xref: /openbmc/linux/arch/ia64/kernel/process.c (revision d47a97bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
8  *
9  * 2005-10-07 Keith Owens <kaos@sgi.com>
10  *	      Add notify_die() hooks.
11  */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/reboot.h>
23 #include <linux/sched.h>
24 #include <linux/sched/debug.h>
25 #include <linux/sched/hotplug.h>
26 #include <linux/sched/task.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/stddef.h>
29 #include <linux/thread_info.h>
30 #include <linux/unistd.h>
31 #include <linux/efi.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/kdebug.h>
35 #include <linux/utsname.h>
36 #include <linux/resume_user_mode.h>
37 #include <linux/rcupdate.h>
38 
39 #include <asm/cpu.h>
40 #include <asm/delay.h>
41 #include <asm/elf.h>
42 #include <asm/irq.h>
43 #include <asm/kexec.h>
44 #include <asm/processor.h>
45 #include <asm/sal.h>
46 #include <asm/switch_to.h>
47 #include <asm/tlbflush.h>
48 #include <linux/uaccess.h>
49 #include <asm/unwind.h>
50 #include <asm/user.h>
51 #include <asm/xtp.h>
52 
53 #include "entry.h"
54 
55 #include "sigframe.h"
56 
57 void (*ia64_mark_idle)(int);
58 
59 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
60 EXPORT_SYMBOL(boot_option_idle_override);
61 void (*pm_power_off) (void);
62 EXPORT_SYMBOL(pm_power_off);
63 
64 static void
65 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
66 {
67 	unsigned long ip, sp, bsp;
68 	const char *loglvl = arg;
69 
70 	printk("%s\nCall Trace:\n", loglvl);
71 	do {
72 		unw_get_ip(info, &ip);
73 		if (ip == 0)
74 			break;
75 
76 		unw_get_sp(info, &sp);
77 		unw_get_bsp(info, &bsp);
78 		printk("%s [<%016lx>] %pS\n"
79 			 "                                sp=%016lx bsp=%016lx\n",
80 			 loglvl, ip, (void *)ip, sp, bsp);
81 	} while (unw_unwind(info) >= 0);
82 }
83 
84 void
85 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
86 {
87 	if (!task)
88 		unw_init_running(ia64_do_show_stack, (void *)loglvl);
89 	else {
90 		struct unw_frame_info info;
91 
92 		unw_init_from_blocked_task(&info, task);
93 		ia64_do_show_stack(&info, (void *)loglvl);
94 	}
95 }
96 
97 void
98 show_regs (struct pt_regs *regs)
99 {
100 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
101 
102 	print_modules();
103 	printk("\n");
104 	show_regs_print_info(KERN_DEFAULT);
105 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
106 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
107 	       init_utsname()->release);
108 	printk("ip is at %pS\n", (void *)ip);
109 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
110 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
111 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
112 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
113 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
114 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
115 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
116 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
117 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
118 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
119 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
120 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
121 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
122 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
123 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
124 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
125 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
126 
127 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
128 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
129 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
130 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
131 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
132 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
133 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
134 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
135 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
136 
137 	if (user_mode(regs)) {
138 		/* print the stacked registers */
139 		unsigned long val, *bsp, ndirty;
140 		int i, sof, is_nat = 0;
141 
142 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
143 		ndirty = (regs->loadrs >> 19);
144 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
145 		for (i = 0; i < sof; ++i) {
146 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
147 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
148 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
149 		}
150 	} else
151 		show_stack(NULL, NULL, KERN_DEFAULT);
152 }
153 
154 /* local support for deprecated console_print */
155 void
156 console_print(const char *s)
157 {
158 	printk(KERN_EMERG "%s", s);
159 }
160 
161 void
162 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
163 {
164 	if (fsys_mode(current, &scr->pt)) {
165 		/*
166 		 * defer signal-handling etc. until we return to
167 		 * privilege-level 0.
