1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/mm.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/security.h>
22 #include <linux/audit.h>
23 #include <linux/signal.h>
24 #include <linux/regset.h>
25 #include <linux/elf.h>
26 #include <linux/resume_user_mode.h>
27
28 #include <asm/processor.h>
29 #include <asm/ptrace_offsets.h>
30 #include <asm/rse.h>
31 #include <linux/uaccess.h>
32 #include <asm/unwind.h>
33
34 #include "entry.h"
35
36 /*
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
44 */
45 #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47
48 #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49 #define PFM_MASK MASK(38)
50
51 #define PTRACE_DEBUG 0
52
53 #if PTRACE_DEBUG
54 # define dprintk(format...) printk(format)
55 # define inline
56 #else
57 # define dprintk(format...)
58 #endif
59
60 /* Return TRUE if PT was created due to kernel-entry via a system-call. */
61
62 static inline int
in_syscall(struct pt_regs * pt)63 in_syscall (struct pt_regs *pt)
64 {
65 return (long) pt->cr_ifs >= 0;
66 }
67
68 /*
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
71 */
72 unsigned long
ia64_get_scratch_nat_bits(struct pt_regs * pt,unsigned long scratch_unat)73 ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74 {
75 # define GET_BITS(first, last, unat) \
76 ({ \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
80 unsigned long dist; \
81 if (bit < first) \
82 dist = 64 + bit - first; \
83 else \
84 dist = bit - first; \
85 ia64_rotr(unat, dist) & mask; \
86 })
87 unsigned long val;
88
89 /*
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
93 */
94 val = GET_BITS( 1, 1, scratch_unat);
95 val |= GET_BITS( 2, 3, scratch_unat);
96 val |= GET_BITS(12, 13, scratch_unat);
97 val |= GET_BITS(14, 14, scratch_unat);
98 val |= GET_BITS(15, 15, scratch_unat);
99 val |= GET_BITS( 8, 11, scratch_unat);
100 val |= GET_BITS(16, 31, scratch_unat);
101 return val;
102
103 # undef GET_BITS
104 }
105
106 /*
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
109 * stored in PT).
110 */
111 unsigned long
ia64_put_scratch_nat_bits(struct pt_regs * pt,unsigned long nat)112 ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113 {
114 # define PUT_BITS(first, last, nat) \
115 ({ \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
119 long dist; \
120 if (bit < first) \
121 dist = 64 + bit - first; \
122 else \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
125 })
126 unsigned long scratch_unat;
127
128 /*
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
132 */
133 scratch_unat = PUT_BITS( 1, 1, nat);
134 scratch_unat |= PUT_BITS( 2, 3, nat);
135 scratch_unat |= PUT_BITS(12, 13, nat);
136 scratch_unat |= PUT_BITS(14, 14, nat);
137 scratch_unat |= PUT_BITS(15, 15, nat);
138 scratch_unat |= PUT_BITS( 8, 11, nat);
139 scratch_unat |= PUT_BITS(16, 31, nat);
140
141 return scratch_unat;
142
143 # undef PUT_BITS
144 }
145
146 #define IA64_MLX_TEMPLATE 0x2
147 #define IA64_MOVL_OPCODE 6
148
149 void
ia64_increment_ip(struct pt_regs * regs)150 ia64_increment_ip (struct pt_regs *regs)
151 {
152 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153
154 if (ri > 2) {
155 ri = 0;
156 regs->cr_iip += 16;
157 } else if (ri == 2) {
158 get_user(w0, (char __user *) regs->cr_iip + 0);
159 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 /*
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
163 * that to happen...
164 */
165 ri = 0;
166 regs->cr_iip += 16;
167 }
168 }
169 ia64_psr(regs)->ri = ri;
170 }
171
172 void
ia64_decrement_ip(struct pt_regs * regs)173 ia64_decrement_ip (struct pt_regs *regs)
174 {
175 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176
177 if (ia64_psr(regs)->ri == 0) {
178 regs->cr_iip -= 16;
179 ri = 2;
180 get_user(w0, (char __user *) regs->cr_iip + 0);
181 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 /*
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
185 * that to happen...
186 */
187 ri = 1;
188 }
189 }
190 ia64_psr(regs)->ri = ri;
191 }
192
193 /*
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
199 * pt_regs.
200 *
201 * user rbs
202 *
203 * +--------+ <-- lowest address
204 * | slot62 |
205 * +--------+
206 * | rnat | 0x....1f8
207 * +--------+
208 * | slot00 | \
209 * +--------+ |
210 * | slot01 | > child_regs->ar_rnat
211 * +--------+ |
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
216 * | slot62 |
217 * +- - - - + +--------+
218 * | rnat |
219 * +- - - - + +--------+
220 * vrnat | slot00 |
221 * +- - - - + +--------+
222 * = =
223 * +--------+
224 * | slot00 | \
225 * +--------+ |
226 * | slot01 | > child_stack->ar_rnat
227 * +--------+ |
228 * | slot02 | /
229 * +--------+
230 * <--- child_stack->ar_bspstore
231 *
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
237 *
238 * Boundary cases:
239 *
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
243 *
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246 */
247 static unsigned long
get_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long * urbs_end)248 get_rnat (struct task_struct *task, struct switch_stack *sw,
249 unsigned long *krbs, unsigned long *urnat_addr,
250 unsigned long *urbs_end)
251 {
252 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 unsigned long umask = 0, mask, m;
254 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 long num_regs, nbits;
256 struct pt_regs *pt;
257
258 pt = task_pt_regs(task);
259 kbsp = (unsigned long *) sw->ar_bspstore;
260 ubspstore = (unsigned long *) pt->ar_bspstore;
261
262 if (urbs_end < urnat_addr)
263 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 else
265 nbits = 63;
266 mask = MASK(nbits);
267 /*
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
272 */
273 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 shift = ia64_rse_slot_num(slot0_kaddr);
276 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 rnat0_kaddr = rnat1_kaddr - 64;
278
279 if (ubspstore + 63 > urnat_addr) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 urnat = (pt->ar_rnat & umask);
283 mask &= ~umask;
284 if (!mask)
285 return urnat;
286 }
287
288 m = mask << shift;
289 if (rnat0_kaddr >= kbsp)
290 rnat0 = sw->ar_rnat;
291 else if (rnat0_kaddr > krbs)
292 rnat0 = *rnat0_kaddr;
293 urnat |= (rnat0 & m) >> shift;
294
295 m = mask >> (63 - shift);
296 if (rnat1_kaddr >= kbsp)
297 rnat1 = sw->ar_rnat;
298 else if (rnat1_kaddr > krbs)
299 rnat1 = *rnat1_kaddr;
300 urnat |= (rnat1 & m) << (63 - shift);
301 return urnat;
302 }
303
304 /*
305 * The reverse of get_rnat.
