1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 #include <linux/utsname.h> 31 #include <linux/tracehook.h> 32 #include <linux/rcupdate.h> 33 34 #include <asm/cpu.h> 35 #include <asm/delay.h> 36 #include <asm/elf.h> 37 #include <asm/irq.h> 38 #include <asm/kexec.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sal.h> 42 #include <asm/switch_to.h> 43 #include <asm/tlbflush.h> 44 #include <asm/uaccess.h> 45 #include <asm/unwind.h> 46 #include <asm/user.h> 47 48 #include "entry.h" 49 50 #ifdef CONFIG_PERFMON 51 # include <asm/perfmon.h> 52 #endif 53 54 #include "sigframe.h" 55 56 void (*ia64_mark_idle)(int); 57 58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 59 EXPORT_SYMBOL(boot_option_idle_override); 60 void (*pm_power_off) (void); 61 EXPORT_SYMBOL(pm_power_off); 62 63 void 64 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 65 { 66 unsigned long ip, sp, bsp; 67 char buf[128]; /* don't make it so big that it overflows the stack! */ 68 69 printk("\nCall Trace:\n"); 70 do { 71 unw_get_ip(info, &ip); 72 if (ip == 0) 73 break; 74 75 unw_get_sp(info, &sp); 76 unw_get_bsp(info, &bsp); 77 snprintf(buf, sizeof(buf), 78 " [<%016lx>] %%s\n" 79 " sp=%016lx bsp=%016lx\n", 80 ip, sp, bsp); 81 print_symbol(buf, ip); 82 } while (unw_unwind(info) >= 0); 83 } 84 85 void 86 show_stack (struct task_struct *task, unsigned long *sp) 87 { 88 if (!task) 89 unw_init_running(ia64_do_show_stack, NULL); 90 else { 91 struct unw_frame_info info; 92 93 unw_init_from_blocked_task(&info, task); 94 ia64_do_show_stack(&info, NULL); 95 } 96 } 97 98 void 99 show_regs (struct pt_regs *regs) 100 { 101 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 102 103 print_modules(); 104 printk("\n"); 105 show_regs_print_info(KERN_DEFAULT); 106 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 107 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 108 init_utsname()->release); 109 print_symbol("ip is at %s\n", ip); 110 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 111 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 112 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 113 regs->ar_rnat, regs->ar_bspstore, regs->pr); 114 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 115 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 116 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 117 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 118 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 119 regs->f6.u.bits[1], regs->f6.u.bits[0], 120 regs->f7.u.bits[1], regs->f7.u.bits[0]); 121 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 122 regs->f8.u.bits[1], regs->f8.u.bits[0], 123 regs->f9.u.bits[1], regs->f9.u.bits[0]); 124 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 125 regs->f10.u.bits[1], regs->f10.u.bits[0], 126 regs->f11.u.bits[1], regs->f11.u.bits[0]); 127 128 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 129 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 130 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 131 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 132 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 133 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 134 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 135 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 136 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 137 138 if (user_mode(regs)) { 139 /* print the stacked registers */ 140 unsigned long val, *bsp, ndirty; 141 int i, sof, is_nat = 0; 142 143 sof = regs->cr_ifs & 0x7f; /* size of frame */ 144 ndirty = (regs->loadrs >> 19); 145 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 146 for (i = 0; i < sof; ++i) { 147 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 148 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 149 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 150 } 151 } else 152 show_stack(NULL, NULL); 153 } 154 155 /* local support for deprecated console_print */ 156 void 157 console_print(const char *s) 158 { 159 printk(KERN_EMERG "%s", s); 160 } 161 162 void 163 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 164 { 165 if (fsys_mode(current, &scr->pt)) { 166 /* 167 * defer signal-handling etc. until we return to 168 * privilege-level 0. 169 */ 170 if (!ia64_psr(&scr->pt)->lp) 171 ia64_psr(&scr->pt)->lp = 1; 172 return; 173 } 174 175 #ifdef CONFIG_PERFMON 176 if (current->thread.pfm_needs_checking) 177 /* 178 * Note: pfm_handle_work() allow us to call it with interrupts 179 * disabled, and may enable interrupts within the function. 