168 		 */
169 		if (!ia64_psr(&scr->pt)->lp)
170 			ia64_psr(&scr->pt)->lp = 1;
171 		return;
172 	}
173 
174 	/* deal with pending signal delivery */
175 	if (test_thread_flag(TIF_SIGPENDING) ||
176 	    test_thread_flag(TIF_NOTIFY_SIGNAL)) {
177 		local_irq_enable();	/* force interrupt enable */
178 		ia64_do_signal(scr, in_syscall);
179 	}
180 
181 	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
182 		local_irq_enable();	/* force interrupt enable */
183 		resume_user_mode_work(&scr->pt);
184 	}
185 
186 	/* copy user rbs to kernel rbs */
187 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
188 		local_irq_enable();	/* force interrupt enable */
189 		ia64_sync_krbs();
190 	}
191 
192 	local_irq_disable();	/* force interrupt disable */
193 }
194 
195 static int __init nohalt_setup(char * str)
196 {
197 	cpu_idle_poll_ctrl(true);
198 	return 1;
199 }
200 __setup("nohalt", nohalt_setup);
201 
202 #ifdef CONFIG_HOTPLUG_CPU
203 /* We don't actually take CPU down, just spin without interrupts. */
204 static inline void play_dead(void)
205 {
206 	unsigned int this_cpu = smp_processor_id();
207 
208 	/* Ack it */
209 	__this_cpu_write(cpu_state, CPU_DEAD);
210 
211 	max_xtp();
212 	local_irq_disable();
213 	idle_task_exit();
214 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
215 	/*
216 	 * The above is a point of no-return, the processor is
217 	 * expected to be in SAL loop now.
218 	 */
219 	BUG();
220 }
221 #else
222 static inline void play_dead(void)
223 {
224 	BUG();
225 }
226 #endif /* CONFIG_HOTPLUG_CPU */
227 
228 void arch_cpu_idle_dead(void)
229 {
230 	play_dead();
231 }
232 
233 void arch_cpu_idle(void)
234 {
235 	void (*mark_idle)(int) = ia64_mark_idle;
236 
237 #ifdef CONFIG_SMP
238 	min_xtp();
239 #endif
240 	rmb();
241 	if (mark_idle)
242 		(*mark_idle)(1);
243 
244 	raw_safe_halt();
245 	raw_local_irq_disable();
246 
247 	if (mark_idle)
248 		(*mark_idle)(0);
249 #ifdef CONFIG_SMP
250 	normal_xtp();
251 #endif
252 }
253 
254 void
255 ia64_save_extra (struct task_struct *task)
256 {
257 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
258 		ia64_save_debug_regs(&task->thread.dbr[0]);
259 }
260 
261 void
262 ia64_load_extra (struct task_struct *task)
263 {
264 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
265 		ia64_load_debug_regs(&task->thread.dbr[0]);
266 }
267 
268 /*
269  * Copy the state of an ia-64 thread.
270  *
271  * We get here through the following  call chain:
272  *
273  *	from user-level:	from kernel:
274  *
275  *	<clone syscall>	        <some kernel call frames>
276  *	sys_clone		   :
277  *	kernel_clone		kernel_clone
278  *	copy_thread		copy_thread
279  *
280  * This means that the stack layout is as follows:
281  *
282  *	+---------------------+ (highest addr)
283  *	|   struct pt_regs    |
284  *	+---------------------+
285  *	| struct switch_stack |
286  *	+---------------------+
287  *	|                     |
288  *	|    memory stack     |
289  *	|                     | <-- sp (lowest addr)
290  *	+---------------------+
291  *
292  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
293  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
294  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
295  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
296  * the stack is page aligned and the page size is at least 4KB, this is always the case,
297  * so there is nothing to worry about.