306 */
307 static void
put_rnat(struct task_struct * task,struct switch_stack * sw,unsigned long * krbs,unsigned long * urnat_addr,unsigned long urnat,unsigned long * urbs_end)308 put_rnat (struct task_struct *task, struct switch_stack *sw,
309 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 unsigned long *urbs_end)
311 {
312 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 long num_regs, nbits;
315 struct pt_regs *pt;
316 unsigned long cfm, *urbs_kargs;
317
318 pt = task_pt_regs(task);
319 kbsp = (unsigned long *) sw->ar_bspstore;
320 ubspstore = (unsigned long *) pt->ar_bspstore;
321
322 urbs_kargs = urbs_end;
323 if (in_syscall(pt)) {
324 /*
325 * If entered via syscall, don't allow user to set rnat bits
326 * for syscall args.
327 */
328 cfm = pt->cr_ifs;
329 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 }
331
332 if (urbs_kargs >= urnat_addr)
333 nbits = 63;
334 else {
335 if ((urnat_addr - 63) >= urbs_kargs)
336 return;
337 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 }
339 mask = MASK(nbits);
340
341 /*
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
346 */
347 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 shift = ia64_rse_slot_num(slot0_kaddr);
350 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 rnat0_kaddr = rnat1_kaddr - 64;
352
353 if (ubspstore + 63 > urnat_addr) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 mask &= ~umask;
358 if (!mask)
359 return;
360 }
361 /*
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
364 */
365 rnat0 = (urnat << shift);
366 m = mask << shift;
367 if (rnat0_kaddr >= kbsp)
368 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 else if (rnat0_kaddr > krbs)
370 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371
372 rnat1 = (urnat >> (63 - shift));
373 m = mask >> (63 - shift);
374 if (rnat1_kaddr >= kbsp)
375 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 else if (rnat1_kaddr > krbs)
377 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378 }
379
380 static inline int
on_kernel_rbs(unsigned long addr,unsigned long bspstore,unsigned long urbs_end)381 on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 unsigned long urbs_end)
383 {
384 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 urbs_end);
386 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387 }
388
389 /*
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
395 *
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
399 */
400 long
ia64_peek(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long * val)401 ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 unsigned long user_rbs_end, unsigned long addr, long *val)
403 {
404 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 struct pt_regs *child_regs;
406 size_t copied;
407 long ret;
408
409 urbs_end = (long *) user_rbs_end;
410 laddr = (unsigned long *) addr;
411 child_regs = task_pt_regs(child);
412 bspstore = (unsigned long *) child_regs->ar_bspstore;
413 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 (unsigned long) urbs_end))
416 {
417 /*
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
420 * the kernel RBS.
421 */
422 rnat_addr = ia64_rse_rnat_addr(laddr);
423 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424
425 if (laddr == rnat_addr) {
426 /* return NaT collection word itself */
427 *val = ret;
428 return 0;
429 }
430
431 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 /*
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
439 * this case.
440 */
441 *val = 0;
442 return 0;
443 }
444
445 if (laddr < urbs_end) {
446 /*
447 * The desired word is on the kernel RBS and
448 * is not a NaT.
449 */
450 regnum = ia64_rse_num_regs(bspstore, laddr);
451 *val = *ia64_rse_skip_regs(krbs, regnum);
452 return 0;
453 }
454 }
455 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 if (copied != sizeof(ret))
457 return -EIO;
458 *val = ret;
459 return 0;
460 }
461
462 long
ia64_poke(struct task_struct * child,struct switch_stack * child_stack,unsigned long user_rbs_end,unsigned long addr,long val)463 ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 unsigned long user_rbs_end, unsigned long addr, long val)
465 {
466 unsigned long *bspstore, *krbs, regnum, *laddr;
467 unsigned long *urbs_end = (long *) user_rbs_end;
468 struct pt_regs *child_regs;
469
470 laddr = (unsigned long *) addr;
471 child_regs = task_pt_regs(child);
472 bspstore = (unsigned long *) child_regs->ar_bspstore;
473 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 (unsigned long) urbs_end))
476 {
477 /*
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
480 * in the kernel RBS.
481 */
482 if (ia64_rse_is_rnat_slot(laddr))
483 put_rnat(child, child_stack, krbs, laddr, val,
484 urbs_end);
485 else {
486 if (laddr < urbs_end) {
487 regnum = ia64_rse_num_regs(bspstore, laddr);
488 *ia64_rse_skip_regs(krbs, regnum) = val;
489 }
490 }
491 } else if (access_process_vm(child, addr, &val, sizeof(val),
492 FOLL_FORCE | FOLL_WRITE)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496 }
497
498 /*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506 unsigned long
ia64_get_user_rbs_end(struct task_struct * child,struct pt_regs * pt,unsigned long * cfmp)507 ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509 {
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525 }
526
527 /*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534 long
ia64_sync_user_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)535 ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537 {
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val),
547 FOLL_FORCE | FOLL_WRITE)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552 }
553
554 static long
ia64_sync_kernel_rbs(struct task_struct * child,struct switch_stack * sw,unsigned long user_rbs_start,unsigned long user_rbs_end)555 ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557 {
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val),
564 FOLL_FORCE)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573 }
574
575 typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
do_sync_rbs(struct unw_frame_info * info,void * arg)578 static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579 {
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590 }
591
592 /*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
ia64_ptrace_stop(void)602 void ia64_ptrace_stop(void)
603 {
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608 }
609
610 /*
611 * This is called to read back the register backing store.
612 */
ia64_sync_krbs(void)613 void ia64_sync_krbs(void)
614 {
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618 }
619
620 /*
621 * Write f32-f127 back to task->thread.fph if it has been modified.
622 */
623 inline void
ia64_flush_fph(struct task_struct * task)624 ia64_flush_fph (struct task_struct *task)
625 {
626 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
627
628 /*
629 * Prevent migrating this task while
630 * we're fiddling with the FPU state
631 */
632 preempt_disable();
633 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
634 psr->mfh = 0;
635 task->thread.flags |= IA64_THREAD_FPH_VALID;
636 ia64_save_fpu(&task->thread.fph[0]);
637 }
638 preempt_enable();
639 }
640
641 /*
642 * Sync the fph state of the task so that it can be manipulated
643 * through thread.fph. If necessary, f32-f127 are written back to
644 * thread.fph or, if the fph state hasn't been used before, thread.fph
645 * is cleared to zeroes. Also, access to f32-f127 is disabled to
646 * ensure that the task picks up the state from thread.fph when it
647 * executes again.