180 */ 181 pfm_handle_work(); 182 #endif 183 184 /* deal with pending signal delivery */ 185 if (test_thread_flag(TIF_SIGPENDING)) { 186 local_irq_enable(); /* force interrupt enable */ 187 ia64_do_signal(scr, in_syscall); 188 } 189 190 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 191 local_irq_enable(); /* force interrupt enable */ 192 tracehook_notify_resume(&scr->pt); 193 } 194 195 /* copy user rbs to kernel rbs */ 196 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 197 local_irq_enable(); /* force interrupt enable */ 198 ia64_sync_krbs(); 199 } 200 201 local_irq_disable(); /* force interrupt disable */ 202 } 203 204 static int __init nohalt_setup(char * str) 205 { 206 cpu_idle_poll_ctrl(true); 207 return 1; 208 } 209 __setup("nohalt", nohalt_setup); 210 211 #ifdef CONFIG_HOTPLUG_CPU 212 /* We don't actually take CPU down, just spin without interrupts. */ 213 static inline void play_dead(void) 214 { 215 unsigned int this_cpu = smp_processor_id(); 216 217 /* Ack it */ 218 __this_cpu_write(cpu_state, CPU_DEAD); 219 220 max_xtp(); 221 local_irq_disable(); 222 idle_task_exit(); 223 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 224 /* 225 * The above is a point of no-return, the processor is 226 * expected to be in SAL loop now. 227 */ 228 BUG(); 229 } 230 #else 231 static inline void play_dead(void) 232 { 233 BUG(); 234 } 235 #endif /* CONFIG_HOTPLUG_CPU */ 236 237 void arch_cpu_idle_dead(void) 238 { 239 play_dead(); 240 } 241 242 void arch_cpu_idle(void) 243 { 244 void (*mark_idle)(int) = ia64_mark_idle; 245 246 #ifdef CONFIG_SMP 247 min_xtp(); 248 #endif 249 rmb(); 250 if (mark_idle) 251 (*mark_idle)(1); 252 253 safe_halt(); 254 255 if (mark_idle) 256 (*mark_idle)(0); 257 #ifdef CONFIG_SMP 258 normal_xtp(); 259 #endif 260 } 261 262 void 263 ia64_save_extra (struct task_struct *task) 264 { 265 #ifdef CONFIG_PERFMON 266 unsigned long info; 267 #endif 268 269 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 270 ia64_save_debug_regs(&task->thread.dbr[0]); 271 272 #ifdef CONFIG_PERFMON 273 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 274 pfm_save_regs(task); 275 276 info = __this_cpu_read(pfm_syst_info); 277 if (info & PFM_CPUINFO_SYST_WIDE) 278 pfm_syst_wide_update_task(task, info, 0); 279 #endif 280 } 281 282 void 283 ia64_load_extra (struct task_struct *task) 284 { 285 #ifdef CONFIG_PERFMON 286 unsigned long info; 287 #endif 288 289 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 290 ia64_load_debug_regs(&task->thread.dbr[0]); 291 292 #ifdef CONFIG_PERFMON 293 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 294 pfm_load_regs(task); 295 296 info = __this_cpu_read(pfm_syst_info); 297 if (info & PFM_CPUINFO_SYST_WIDE) 298 pfm_syst_wide_update_task(task, info, 1); 299 #endif 300 } 301 302 /* 303 * Copy the state of an ia-64 thread. 304 * 305 * We get here through the following call chain: 306 * 307 * from user-level: from kernel: 308 * 309 * <clone syscall> <some kernel call frames> 310 * sys_clone : 311 * do_fork do_fork 312 * copy_thread copy_thread 313 * 314 * This means that the stack layout is as follows: 315 * 316 * +---------------------+ (highest addr) 317 * | struct pt_regs | 318 * +---------------------+ 319 * | struct switch_stack | 320 * +---------------------+ 321 * | | 322 * | memory stack | 323 * | | <-- sp (lowest addr) 324 * +---------------------+ 325 * 326 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 327 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 328 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 329 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 330 * the stack is page aligned and the page size is at least 4KB, this is always the case, 331 * so there is nothing to worry about. 332 */ 333 int 334 copy_thread(unsigned long clone_flags, 335 unsigned long user_stack_base, unsigned long user_stack_size, 336 struct task_struct *p) 337 { 338 extern char ia64_ret_from_clone; 339 struct switch_stack *child_stack, *stack; 340 unsigned long rbs, child_rbs, rbs_size; 341 struct pt_regs *child_ptregs; 342 struct pt_regs *regs = current_pt_regs(); 343 int retval = 0; 344 345 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 346 child_stack = (struct switch_stack *) child_ptregs - 1; 347 348 rbs = (unsigned long) current + IA64_RBS_OFFSET; 349 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 350 351 /* copy parts of thread_struct: */ 352 p->thread.ksp = (unsigned long) child_stack - 16; 353 354 /* 355 * NOTE: The calling convention considers all floating point 356 * registers in the high partition (fph) to be scratch. Since 357 * the only way to get to this point is through a system call, 358 * we know that the values in fph are all dead. Hence, there 359 * is no need to inherit the fph state from the parent to the 360 * child and all we have to do is to make sure that 361 * IA64_THREAD_FPH_VALID is cleared in the child. 