298  */
299 int
300 copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
301 {
302 	unsigned long clone_flags = args->flags;
303 	unsigned long user_stack_base = args->stack;
304 	unsigned long user_stack_size = args->stack_size;
305 	unsigned long tls = args->tls;
306 	extern char ia64_ret_from_clone;
307 	struct switch_stack *child_stack, *stack;
308 	unsigned long rbs, child_rbs, rbs_size;
309 	struct pt_regs *child_ptregs;
310 	struct pt_regs *regs = current_pt_regs();
311 	int retval = 0;
312 
313 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
314 	child_stack = (struct switch_stack *) child_ptregs - 1;
315 
316 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
317 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
318 
319 	/* copy parts of thread_struct: */
320 	p->thread.ksp = (unsigned long) child_stack - 16;
321 
322 	/*
323 	 * NOTE: The calling convention considers all floating point
324 	 * registers in the high partition (fph) to be scratch.  Since
325 	 * the only way to get to this point is through a system call,
326 	 * we know that the values in fph are all dead.  Hence, there
327 	 * is no need to inherit the fph state from the parent to the
328 	 * child and all we have to do is to make sure that
329 	 * IA64_THREAD_FPH_VALID is cleared in the child.
330 	 *
331 	 * XXX We could push this optimization a bit further by
332 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
333 	 * However, it's not clear this is worth doing.  Also, it
334 	 * would be a slight deviation from the normal Linux system
335 	 * call behavior where scratch registers are preserved across
336 	 * system calls (unless used by the system call itself).
337 	 */
338 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
339 					 | IA64_THREAD_PM_VALID)
340 #	define THREAD_FLAGS_TO_SET	0
341 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
342 			   | THREAD_FLAGS_TO_SET);
343 
344 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
345 
346 	if (unlikely(args->fn)) {
347 		if (unlikely(args->idle)) {
348 			/* fork_idle() called us */
349 			return 0;
350 		}
351 		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
352 		child_stack->r4 = (unsigned long) args->fn;
353 		child_stack->r5 = (unsigned long) args->fn_arg;
354 		/*
355 		 * Preserve PSR bits, except for bits 32-34 and 37-45,
356 		 * which we can't read.
357 		 */
358 		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
359 		/* mark as valid, empty frame */
360 		child_ptregs->cr_ifs = 1UL << 63;
361 		child_stack->ar_fpsr = child_ptregs->ar_fpsr
362 			= ia64_getreg(_IA64_REG_AR_FPSR);
363 		child_stack->pr = (1 << PRED_KERNEL_STACK);
364 		child_stack->ar_bspstore = child_rbs;
365 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
366 
367 		/* stop some PSR bits from being inherited.
368 		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
369 		 * therefore we must specify them explicitly here and not include them in
370 		 * IA64_PSR_BITS_TO_CLEAR.
371 		 */
372 		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
373 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
374 
375 		return 0;
376 	}
377 	stack = ((struct switch_stack *) regs) - 1;
378 	/* copy parent's switch_stack & pt_regs to child: */
379 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
380 
381 	/* copy the parent's register backing store to the child: */
382 	rbs_size = stack->ar_bspstore - rbs;
383 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
384 	if (clone_flags & CLONE_SETTLS)
385 		child_ptregs->r13 = tls;
386 	if (user_stack_base) {
387 		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
388 		child_ptregs->ar_bspstore = user_stack_base;
389 		child_ptregs->ar_rnat = 0;
390 		child_ptregs->loadrs = 0;
391 	}
392 	child_stack->ar_bspstore = child_rbs + rbs_size;
393 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
394 
395 	/* stop some PSR bits from being inherited.
396 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
397 	 * therefore we must specify them explicitly here and not include them in
398 	 * IA64_PSR_BITS_TO_CLEAR.