648 */
649 void
ia64_sync_fph(struct task_struct * task)650 ia64_sync_fph (struct task_struct *task)
651 {
652 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
653
654 ia64_flush_fph(task);
655 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
656 task->thread.flags |= IA64_THREAD_FPH_VALID;
657 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
658 }
659 ia64_drop_fpu(task);
660 psr->dfh = 1;
661 }
662
663 /*
664 * Change the machine-state of CHILD such that it will return via the normal
665 * kernel exit-path, rather than the syscall-exit path.
666 */
667 static void
convert_to_non_syscall(struct task_struct * child,struct pt_regs * pt,unsigned long cfm)668 convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
669 unsigned long cfm)
670 {
671 struct unw_frame_info info, prev_info;
672 unsigned long ip, sp, pr;
673
674 unw_init_from_blocked_task(&info, child);
675 while (1) {
676 prev_info = info;
677 if (unw_unwind(&info) < 0)
678 return;
679
680 unw_get_sp(&info, &sp);
681 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
682 < IA64_PT_REGS_SIZE) {
683 dprintk("ptrace.%s: ran off the top of the kernel "
684 "stack\n", __func__);
685 return;
686 }
687 if (unw_get_pr (&prev_info, &pr) < 0) {
688 unw_get_rp(&prev_info, &ip);
689 dprintk("ptrace.%s: failed to read "
690 "predicate register (ip=0x%lx)\n",
691 __func__, ip);
692 return;
693 }
694 if (unw_is_intr_frame(&info)
695 && (pr & (1UL << PRED_USER_STACK)))
696 break;
697 }
698
699 /*
700 * Note: at the time of this call, the target task is blocked
701 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
702 * (aka, "pLvSys") we redirect execution from
703 * .work_pending_syscall_end to .work_processed_kernel.
704 */
705 unw_get_pr(&prev_info, &pr);
706 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
707 pr |= (1UL << PRED_NON_SYSCALL);
708 unw_set_pr(&prev_info, pr);
709
710 pt->cr_ifs = (1UL << 63) | cfm;
711 /*
712 * Clear the memory that is NOT written on syscall-entry to
713 * ensure we do not leak kernel-state to user when execution
714 * resumes.
715 */
716 pt->r2 = 0;
717 pt->r3 = 0;
718 pt->r14 = 0;
719 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
720 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
721 pt->b7 = 0;
722 pt->ar_ccv = 0;
723 pt->ar_csd = 0;
724 pt->ar_ssd = 0;
725 }
726
727 static int
access_nat_bits(struct task_struct * child,struct pt_regs * pt,struct unw_frame_info * info,unsigned long * data,int write_access)728 access_nat_bits (struct task_struct *child, struct pt_regs *pt,
729 struct unw_frame_info *info,
730 unsigned long *data, int write_access)
731 {
732 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
733 char nat = 0;
734
735 if (write_access) {
736 nat_bits = *data;
737 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
738 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
739 dprintk("ptrace: failed to set ar.unat\n");
740 return -1;
741 }
742 for (regnum = 4; regnum <= 7; ++regnum) {
743 unw_get_gr(info, regnum, &dummy, &nat);
744 unw_set_gr(info, regnum, dummy,
745 (nat_bits >> regnum) & 1);
746 }
747 } else {
748 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
749 dprintk("ptrace: failed to read ar.unat\n");
750 return -1;
751 }
752 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
753 for (regnum = 4; regnum <= 7; ++regnum) {
754 unw_get_gr(info, regnum, &dummy, &nat);
755 nat_bits |= (nat != 0) << regnum;
756 }
757 *data = nat_bits;
758 }
759 return 0;
760 }
761
762 static int
763 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
764 unsigned long addr, unsigned long *data, int write_access);
765
766 static long
ptrace_getregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)767 ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
768 {
769 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
770 struct unw_frame_info info;
771 struct ia64_fpreg fpval;
772 struct switch_stack *sw;
773 struct pt_regs *pt;
774 long ret, retval = 0;
775 char nat = 0;
776 int i;
777
778 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
779 return -EIO;
780
781 pt = task_pt_regs(child);
782 sw = (struct switch_stack *) (child->thread.ksp + 16);
783 unw_init_from_blocked_task(&info, child);
784 if (unw_unwind_to_user(&info) < 0) {
785 return -EIO;
786 }
787
788 if (((unsigned long) ppr & 0x7) != 0) {
789 dprintk("ptrace:unaligned register address %p\n", ppr);
790 return -EIO;
791 }
792
793 if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
794 access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
795 access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
796 access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
797 access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
798 access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
799 access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
800 return -EIO;
801
802 /* control regs */
803
804 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
805 retval |= __put_user(psr, &ppr->cr_ipsr);
806
807 /* app regs */
808
809 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
810 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
811 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
812 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
813 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
814 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
815
816 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
817 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
818 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
819 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
820 retval |= __put_user(cfm, &ppr->cfm);
821
822 /* gr1-gr3 */
823
824 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
825 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
826
827 /* gr4-gr7 */
828
829 for (i = 4; i < 8; i++) {
830 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
831 return -EIO;
832 retval |= __put_user(val, &ppr->gr[i]);
833 }
834
835 /* gr8-gr11 */
836
837 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
838
839 /* gr12-gr15 */
840
841 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
842 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
843 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
844
845 /* gr16-gr31 */
846
847 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
848
849 /* b0 */
850
851 retval |= __put_user(pt->b0, &ppr->br[0]);
852
853 /* b1-b5 */
854
855 for (i = 1; i < 6; i++) {
856 if (unw_access_br(&info, i, &val, 0) < 0)
857 return -EIO;
858 __put_user(val, &ppr->br[i]);
859 }
860
861 /* b6-b7 */
862
863 retval |= __put_user(pt->b6, &ppr->br[6]);
864 retval |= __put_user(pt->b7, &ppr->br[7]);
865
866 /* fr2-fr5 */
867
868 for (i = 2; i < 6; i++) {
869 if (unw_get_fr(&info, i, &fpval) < 0)
870 return -EIO;
871 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
872 }
873
