1688 } 1689 1690 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat 1691 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd 1692 */ 1693 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) { 1694 i = dst->pos; 1695 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t); 1696 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1697 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1698 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET); 1699 if (dst->ret) 1700 return; 1701 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++) 1702 if (access_elf_reg(dst->target, info, i, 1703 &tmp[index], 1) < 0) { 1704 dst->ret = -EIO; 1705 return; 1706 } 1707 } 1708 } 1709 1710 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t)) 1711 1712 void do_fpregs_get(struct unw_frame_info *info, void *arg) 1713 { 1714 struct regset_getset *dst = arg; 1715 struct task_struct *task = dst->target; 1716 elf_fpreg_t tmp[30]; 1717 int index, min_copy, i; 1718 1719 if (unw_unwind_to_user(info) < 0) 1720 return; 1721 1722 /* Skip pos 0 and 1 */ 1723 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1724 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count, 1725 &dst->u.get.kbuf, 1726 &dst->u.get.ubuf, 1727 0, ELF_FP_OFFSET(2)); 1728 if (dst->count == 0 || dst->ret) 1729 return; 1730 } 1731 1732 /* fr2-fr31 */ 1733 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1734 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t); 1735 1736 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)), 1737 dst->pos + dst->count); 1738 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t), 1739 index++) 1740 if (unw_get_fr(info, i / sizeof(elf_fpreg_t), 1741 &tmp[index])) { 1742 dst->ret = -EIO; 1743 return; 1744 } 1745 dst->ret = user_regset_copyout(&dst->pos, &dst->count, 1746 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp, 1747 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1748 if (dst->count == 0 || dst->ret) 1749 return; 1750 } 1751 1752 /* fph */ 1753 if (dst->count > 0) { 1754 ia64_flush_fph(dst->target); 1755 if (task->thread.flags & IA64_THREAD_FPH_VALID) 1756 dst->ret = user_regset_copyout( 1757 &dst->pos, &dst->count, 1758 &dst->u.get.kbuf, &dst->u.get.ubuf, 1759 &dst->target->thread.fph, 1760 ELF_FP_OFFSET(32), -1); 1761 else 1762 /* Zero fill instead. */ 1763 dst->ret = user_regset_copyout_zero( 1764 &dst->pos, &dst->count, 1765 &dst->u.get.kbuf, &dst->u.get.ubuf, 1766 ELF_FP_OFFSET(32), -1); 1767 } 1768 } 1769 1770 void do_fpregs_set(struct unw_frame_info *info, void *arg) 1771 { 1772 struct regset_getset *dst = arg; 1773 elf_fpreg_t fpreg, tmp[30]; 1774 int index, start, end; 1775 1776 if (unw_unwind_to_user(info) < 0) 1777 return; 1778 1779 /* Skip pos 0 and 1 */ 1780 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) { 1781 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count, 1782 &dst->u.set.kbuf, 1783 &dst->u.set.ubuf, 1784 0, ELF_FP_OFFSET(2)); 1785 if (dst->count == 0 || dst->ret) 1786 return; 1787 } 1788 1789 /* fr2-fr31 */ 1790 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) { 1791 start = dst->pos; 1792 end = min(((unsigned int)ELF_FP_OFFSET(32)), 1793 dst->pos + dst->count); 1794 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1795 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp, 1796 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32)); 1797 if (dst->ret) 1798 return; 1799 1800 if (start & 0xF) { /* only write high part */ 1801 if (unw_get_fr(info, start / sizeof(elf_fpreg_t), 1802 &fpreg)) { 1803 dst->ret = -EIO; 1804 return; 1805 } 1806 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0] 1807 = fpreg.u.bits[0]; 1808 start &= ~0xFUL; 1809 } 1810 if (end & 0xF) { /* only write low part */ 1811 if (unw_get_fr(info, end / sizeof(elf_fpreg_t), 1812 &fpreg)) { 1813 dst->ret = -EIO; 1814 return; 1815 } 1816 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1] 1817 = fpreg.u.bits[1]; 1818 end = (end + 0xF) & ~0xFUL; 1819 } 1820 1821 for ( ; start < end ; start += sizeof(elf_fpreg_t)) { 1822 index = start / sizeof(elf_fpreg_t); 1823 if (unw_set_fr(info, index, tmp[index - 2])) { 1824 dst->ret = -EIO; 1825 return; 1826 } 1827 } 1828 if (dst->ret || dst->count == 0) 1829 return; 1830 } 1831 1832 /* fph */ 1833 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) { 1834 ia64_sync_fph(dst->target); 1835 dst->ret = user_regset_copyin(&dst->pos, &dst->count, 1836 &dst->u.set.kbuf, 1837 &dst->u.set.ubuf, 1838 &dst->target->thread.fph, 1839 ELF_FP_OFFSET(32), -1); 1840 } 1841 } 1842 1843 static int 1844 do_regset_call(void (*call)(struct unw_frame_info *, void *), 1845 struct task_struct *target, 1846 const struct user_regset *regset, 1847 unsigned int pos, unsigned int count, 1848 const void *kbuf, const void __user *ubuf) 1849 { 1850 struct regset_getset info = { .target = target, .regset = regset, 1851 .pos = pos, .count = count, 1852 .u.set = { .kbuf = kbuf, .ubuf = ubuf }, 1853 .ret = 0 }; 1854 1855 if (target == current) 1856 unw_init_running(call, &info); 1857 else { 1858 struct unw_frame_info ufi; 1859 memset(&ufi, 0, sizeof(ufi)); 1860 unw_init_from_blocked_task(&ufi, target); 1861 (*call)(&ufi, &info); 1862 } 1863 1864 return info.ret; 1865 } 1866 1867 static int 1868 gpregs_get(struct task_struct *target, 1869 const struct user_regset *regset, 1870 unsigned int pos, unsigned int count, 1871 void *kbuf, void __user *ubuf) 1872 { 1873 return do_regset_call(do_gpregs_get, target, regset, pos, count, 1874 kbuf, ubuf); 1875 } 1876 1877 static int gpregs_set(struct task_struct *target, 1878 const struct user_regset *regset, 1879 unsigned int pos, unsigned int count, 1880 const void *kbuf, const void __user *ubuf) 1881 { 1882 return do_regset_call(do_gpregs_set, target, regset, pos, count, 1883 kbuf, ubuf); 1884 } 1885 1886 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg) 1887 { 1888 do_sync_rbs(info, ia64_sync_user_rbs); 1889 } 1890 1891 /* 1892 * This is called to write back the register backing store. 1893 * ptrace does this before it stops, so that a tracer reading the user 1894 * memory after the thread stops will get the current register data. 1895 */ 1896 static int 1897 gpregs_writeback(struct task_struct *target, 1898 const struct user_regset *regset, 1899 int now) 1900 { 1901 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE)) 1902 return 0; 1903 set_notify_resume(target); 1904 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0, 1905 NULL, NULL); 1906 } 1907 1908 static int 1909 fpregs_active(struct task_struct *target, const struct user_regset *regset) 1910 { 1911 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32; 1912 } 1913 1914 static int fpregs_get(struct task_struct *target, 1915 const struct user_regset *regset, 1916 unsigned int pos, unsigned int count, 1917 void *kbuf, void __user *ubuf) 1918 { 1919 return do_regset_call(do_fpregs_get, target, regset, pos, count, 1920 kbuf, ubuf); 1921 } 1922 1923 static int fpregs_set(struct task_struct *target, 1924 const struct user_regset *regset, 1925 unsigned int pos, unsigned int count, 1926 const void *kbuf, const void __user *ubuf) 1927 { 1928 return do_regset_call(do_fpregs_set, target, regset, pos, count, 1929 kbuf, ubuf); 1930 } 1931 1932 static int 1933 access_uarea(struct task_struct *child, unsigned long addr, 1934 unsigned long *data, int write_access) 1935 { 1936 