362 * 363 * XXX We could push this optimization a bit further by 364 * clearing IA64_THREAD_FPH_VALID on ANY system call. 365 * However, it's not clear this is worth doing. Also, it 366 * would be a slight deviation from the normal Linux system 367 * call behavior where scratch registers are preserved across 368 * system calls (unless used by the system call itself). 369 */ 370 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 371 | IA64_THREAD_PM_VALID) 372 # define THREAD_FLAGS_TO_SET 0 373 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 374 | THREAD_FLAGS_TO_SET); 375 376 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 377 378 if (unlikely(p->flags & PF_KTHREAD)) { 379 if (unlikely(!user_stack_base)) { 380 /* fork_idle() called us */ 381 return 0; 382 } 383 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 384 child_stack->r4 = user_stack_base; /* payload */ 385 child_stack->r5 = user_stack_size; /* argument */ 386 /* 387 * Preserve PSR bits, except for bits 32-34 and 37-45, 388 * which we can't read. 389 */ 390 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 391 /* mark as valid, empty frame */ 392 child_ptregs->cr_ifs = 1UL << 63; 393 child_stack->ar_fpsr = child_ptregs->ar_fpsr 394 = ia64_getreg(_IA64_REG_AR_FPSR); 395 child_stack->pr = (1 << PRED_KERNEL_STACK); 396 child_stack->ar_bspstore = child_rbs; 397 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 398 399 /* stop some PSR bits from being inherited. 400 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 401 * therefore we must specify them explicitly here and not include them in 402 * IA64_PSR_BITS_TO_CLEAR. 403 */ 404 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 405 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 406 407 return 0; 408 } 409 stack = ((struct switch_stack *) regs) - 1; 410 /* copy parent's switch_stack & pt_regs to child: */ 411 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 412 413 /* copy the parent's register backing store to the child: */ 414 rbs_size = stack->ar_bspstore - rbs; 415 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 416 if (clone_flags & CLONE_SETTLS) 417 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 418 if (user_stack_base) { 419 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 420 child_ptregs->ar_bspstore = user_stack_base; 421 child_ptregs->ar_rnat = 0; 422 child_ptregs->loadrs = 0; 423 } 424 child_stack->ar_bspstore = child_rbs + rbs_size; 425 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 426 427 /* stop some PSR bits from being inherited. 428 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 429 * therefore we must specify them explicitly here and not include them in 430 * IA64_PSR_BITS_TO_CLEAR. 431 */ 432 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 433 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 434 435 #ifdef CONFIG_PERFMON 436 if (current->thread.pfm_context) 437 pfm_inherit(p, child_ptregs); 438 #endif 439 return retval; 440 } 441 442 static void 443 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 444 { 445 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 446 unsigned long uninitialized_var(ip); /* GCC be quiet */ 447 elf_greg_t *dst = arg; 448 struct pt_regs *pt; 449 char nat; 450 int i; 451 452 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 453 454 if (unw_unwind_to_user(info) < 0) 455 return; 456 457 unw_get_sp(info, &sp); 458 pt = (struct pt_regs *) (sp + 16); 459 460 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 461 462 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 463 return; 464 465 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 466 &ar_rnat); 467 468 /* 469 * coredump format: 470 * r0-r31 471 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 472 * predicate registers (p0-p63) 473 * b0-b7 474 * ip cfm user-mask 475 * ar.rsc ar.bsp ar.bspstore ar.rnat 476 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 477 */ 478 479 /* r0 is zero */ 480 for (i = 1, mask = (1UL << i); i < 32; ++i) { 481 unw_get_gr(info, i, &dst[i], &nat); 482 if (nat) 483 nat_bits |= mask; 484 mask <<= 1; 485 } 486 dst[32] = nat_bits; 487 unw_get_pr(info, &dst[33]); 488 489 for (i = 0; i < 8; ++i) 490 unw_get_br(info, i, &dst[34 + i]); 491 492 unw_get_rp(info, &ip); 493 dst[42] = ip + ia64_psr(pt)->ri; 494 dst[43] = cfm; 495 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 496 497 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 