874 /* fr6-fr11 */
875
876 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
877 sizeof(struct ia64_fpreg) * 6);
878
879 /* fp scratch regs(12-15) */
880
881 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
882 sizeof(struct ia64_fpreg) * 4);
883
884 /* fr16-fr31 */
885
886 for (i = 16; i < 32; i++) {
887 if (unw_get_fr(&info, i, &fpval) < 0)
888 return -EIO;
889 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
890 }
891
892 /* fph */
893
894 ia64_flush_fph(child);
895 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
896 sizeof(ppr->fr[32]) * 96);
897
898 /* preds */
899
900 retval |= __put_user(pt->pr, &ppr->pr);
901
902 /* nat bits */
903
904 retval |= __put_user(nat_bits, &ppr->nat);
905
906 ret = retval ? -EIO : 0;
907 return ret;
908 }
909
910 static long
ptrace_setregs(struct task_struct * child,struct pt_all_user_regs __user * ppr)911 ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
912 {
913 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
914 struct unw_frame_info info;
915 struct switch_stack *sw;
916 struct ia64_fpreg fpval;
917 struct pt_regs *pt;
918 long retval = 0;
919 int i;
920
921 memset(&fpval, 0, sizeof(fpval));
922
923 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
924 return -EIO;
925
926 pt = task_pt_regs(child);
927 sw = (struct switch_stack *) (child->thread.ksp + 16);
928 unw_init_from_blocked_task(&info, child);
929 if (unw_unwind_to_user(&info) < 0) {
930 return -EIO;
931 }
932
933 if (((unsigned long) ppr & 0x7) != 0) {
934 dprintk("ptrace:unaligned register address %p\n", ppr);
935 return -EIO;
936 }
937
938 /* control regs */
939
940 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
941 retval |= __get_user(psr, &ppr->cr_ipsr);
942
943 /* app regs */
944
945 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
946 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
947 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
948 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
949 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
950 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
951
952 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
953 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
954 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
955 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
956 retval |= __get_user(cfm, &ppr->cfm);
957
958 /* gr1-gr3 */
959
960 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
961 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
962
963 /* gr4-gr7 */
964
965 for (i = 4; i < 8; i++) {
966 retval |= __get_user(val, &ppr->gr[i]);
967 /* NaT bit will be set via PT_NAT_BITS: */
968 if (unw_set_gr(&info, i, val, 0) < 0)
969 return -EIO;
970 }
971
972 /* gr8-gr11 */
973
974 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
975
976 /* gr12-gr15 */
977
978 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
979 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
980 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
981
982 /* gr16-gr31 */
983
984 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
985
986 /* b0 */
987
988 retval |= __get_user(pt->b0, &ppr->br[0]);
989
990 /* b1-b5 */
991
992 for (i = 1; i < 6; i++) {
993 retval |= __get_user(val, &ppr->br[i]);
994 unw_set_br(&info, i, val);
995 }
996
997 /* b6-b7 */
998
999 retval |= __get_user(pt->b6, &ppr->br[6]);
1000 retval |= __get_user(pt->b7, &ppr->br[7]);
1001
1002 /* fr2-fr5 */
1003
1004 for (i = 2; i < 6; i++) {
1005 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1006 if (unw_set_fr(&info, i, fpval) < 0)
1007 return -EIO;
1008 }
1009
1010 /* fr6-fr11 */
1011
1012 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1013 sizeof(ppr->fr[6]) * 6);
1014
1015 /* fp scratch regs(12-15) */
1016
1017 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1018 sizeof(ppr->fr[12]) * 4);
1019
1020 /* fr16-fr31 */
1021
1022 for (i = 16; i < 32; i++) {
1023 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1024 sizeof(fpval));
1025 if (unw_set_fr(&info, i, fpval) < 0)
1026 return -EIO;
1027 }
1028
1029 /* fph */
1030
1031 ia64_sync_fph(child);
1032 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1033 sizeof(ppr->fr[32]) * 96);
1034
1035 /* preds */
1036
1037 retval |= __get_user(pt->pr, &ppr->pr);
1038
1039 /* nat bits */
1040
1041 retval |= __get_user(nat_bits, &ppr->nat);
1042
1043 retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1044 retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1045 retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1046 retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1047 retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1048 retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1049 retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1050 retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1051
1052 return retval ? -EIO : 0;
1053 }
1054
1055 void
user_enable_single_step(struct task_struct * child)1056 user_enable_single_step (struct task_struct *child)
1057 {
1058 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1059
1060 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1061 child_psr->ss = 1;
1062 }
1063
1064 void
user_enable_block_step(struct task_struct * child)1065 user_enable_block_step (struct task_struct *child)
1066 {
1067 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1068
1069 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1070 child_psr->tb = 1;
1071 }
1072
1073 void
user_disable_single_step(struct task_struct * child)1074 user_disable_single_step (struct task_struct *child)
1075 {
1076 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1077
1078 /* make sure the single step/taken-branch trap bits are not set: */
1079 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1080 child_psr->ss = 0;
1081 child_psr->tb = 0;
1082 }
1083
1084 /*
1085 * Called by kernel/ptrace.c when detaching..
1086 *
1087 * Make sure the single step bit is not set.
1088 */
1089 void
ptrace_disable(struct task_struct * child)1090 ptrace_disable (struct task_struct *child)
1091 {
1092 user_disable_single_step(child);
1093 }
1094
1095 static int
1096 access_uarea (struct task_struct *child, unsigned long addr,
1097 unsigned long *data, int write_access);
1098
1099 long
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1100 arch_ptrace (struct task_struct *child, long request,
1101 unsigned long addr, unsigned long data)
1102 {
1103 switch (request) {
1104 case PTRACE_PEEKTEXT:
1105 case PTRACE_PEEKDATA:
1106 /* read word at location addr */
1107 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1108 FOLL_FORCE)
1109 != sizeof(data))
1110 return -EIO;
1111 /* ensure return value is not mistaken for error code */
1112 force_successful_syscall_return();
1113 return data;
1114
1115 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1116 * by the generic ptrace_request().