unsigned int pos = -1; /* an invalid value */ 1937 int ret; 1938 unsigned long *ptr, regnum; 1939 1940 if ((addr & 0x7) != 0) { 1941 dprintk("ptrace: unaligned register address 0x%lx\n", addr); 1942 return -1; 1943 } 1944 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) || 1945 (addr >= PT_R7 + 8 && addr < PT_B1) || 1946 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) || 1947 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) { 1948 dprintk("ptrace: rejecting access to register " 1949 "address 0x%lx\n", addr); 1950 return -1; 1951 } 1952 1953 switch (addr) { 1954 case PT_F32 ... (PT_F127 + 15): 1955 pos = addr - PT_F32 + ELF_FP_OFFSET(32); 1956 break; 1957 case PT_F2 ... (PT_F5 + 15): 1958 pos = addr - PT_F2 + ELF_FP_OFFSET(2); 1959 break; 1960 case PT_F10 ... (PT_F31 + 15): 1961 pos = addr - PT_F10 + ELF_FP_OFFSET(10); 1962 break; 1963 case PT_F6 ... (PT_F9 + 15): 1964 pos = addr - PT_F6 + ELF_FP_OFFSET(6); 1965 break; 1966 } 1967 1968 if (pos != -1) { 1969 if (write_access) 1970 ret = fpregs_set(child, NULL, pos, 1971 sizeof(unsigned long), data, NULL); 1972 else 1973 ret = fpregs_get(child, NULL, pos, 1974 sizeof(unsigned long), data, NULL); 1975 if (ret != 0) 1976 return -1; 1977 return 0; 1978 } 1979 1980 switch (addr) { 1981 case PT_NAT_BITS: 1982 pos = ELF_NAT_OFFSET; 1983 break; 1984 case PT_R4 ... PT_R7: 1985 pos = addr - PT_R4 + ELF_GR_OFFSET(4); 1986 break; 1987 case PT_B1 ... PT_B5: 1988 pos = addr - PT_B1 + ELF_BR_OFFSET(1); 1989 break; 1990 case PT_AR_EC: 1991 pos = ELF_AR_EC_OFFSET; 1992 break; 1993 case PT_AR_LC: 1994 pos = ELF_AR_LC_OFFSET; 1995 break; 1996 case PT_CR_IPSR: 1997 pos = ELF_CR_IPSR_OFFSET; 1998 break; 1999 case PT_CR_IIP: 2000 pos = ELF_CR_IIP_OFFSET; 2001 break; 2002 case PT_CFM: 2003 pos = ELF_CFM_OFFSET; 2004 break; 2005 case PT_AR_UNAT: 2006 pos = ELF_AR_UNAT_OFFSET; 2007 break; 2008 case PT_AR_PFS: 2009 pos = ELF_AR_PFS_OFFSET; 2010 break; 2011 case PT_AR_RSC: 2012 pos = ELF_AR_RSC_OFFSET; 2013 break; 2014 case PT_AR_RNAT: 2015 pos = ELF_AR_RNAT_OFFSET; 2016 break; 2017 case PT_AR_BSPSTORE: 2018 pos = ELF_AR_BSPSTORE_OFFSET; 2019 break; 2020 case PT_PR: 2021 pos = ELF_PR_OFFSET; 2022 break; 2023 case PT_B6: 2024 pos = ELF_BR_OFFSET(6); 2025 break; 2026 case PT_AR_BSP: 2027 pos = ELF_AR_BSP_OFFSET; 2028 break; 2029 case PT_R1 ... PT_R3: 2030 pos = addr - PT_R1 + ELF_GR_OFFSET(1); 2031 break; 2032 case PT_R12 ... PT_R15: 2033 pos = addr - PT_R12 + ELF_GR_OFFSET(12); 2034 break; 2035 case PT_R8 ... PT_R11: 2036 pos = addr - PT_R8 + ELF_GR_OFFSET(8); 2037 break; 2038 case PT_R16 ... PT_R31: 2039 pos = addr - PT_R16 + ELF_GR_OFFSET(16); 2040 break; 2041 case PT_AR_CCV: 2042 pos = ELF_AR_CCV_OFFSET; 2043 break; 2044 case PT_AR_FPSR: 2045 pos = ELF_AR_FPSR_OFFSET; 2046 break; 2047 case PT_B0: 2048 pos = ELF_BR_OFFSET(0); 2049 break; 2050 case PT_B7: 2051 pos = ELF_BR_OFFSET(7); 2052 break; 2053 case PT_AR_CSD: 2054 pos = ELF_AR_CSD_OFFSET; 2055 break; 2056 case PT_AR_SSD: 2057 pos = ELF_AR_SSD_OFFSET; 2058 break; 2059 } 2060 2061 if (pos != -1) { 2062 if (write_access) 2063 ret = gpregs_set(child, NULL, pos, 2064 sizeof(unsigned long), data, NULL); 2065 else 2066 ret = gpregs_get(child, NULL, pos, 2067 sizeof(unsigned long), data, NULL); 2068 if (ret != 0) 2069 return -1; 2070 return 0; 2071 } 2072 2073 /* access debug registers */ 2074 if (addr >= PT_IBR) { 2075 regnum = (addr - PT_IBR) >> 3; 2076 ptr = &child->thread.ibr[0]; 2077 } else { 2078 regnum = (addr - PT_DBR) >> 3; 2079 ptr = &child->thread.dbr[0]; 2080 } 2081 2082 if (regnum >= 8) { 2083 dprintk("ptrace: rejecting access to register " 2084 "address 0x%lx\n", addr); 2085 return -1; 2086 } 2087 #ifdef CONFIG_PERFMON 2088 /* 2089 * Check if debug registers are used by perfmon. This 2090 * test must be done once we know that we can do the 2091 * operation, i.e. the arguments are all valid, but 2092 * before we start modifying the state. 