498 /* 499 * For bsp and bspstore, unw_get_ar() would return the kernel 500 * addresses, but we need the user-level addresses instead: 501 */ 502 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 503 dst[47] = pt->ar_bspstore; 504 dst[48] = ar_rnat; 505 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 506 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 507 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 508 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 509 unw_get_ar(info, UNW_AR_LC, &dst[53]); 510 unw_get_ar(info, UNW_AR_EC, &dst[54]); 511 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 512 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 513 } 514 515 void 516 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 517 { 518 elf_fpreg_t *dst = arg; 519 int i; 520 521 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 522 523 if (unw_unwind_to_user(info) < 0) 524 return; 525 526 /* f0 is 0.0, f1 is 1.0 */ 527 528 for (i = 2; i < 32; ++i) 529 unw_get_fr(info, i, dst + i); 530 531 ia64_flush_fph(task); 532 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 533 memcpy(dst + 32, task->thread.fph, 96*16); 534 } 535 536 void 537 do_copy_regs (struct unw_frame_info *info, void *arg) 538 { 539 do_copy_task_regs(current, info, arg); 540 } 541 542 void 543 do_dump_fpu (struct unw_frame_info *info, void *arg) 544 { 545 do_dump_task_fpu(current, info, arg); 546 } 547 548 void 549 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 550 { 551 unw_init_running(do_copy_regs, dst); 552 } 553 554 int 555 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 556 { 557 unw_init_running(do_dump_fpu, dst); 558 return 1; /* f0-f31 are always valid so we always return 1 */ 559 } 560 561 /* 562 * Flush thread state. This is called when a thread does an execve(). 563 */ 564 void 565 flush_thread (void) 566 { 567 /* drop floating-point and debug-register state if it exists: */ 568 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 569 ia64_drop_fpu(current); 570 } 571 572 /* 573 * Clean up state associated with current thread. This is called when 574 * the thread calls exit(). 575 */ 576 void 577 exit_thread (void) 578 { 579 580 ia64_drop_fpu(current); 581 #ifdef CONFIG_PERFMON 582 /* if needed, stop monitoring and flush state to perfmon context */ 583 if (current->thread.pfm_context) 584 pfm_exit_thread(current); 585 586 /* free debug register resources */ 587 if (current->thread.flags & IA64_THREAD_DBG_VALID) 588 pfm_release_debug_registers(current); 589 #endif 590 } 591 592 unsigned long 593 get_wchan (struct task_struct *p) 594 { 595 struct unw_frame_info info; 596 unsigned long ip; 597 int count = 0; 598 599 if (!p || p == current || p->state == TASK_RUNNING) 600 return 0; 601 602 /* 603 * Note: p may not be a blocked task (it could be current or 604 * another process running on some other CPU. Rather than 605 * trying to determine if p is really blocked, we just assume 606 * it's blocked and rely on the unwind routines to fail 607 * gracefully if the process wasn't really blocked after all. 608 * --davidm 99/12/15 609 */ 610 unw_init_from_blocked_task(&info, p); 611 do { 612 if (p->state == TASK_RUNNING) 613 return 0; 614 if (unw_unwind(&info) < 0) 615 return 0; 616 unw_get_ip(&info, &ip); 617 if (!in_sched_functions(ip)) 618 return ip; 619 } while (count++ < 16); 620 return 0; 621 } 622 623 void 624 cpu_halt (void) 625 { 626 pal_power_mgmt_info_u_t power_info[8]; 627 unsigned long min_power; 628 int i, min_power_state; 629 630 if (ia64_pal_halt_info(power_info) != 0) 631 return; 632 633 min_power_state = 0; 634 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 635 for (i = 1; i < 8; ++i) 636 if (power_info[i].pal_power_mgmt_info_s.im 637 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 638 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 639 min_power_state = i; 640 } 641 642 while (1) 643 ia64_pal_halt(min_power_state); 644 } 645 646 void machine_shutdown(void) 647 { 648 #ifdef CONFIG_HOTPLUG_CPU 649 int cpu; 650 651 for_each_online_cpu(cpu) { 652 if (cpu != smp_processor_id()) 653 cpu_down(cpu); 654 } 655 #endif 656 #ifdef CONFIG_KEXEC 657 kexec_disable_iosapic(); 658 #endif 659 } 660 661 void 662 machine_restart (char *restart_cmd) 663 { 664 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 665 efi_reboot(REBOOT_WARM, NULL); 666 } 667 668 void 669 machine_halt (void) 670 { 671 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 672 cpu_halt(); 673 } 674 675 void 676 machine_power_off (void) 677 { 678 if (pm_power_off) 679 pm_power_off(); 680 machine_halt(); 681 } 682 683