1117 */
1118
1119 case PTRACE_PEEKUSR:
1120 /* read the word at addr in the USER area */
1121 if (access_uarea(child, addr, &data, 0) < 0)
1122 return -EIO;
1123 /* ensure return value is not mistaken for error code */
1124 force_successful_syscall_return();
1125 return data;
1126
1127 case PTRACE_POKEUSR:
1128 /* write the word at addr in the USER area */
1129 if (access_uarea(child, addr, &data, 1) < 0)
1130 return -EIO;
1131 return 0;
1132
1133 case PTRACE_OLD_GETSIGINFO:
1134 /* for backwards-compatibility */
1135 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1136
1137 case PTRACE_OLD_SETSIGINFO:
1138 /* for backwards-compatibility */
1139 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1140
1141 case PTRACE_GETREGS:
1142 return ptrace_getregs(child,
1143 (struct pt_all_user_regs __user *) data);
1144
1145 case PTRACE_SETREGS:
1146 return ptrace_setregs(child,
1147 (struct pt_all_user_regs __user *) data);
1148
1149 default:
1150 return ptrace_request(child, request, addr, data);
1151 }
1152 }
1153
1154
1155 /* "asmlinkage" so the input arguments are preserved... */
1156
1157 asmlinkage long
syscall_trace_enter(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1158 syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1159 long arg4, long arg5, long arg6, long arg7,
1160 struct pt_regs regs)
1161 {
1162 if (test_thread_flag(TIF_SYSCALL_TRACE))
1163 if (ptrace_report_syscall_entry(®s))
1164 return -ENOSYS;
1165
1166 /* copy user rbs to kernel rbs */
1167 if (test_thread_flag(TIF_RESTORE_RSE))
1168 ia64_sync_krbs();
1169
1170
1171 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1172
1173 return 0;
1174 }
1175
1176 /* "asmlinkage" so the input arguments are preserved... */
1177
1178 asmlinkage void
syscall_trace_leave(long arg0,long arg1,long arg2,long arg3,long arg4,long arg5,long arg6,long arg7,struct pt_regs regs)1179 syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1180 long arg4, long arg5, long arg6, long arg7,
1181 struct pt_regs regs)
1182 {
1183 int step;
1184
1185 audit_syscall_exit(®s);
1186
1187 step = test_thread_flag(TIF_SINGLESTEP);
1188 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1189 ptrace_report_syscall_exit(®s, step);
1190
1191 /* copy user rbs to kernel rbs */
1192 if (test_thread_flag(TIF_RESTORE_RSE))
1193 ia64_sync_krbs();
1194 }
1195
1196 /* Utrace implementation starts here */
1197 struct regset_get {
1198 void *kbuf;
1199 void __user *ubuf;
1200 };
1201
1202 struct regset_set {
1203 const void *kbuf;
1204 const void __user *ubuf;
1205 };
1206
1207 struct regset_getset {
1208 struct task_struct *target;
1209 const struct user_regset *regset;
1210 union {
1211 struct regset_get get;
1212 struct regset_set set;
1213 } u;
1214 unsigned int pos;
1215 unsigned int count;
1216 int ret;
1217 };
1218
1219 static const ptrdiff_t pt_offsets[32] =
1220 {
1221 #define R(n) offsetof(struct pt_regs, r##n)
1222 [0] = -1, R(1), R(2), R(3),
1223 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1224 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1225 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1226 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1227 #undef R
1228 };
1229
1230 static int
access_elf_gpreg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1231 access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1232 unsigned long addr, unsigned long *data, int write_access)
1233 {
1234 struct pt_regs *pt = task_pt_regs(target);
1235 unsigned reg = addr / sizeof(unsigned long);
1236 ptrdiff_t d = pt_offsets[reg];
1237
1238 if (d >= 0) {
1239 unsigned long *ptr = (void *)pt + d;
1240 if (write_access)
1241 *ptr = *data;
1242 else
1243 *data = *ptr;
1244 return 0;
1245 } else {
1246 char nat = 0;
1247 if (write_access) {
1248 /* read NaT bit first: */
1249 unsigned long dummy;
1250 int ret = unw_get_gr(info, reg, &dummy, &nat);
1251 if (ret < 0)
1252 return ret;
1253 }
1254 return unw_access_gr(info, reg, data, &nat, write_access);
1255 }
1256 }
1257
1258 static int
access_elf_breg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1259 access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1260 unsigned long addr, unsigned long *data, int write_access)
1261 {
1262 struct pt_regs *pt;
1263 unsigned long *ptr = NULL;
1264
1265 pt = task_pt_regs(target);
1266 switch (addr) {
1267 case ELF_BR_OFFSET(0):
1268 ptr = &pt->b0;
1269 break;
1270 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1271 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1272 data, write_access);
1273 case ELF_BR_OFFSET(6):
1274 ptr = &pt->b6;
1275 break;
1276 case ELF_BR_OFFSET(7):
1277 ptr = &pt->b7;
1278 }
1279 if (write_access)
1280 *ptr = *data;
1281 else
1282 *data = *ptr;
1283 return 0;
1284 }
1285
1286 static int
access_elf_areg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1287 access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1288 unsigned long addr, unsigned long *data, int write_access)
1289 {
1290 struct pt_regs *pt;
1291 unsigned long cfm, urbs_end;
1292 unsigned long *ptr = NULL;
1293
1294 pt = task_pt_regs(target);
1295 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1296 switch (addr) {
1297 case ELF_AR_RSC_OFFSET:
1298 /* force PL3 */
1299 if (write_access)
1300 pt->ar_rsc = *data | (3 << 2);
1301 else
1302 *data = pt->ar_rsc;
1303 return 0;
1304 case ELF_AR_BSP_OFFSET:
1305 /*
1306 * By convention, we use PT_AR_BSP to refer to
1307 * the end of the user-level backing store.
1308 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1309 * to get the real value of ar.bsp at the time
1310 * the kernel was entered.
1311 *
1312 * Furthermore, when changing the contents of
1313 * PT_AR_BSP (or PT_CFM) while the task is
1314 * blocked in a system call, convert the state
1315 * so that the non-system-call exit
1316 * path is used. This ensures that the proper
1317 * state will be picked up when resuming
1318 * execution. However, it *also* means that
1319 * once we write PT_AR_BSP/PT_CFM, it won't be
1320 * possible to modify the syscall arguments of
1321 * the pending system call any longer. This
1322 * shouldn't be an issue because modifying
1323 * PT_AR_BSP/PT_CFM generally implies that
1324 * we're either abandoning the pending system
1325 * call or that we defer it's re-execution
1326 * (e.g., due to GDB doing an inferior
1327 * function call).