2093 * 2094 * Perfmon needs to keep a count of how many processes 2095 * are trying to modify the debug registers for system 2096 * wide monitoring sessions. 2097 * 2098 * We also include read access here, because they may 2099 * cause the PMU-installed debug register state 2100 * (dbr[], ibr[]) to be reset. The two arrays are also 2101 * used by perfmon, but we do not use 2102 * IA64_THREAD_DBG_VALID. The registers are restored 2103 * by the PMU context switch code. 2104 */ 2105 if (pfm_use_debug_registers(child)) 2106 return -1; 2107 #endif 2108 2109 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { 2110 child->thread.flags |= IA64_THREAD_DBG_VALID; 2111 memset(child->thread.dbr, 0, 2112 sizeof(child->thread.dbr)); 2113 memset(child->thread.ibr, 0, 2114 sizeof(child->thread.ibr)); 2115 } 2116 2117 ptr += regnum; 2118 2119 if ((regnum & 1) && write_access) { 2120 /* don't let the user set kernel-level breakpoints: */ 2121 *ptr = *data & ~(7UL << 56); 2122 return 0; 2123 } 2124 if (write_access) 2125 *ptr = *data; 2126 else 2127 *data = *ptr; 2128 return 0; 2129 } 2130 2131 static const struct user_regset native_regsets[] = { 2132 { 2133 .core_note_type = NT_PRSTATUS, 2134 .n = ELF_NGREG, 2135 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t), 2136 .get = gpregs_get, .set = gpregs_set, 2137 .writeback = gpregs_writeback 2138 }, 2139 { 2140 .core_note_type = NT_PRFPREG, 2141 .n = ELF_NFPREG, 2142 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), 2143 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active 2144 }, 2145 }; 2146 2147 static const struct user_regset_view user_ia64_view = { 2148 .name = "ia64", 2149 .e_machine = EM_IA_64, 2150 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets) 2151 }; 2152 2153 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk) 2154 { 2155 return &user_ia64_view; 2156 } 2157 2158 struct syscall_get_set_args { 2159 unsigned int i; 2160 unsigned int n; 2161 unsigned long *args; 2162 struct pt_regs *regs; 2163 int rw; 2164 }; 2165 2166 static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data) 2167 { 2168 struct syscall_get_set_args *args = data; 2169 struct pt_regs *pt = args->regs; 2170 unsigned long *krbs, cfm, ndirty; 2171 int i, count; 2172 2173 if (unw_unwind_to_user(info) < 0) 2174 return; 2175 2176 cfm = pt->cr_ifs; 2177 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8; 2178 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); 2179 2180 count = 0; 2181 if (in_syscall(pt)) 2182 count = min_t(int, args->n, cfm & 0x7f); 2183 2184 for (i = 0; i < count; i++) { 2185 if (args->rw) 2186 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) = 2187 args->args[i]; 2188 else 2189 args->args[i] = *ia64_rse_skip_regs(krbs, 2190 ndirty + i + args->i); 2191 } 2192 2193 if (!args->rw) { 2194 while (i < args->n) { 2195 args->args[i] = 0; 2196 i++; 2197 } 2198 } 2199 } 2200 2201 void ia64_syscall_get_set_arguments(struct task_struct *task, 2202 struct pt_regs *regs, unsigned int i, unsigned int n, 2203 unsigned long *args, int rw) 2204 { 2205 struct syscall_get_set_args data = { 2206 .i = i, 2207 .n = n, 2208 .args = args, 2209 .regs = regs, 2210 .rw = rw, 2211 }; 2212 2213 if (task == current) 2214 unw_init_running(syscall_get_set_args_cb, &data); 2215 else { 2216 struct unw_frame_info ufi; 2217 memset(&ufi, 0, sizeof(ufi)); 2218 unw_init_from_blocked_task(&ufi, task); 2219 syscall_get_set_args_cb(&ufi, &data); 2220 } 2221 } 2222