1328 */
1329 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1330 if (write_access) {
1331 if (*data != urbs_end) {
1332 if (in_syscall(pt))
1333 convert_to_non_syscall(target,
1334 pt,
1335 cfm);
1336 /*
1337 * Simulate user-level write
1338 * of ar.bsp:
1339 */
1340 pt->loadrs = 0;
1341 pt->ar_bspstore = *data;
1342 }
1343 } else
1344 *data = urbs_end;
1345 return 0;
1346 case ELF_AR_BSPSTORE_OFFSET:
1347 ptr = &pt->ar_bspstore;
1348 break;
1349 case ELF_AR_RNAT_OFFSET:
1350 ptr = &pt->ar_rnat;
1351 break;
1352 case ELF_AR_CCV_OFFSET:
1353 ptr = &pt->ar_ccv;
1354 break;
1355 case ELF_AR_UNAT_OFFSET:
1356 ptr = &pt->ar_unat;
1357 break;
1358 case ELF_AR_FPSR_OFFSET:
1359 ptr = &pt->ar_fpsr;
1360 break;
1361 case ELF_AR_PFS_OFFSET:
1362 ptr = &pt->ar_pfs;
1363 break;
1364 case ELF_AR_LC_OFFSET:
1365 return unw_access_ar(info, UNW_AR_LC, data,
1366 write_access);
1367 case ELF_AR_EC_OFFSET:
1368 return unw_access_ar(info, UNW_AR_EC, data,
1369 write_access);
1370 case ELF_AR_CSD_OFFSET:
1371 ptr = &pt->ar_csd;
1372 break;
1373 case ELF_AR_SSD_OFFSET:
1374 ptr = &pt->ar_ssd;
1375 }
1376 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1377 switch (addr) {
1378 case ELF_CR_IIP_OFFSET:
1379 ptr = &pt->cr_iip;
1380 break;
1381 case ELF_CFM_OFFSET:
1382 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1383 if (write_access) {
1384 if (((cfm ^ *data) & PFM_MASK) != 0) {
1385 if (in_syscall(pt))
1386 convert_to_non_syscall(target,
1387 pt,
1388 cfm);
1389 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1390 | (*data & PFM_MASK));
1391 }
1392 } else
1393 *data = cfm;
1394 return 0;
1395 case ELF_CR_IPSR_OFFSET:
1396 if (write_access) {
1397 unsigned long tmp = *data;
1398 /* psr.ri==3 is a reserved value: SDM 2:25 */
1399 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1400 tmp &= ~IA64_PSR_RI;
1401 pt->cr_ipsr = ((tmp & IPSR_MASK)
1402 | (pt->cr_ipsr & ~IPSR_MASK));
1403 } else
1404 *data = (pt->cr_ipsr & IPSR_MASK);
1405 return 0;
1406 }
1407 } else if (addr == ELF_NAT_OFFSET)
1408 return access_nat_bits(target, pt, info,
1409 data, write_access);
1410 else if (addr == ELF_PR_OFFSET)
1411 ptr = &pt->pr;
1412 else
1413 return -1;
1414
1415 if (write_access)
1416 *ptr = *data;
1417 else
1418 *data = *ptr;
1419
1420 return 0;
1421 }
1422
1423 static int
access_elf_reg(struct task_struct * target,struct unw_frame_info * info,unsigned long addr,unsigned long * data,int write_access)1424 access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1425 unsigned long addr, unsigned long *data, int write_access)
1426 {
1427 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1428 return access_elf_gpreg(target, info, addr, data, write_access);
1429 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1430 return access_elf_breg(target, info, addr, data, write_access);
1431 else
1432 return access_elf_areg(target, info, addr, data, write_access);
1433 }
1434
1435 struct regset_membuf {
1436 struct membuf to;
1437 int ret;
1438 };
1439
do_gpregs_get(struct unw_frame_info * info,void * arg)1440 static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1441 {
1442 struct regset_membuf *dst = arg;
1443 struct membuf to = dst->to;
1444 unsigned int n;
1445 elf_greg_t reg;
1446
1447 if (unw_unwind_to_user(info) < 0)
1448 return;
1449
1450 /*
1451 * coredump format:
1452 * r0-r31
1453 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1454 * predicate registers (p0-p63)
1455 * b0-b7
1456 * ip cfm user-mask
1457 * ar.rsc ar.bsp ar.bspstore ar.rnat
1458 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1459 */
1460
1461
1462 /* Skip r0 */
1463 membuf_zero(&to, 8);
1464 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1465 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1466 dst->ret = -EIO;
1467 return;
1468 }
1469 membuf_store(&to, reg);
1470 }
1471 }
1472
do_gpregs_set(struct unw_frame_info * info,void * arg)1473 static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1474 {
1475 struct regset_getset *dst = arg;
1476
1477 if (unw_unwind_to_user(info) < 0)
1478 return;
1479
1480 if (!dst->count)
1481 return;
1482 /* Skip r0 */
1483 if (dst->pos < ELF_GR_OFFSET(1)) {
1484 user_regset_copyin_ignore(&dst->pos, &dst->count,
1485 &dst->u.set.kbuf, &dst->u.set.ubuf,
1486 0, ELF_GR_OFFSET(1));
1487 dst->ret = 0;
1488 }
1489
1490 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1491 unsigned int n, from, to;
1492 elf_greg_t tmp[16];
1493
1494 from = dst->pos;
1495 to = from + sizeof(tmp);
1496 if (to > ELF_AR_END_OFFSET)
1497 to = ELF_AR_END_OFFSET;
1498 /* get up to 16 values */
1499 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1500 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1501 from, to);
1502 if (dst->ret)
1503 return;
1504 /* now copy them into registers */
1505 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1506 if (access_elf_reg(dst->target, info, from,
1507 &tmp[n], 1) < 0) {
1508 dst->ret = -EIO;
1509 return;
1510 }
1511 }
1512 }
1513
1514 #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1515
do_fpregs_get(struct unw_frame_info * info,void * arg)1516 static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1517 {
1518 struct task_struct *task = info->task;
1519 struct regset_membuf *dst = arg;
1520 struct membuf to = dst->to;
1521 elf_fpreg_t reg;
1522 unsigned int n;
1523
1524 if (unw_unwind_to_user(info) < 0)
1525 return;
1526
1527 /* Skip pos 0 and 1 */
1528 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1529
1530 /* fr2-fr31 */
1531 for (n = 2; to.left && n < 32; n++) {
1532 if (unw_get_fr(info, n, ®)) {
1533 dst->ret = -EIO;
1534 return;
1535 }
1536 membuf_write(&to, ®, sizeof(reg));
1537 }
1538
1539 /* fph */
1540 if (!to.left)
1541 return;
1542
1543 ia64_flush_fph(task);
1544 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1545 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1546 else
1547 membuf_zero(&to, 96 * sizeof(reg));
1548 }
1549
do_fpregs_set(struct unw_frame_info * info,void * arg)1550 static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1551 {
1552 struct regset_getset *dst = arg;
1553 elf_fpreg_t fpreg, tmp[30];
1554 int index, start, end;
1555
1556 if (unw_unwind_to_user(info) < 0)
1557 return;
1558
1559 /* Skip pos 0 and 1 */
1560 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1561 user_regset_copyin_ignore(&dst->pos, &dst->count,
1562 &dst->u.set.kbuf, &dst->u.set.ubuf,
1563 0, ELF_FP_OFFSET(2));
1564 dst->ret = 0;
1565 if (dst->count == 0)
1566 return;
1567 }
1568
1569 /* fr2-fr31 */
1570 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1571 start = dst->pos;
1572 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1573 dst->pos + dst->count);
1574 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1575 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1576 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1577 if (dst->ret)
1578 return;
1579
1580 if (start & 0xF) { /* only write high part */
1581 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1582 &fpreg)) {
1583 dst->ret = -EIO;
1584 return;
1585 }
1586 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1587 = fpreg.u.bits[0];
1588 start &= ~0xFUL;
1589 }
1590 if (end & 0xF) { /* only write low part */
1591 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1592 &fpreg)) {
1593 dst->ret = -EIO;
1594 return;
1595 }
1596 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1597 = fpreg.u.bits[1];
1598 end = (end + 0xF) & ~0xFUL;
1599 }
1600
1601 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1602 index = start / sizeof(elf_fpreg_t);
1603 if (unw_set_fr(info, index, tmp[index - 2])) {
1604 dst->ret = -EIO;
1605 return;
1606 }
1607 }
1608 if (dst->ret || dst->count == 0)
1609 return;
1610 }
1611
1612 /* fph */
1613 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1614 ia64_sync_fph(dst->target);
1615 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1616 &dst->u.set.kbuf,
1617 &dst->u.set.ubuf,
1618 &dst->target->thread.fph,
1619 ELF_FP_OFFSET(32), -1);
1620 }
1621 }
1622
1623 static void
unwind_and_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,void * data)1624 unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1625 struct task_struct *target, void *data)
1626 {
1627 if (target == current)
1628 unw_init_running(call, data);
1629 else {
1630 struct unw_frame_info info;
1631 memset(&info, 0, sizeof(info));
1632 unw_init_from_blocked_task(&info, target);
1633 (*call)(&info, data);
1634 }
1635 }
1636
1637 static int
do_regset_call(void (* call)(struct unw_frame_info *,void *),struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1638 do_regset_call(void (*call)(struct unw_frame_info *, void *),
1639 struct task_struct *target,
1640 const struct user_regset *regset,
1641 unsigned int pos, unsigned int count,
1642 const void *kbuf, const void __user *ubuf)
1643 {
1644 struct regset_getset info = { .target = target, .regset = regset,
1645 .pos = pos, .count = count,
1646 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1647 .ret = 0 };
1648 unwind_and_call(call, target, &info);
1649 return info.ret;
1650 }
1651
1652 static int
gpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1653 gpregs_get(struct task_struct *target,
1654 const struct user_regset *regset,
1655 struct membuf to)
1656 {
1657 struct regset_membuf info = {.to = to};
1658 unwind_and_call(do_gpregs_get, target, &info);
1659 return info.ret;
1660 }
1661
gpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1662 static int gpregs_set(struct task_struct *target,
1663 const struct user_regset *regset,
1664 unsigned int pos, unsigned int count,
1665 const void *kbuf, const void __user *ubuf)
1666 {
1667 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1668 kbuf, ubuf);
1669 }
1670
do_gpregs_writeback(struct unw_frame_info * info,void * arg)1671 static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1672 {
1673 do_sync_rbs(info, ia64_sync_user_rbs);
1674 }
1675
1676 /*
1677 * This is called to write back the register backing store.
1678 * ptrace does this before it stops, so that a tracer reading the user
1679 * memory after the thread stops will get the current register data.
1680 */
1681 static int
gpregs_writeback(struct task_struct * target,const struct user_regset * regset,int now)1682 gpregs_writeback(struct task_struct *target,
1683 const struct user_regset *regset,
1684 int now)
1685 {
1686 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1687 return 0;
1688 set_notify_resume(target);
1689 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1690 NULL, NULL);
1691 }
1692
1693 static int
fpregs_active(struct task_struct * target,const struct user_regset * regset)1694 fpregs_active(struct task_struct *target, const struct user_regset *regset)
1695 {
1696 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1697 }
1698
fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1699 static int fpregs_get(struct task_struct *target,
1700 const struct user_regset *regset,
1701 struct membuf to)
1702 {
1703 struct regset_membuf info = {.to = to};
1704 unwind_and_call(do_fpregs_get, target, &info);
1705 return info.ret;
1706 }
1707
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1708 static int fpregs_set(struct task_struct *target,
1709 const struct user_regset *regset,
1710 unsigned int pos, unsigned int count,
1711 const void *kbuf, const void __user *ubuf)
1712 {
1713 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1714 kbuf, ubuf);
1715 }
1716
1717 static int
access_uarea(struct task_struct * child,unsigned long addr,unsigned long * data,int write_access)1718 access_uarea(struct task_struct *child, unsigned long addr,
1719 unsigned long *data, int write_access)
1720 {
1721 unsigned int pos = -1; /* an invalid value */
1722 unsigned long *ptr, regnum;
1723
1724 if ((addr & 0x7) != 0) {
1725 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1726 return -1;
1727 }
1728 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1729 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1730 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1731 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1732 dprintk("ptrace: rejecting access to register "
1733 "address 0x%lx\n", addr);
1734 return -1;
1735 }
1736
1737 switch (addr) {
1738 case PT_F32 ... (PT_F127 + 15):
1739 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1740 break;
1741 case PT_F2 ... (PT_F5 + 15):
1742 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1743 break;
1744 case PT_F10 ... (PT_F31 + 15):
1745 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1746 break;
1747 case PT_F6 ... (PT_F9 + 15):
1748 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1749 break;
1750 }
1751
1752 if (pos != -1) {
1753 unsigned reg = pos / sizeof(elf_fpreg_t);
1754 int which_half = (pos / sizeof(unsigned long)) & 1;
1755
1756 if (reg < 32) { /* fr2-fr31 */
1757 struct unw_frame_info info;
1758 elf_fpreg_t fpreg;
1759
1760 memset(&info, 0, sizeof(info));
1761 unw_init_from_blocked_task(&info, child);
1762 if (unw_unwind_to_user(&info) < 0)
1763 return 0;
1764
1765 if (unw_get_fr(&info, reg, &fpreg))
1766 return -1;
1767 if (write_access) {
1768 fpreg.u.bits[which_half] = *data;
1769 if (unw_set_fr(&info, reg, fpreg))
1770 return -1;
1771 } else {
1772 *data = fpreg.u.bits[which_half];
1773 }
1774 } else { /* fph */
1775 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1776 unsigned long *bits = &p->u.bits[which_half];
1777
1778 ia64_sync_fph(child);
1779 if (write_access)
1780 *bits = *data;
1781 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1782 *data = *bits;
1783 else
1784 *data = 0;
1785 }
1786 return 0;
1787 }
1788
1789 switch (addr) {
1790 case PT_NAT_BITS:
1791 pos = ELF_NAT_OFFSET;
1792 break;
1793 case PT_R4 ... PT_R7:
1794 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1795 break;
1796 case PT_B1 ... PT_B5:
1797 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1798 break;
1799 case PT_AR_EC:
1800 pos = ELF_AR_EC_OFFSET;
1801 break;
1802 case PT_AR_LC:
1803 pos = ELF_AR_LC_OFFSET;
1804 break;
1805 case PT_CR_IPSR:
1806 pos = ELF_CR_IPSR_OFFSET;
1807 break;
1808 case PT_CR_IIP:
1809 pos = ELF_CR_IIP_OFFSET;
1810 break;
1811 case PT_CFM:
1812 pos = ELF_CFM_OFFSET;
1813 break;
1814 case PT_AR_UNAT:
1815 pos = ELF_AR_UNAT_OFFSET;
1816 break;
1817 case PT_AR_PFS:
1818 pos = ELF_AR_PFS_OFFSET;
1819 break;
1820 case PT_AR_RSC:
1821 pos = ELF_AR_RSC_OFFSET;
1822 break;
1823 case PT_AR_RNAT:
1824 pos = ELF_AR_RNAT_OFFSET;
1825 break;
1826 case PT_AR_BSPSTORE:
1827 pos = ELF_AR_BSPSTORE_OFFSET;
1828 break;
1829 case PT_PR:
1830 pos = ELF_PR_OFFSET;
1831 break;
1832 case PT_B6:
1833 pos = ELF_BR_OFFSET(6);
1834 break;
1835 case PT_AR_BSP:
1836 pos = ELF_AR_BSP_OFFSET;
1837 break;
1838 case PT_R1 ... PT_R3:
1839 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1840 break;
1841 case PT_R12 ... PT_R15:
1842 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1843 break;
1844 case PT_R8 ... PT_R11:
1845 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1846 break;
1847 case PT_R16 ... PT_R31:
1848 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1849 break;
1850 case PT_AR_CCV:
1851 pos = ELF_AR_CCV_OFFSET;
1852 break;
1853 case PT_AR_FPSR:
1854 pos = ELF_AR_FPSR_OFFSET;
1855 break;
1856 case PT_B0:
1857 pos = ELF_BR_OFFSET(0);
1858 break;
1859 case PT_B7:
1860 pos = ELF_BR_OFFSET(7);
1861 break;
1862 case PT_AR_CSD:
1863 pos = ELF_AR_CSD_OFFSET;
1864 break;
1865 case PT_AR_SSD:
1866 pos = ELF_AR_SSD_OFFSET;
1867 break;
1868 }
1869
1870 if (pos != -1) {
1871 struct unw_frame_info info;
1872
1873 memset(&info, 0, sizeof(info));
1874 unw_init_from_blocked_task(&info, child);
1875 if (unw_unwind_to_user(&info) < 0)
1876 return 0;
1877
1878 return access_elf_reg(child, &info, pos, data, write_access);
1879 }
1880
1881 /* access debug registers */
1882 if (addr >= PT_IBR) {
1883 regnum = (addr - PT_IBR) >> 3;
1884 ptr = &child->thread.ibr[0];
1885 } else {
1886 regnum = (addr - PT_DBR) >> 3;
1887 ptr = &child->thread.dbr[0];
1888 }
1889
1890 if (regnum >= 8) {
1891 dprintk("ptrace: rejecting access to register "
1892 "address 0x%lx\n", addr);
1893 return -1;
1894 }
1895
1896 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1897 child->thread.flags |= IA64_THREAD_DBG_VALID;
1898 memset(child->thread.dbr, 0,
1899 sizeof(child->thread.dbr));
1900 memset(child->thread.ibr, 0,
1901 sizeof(child->thread.ibr));
1902 }
1903
1904 ptr += regnum;
1905
1906 if ((regnum & 1) && write_access) {
1907 /* don't let the user set kernel-level breakpoints: */
1908 *ptr = *data & ~(7UL << 56);
1909 return 0;
1910 }
1911 if (write_access)
1912 *ptr = *data;
1913 else
1914 *data = *ptr;
1915 return 0;
1916 }
1917
1918 static const struct user_regset native_regsets[] = {
1919 {
1920 .core_note_type = NT_PRSTATUS,
1921 .n = ELF_NGREG,
1922 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1923 .regset_get = gpregs_get, .set = gpregs_set,
1924 .writeback = gpregs_writeback
1925 },
1926 {
1927 .core_note_type = NT_PRFPREG,
1928 .n = ELF_NFPREG,
1929 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1930 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1931 },
1932 };
1933
1934 static const struct user_regset_view user_ia64_view = {
1935 .name = "ia64",
1936 .e_machine = EM_IA_64,
1937 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1938 };
1939
task_user_regset_view(struct task_struct * tsk)1940 const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
1941 {
1942 return &user_ia64_view;
1943 }
1944
1945 struct syscall_get_args {
1946 unsigned int i;
1947 unsigned int n;
1948 unsigned long *args;
1949 struct pt_regs *regs;
1950 };
1951
syscall_get_args_cb(struct unw_frame_info * info,void * data)1952 static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
1953 {
1954 struct syscall_get_args *args = data;
1955 struct pt_regs *pt = args->regs;
1956 unsigned long *krbs, cfm, ndirty, nlocals, nouts;
1957 int i, count;
1958
1959 if (unw_unwind_to_user(info) < 0)
1960 return;
1961
1962 /*
1963 * We get here via a few paths:
1964 * - break instruction: cfm is shared with caller.
1965 * syscall args are in out= regs, locals are non-empty.
1966 * - epsinstruction: cfm is set by br.call
1967 * locals don't exist.
1968 *
1969 * For both cases arguments are reachable in cfm.sof - cfm.sol.
1970 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
1971 */
1972 cfm = pt->cr_ifs;
1973 nlocals = (cfm >> 7) & 0x7f; /* aka sol */
1974 nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
1975 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
1976 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
1977
1978 count = 0;
1979 if (in_syscall(pt))
1980 count = min_t(int, args->n, nouts);
1981
1982 /* Iterate over outs. */
1983 for (i = 0; i < count; i++) {
1984 int j = ndirty + nlocals + i + args->i;
1985 args->args[i] = *ia64_rse_skip_regs(krbs, j);
1986 }
1987
1988 while (i < args->n) {
1989 args->args[i] = 0;
1990 i++;
1991 }
1992 }
1993
syscall_get_arguments(struct task_struct * task,struct pt_regs * regs,unsigned long * args)1994 void syscall_get_arguments(struct task_struct *task,
1995 struct pt_regs *regs, unsigned long *args)
1996 {
1997 struct syscall_get_args data = {
1998 .i = 0,
1999 .n = 6,
2000 .args = args,
2001 .regs = regs,
2002 };
2003
2004 if (task == current)
2005 unw_init_running(syscall_get_args_cb, &data);
2006 else {
2007 struct unw_frame_info ufi;
2008 memset(&ufi, 0, sizeof(ufi));
2009 unw_init_from_blocked_task(&ufi, task);
2010 syscall_get_args_cb(&ufi, &data);
2011 }
2012 }
2013