399 	 */
400 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
401 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
402 	return retval;
403 }
404 
405 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
406 			   unsigned long stack_size, unsigned long parent_tidptr,
407 			   unsigned long child_tidptr, unsigned long tls)
408 {
409 	struct kernel_clone_args args = {
410 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
411 		.pidfd		= (int __user *)parent_tidptr,
412 		.child_tid	= (int __user *)child_tidptr,
413 		.parent_tid	= (int __user *)parent_tidptr,
414 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
415 		.stack		= stack_start,
416 		.stack_size	= stack_size,
417 		.tls		= tls,
418 	};
419 
420 	return kernel_clone(&args);
421 }
422 
423 static void
424 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
425 {
426 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
427 	unsigned long ip;
428 	elf_greg_t *dst = arg;
429 	struct pt_regs *pt;
430 	char nat;
431 	int i;
432 
433 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
434 
435 	if (unw_unwind_to_user(info) < 0)
436 		return;
437 
438 	unw_get_sp(info, &sp);
439 	pt = (struct pt_regs *) (sp + 16);
440 
441 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
442 
443 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
444 		return;
445 
446 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
447 		  &ar_rnat);
448 
449 	/*
450 	 * coredump format:
451 	 *	r0-r31
452 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
453 	 *	predicate registers (p0-p63)
454 	 *	b0-b7
455 	 *	ip cfm user-mask
456 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
457 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
458 	 */
459 
460 	/* r0 is zero */
461 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
462 		unw_get_gr(info, i, &dst[i], &nat);
463 		if (nat)
464 			nat_bits |= mask;
465 		mask <<= 1;
466 	}
467 	dst[32] = nat_bits;
468 	unw_get_pr(info, &dst[33]);
469 
470 	for (i = 0; i < 8; ++i)
471 		unw_get_br(info, i, &dst[34 + i]);
472 
473 	unw_get_rp(info, &ip);
474 	dst[42] = ip + ia64_psr(pt)->ri;
475 	dst[43] = cfm;
476 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
477 
478 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
479 	/*
480 	 * For bsp and bspstore, unw_get_ar() would return the kernel
481 	 * addresses, but we need the user-level addresses instead:
482 	 */
483 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
484 	dst[47] = pt->ar_bspstore;
485 	dst[48] = ar_rnat;
486 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
487 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
488 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
489 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
490 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
491 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
492 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
493 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
494 }
495 
496 static void
497 do_copy_regs (struct unw_frame_info *info, void *arg)
498 {
499 	do_copy_task_regs(current, info, arg);
500 }
501 
502 void
503 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
504 {
505 	unw_init_running(do_copy_regs, dst);
506 }
507 
508 /*
509  * Flush thread state.  This is called when a thread does an execve().
510  */
511 void
512 flush_thread (void)
513 {
514 	/* drop floating-point and debug-register state if it exists: */
515 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
516 	ia64_drop_fpu(current);
517 }
518 
519 /*
520  * Clean up state associated with a thread.  This is called when
521  * the thread calls exit().
522  */
523 void
524 exit_thread (struct task_struct *tsk)
525 {
526 
527 	ia64_drop_fpu(tsk);
528 }
529 
530 unsigned long
531 __get_wchan (struct task_struct *p)
532 {
533 	struct unw_frame_info info;
534 	unsigned long ip;
535 	int count = 0;
536 
537 	/*
538 	 * Note: p may not be a blocked task (it could be current or
539 	 * another process running on some other CPU.  Rather than
540 	 * trying to determine if p is really blocked, we just assume
541 	 * it's blocked and rely on the unwind routines to fail
542 	 * gracefully if the process wasn't really blocked after all.
543 	 * --davidm 99/12/15
544 	 */
545 	unw_init_from_blocked_task(&info, p);
546 	do {
547 		if (task_is_running(p))
548 			return 0;
549 		if (unw_unwind(&info) < 0)
550 			return 0;
551 		unw_get_ip(&info, &ip);
552 		if (!in_sched_functions(ip))
553 			return ip;
554 	} while (count++ < 16);
555 	return 0;
556 }
557 
558 void
559 cpu_halt (void)
560 {
561 	pal_power_mgmt_info_u_t power_info[8];
562 	unsigned long min_power;
563 	int i, min_power_state;
564 
565 	if (ia64_pal_halt_info(power_info) != 0)
566 		return;
567 
568 	min_power_state = 0;
569 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
570 	for (i = 1; i < 8; ++i)
571 		if (power_info[i].pal_power_mgmt_info_s.im
572 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
573 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
574 			min_power_state = i;
575 		}
576 
577 	while (1)
578 		ia64_pal_halt(min_power_state);
579 }
580 
581 void machine_shutdown(void)
582 {
583 	smp_shutdown_nonboot_cpus(reboot_cpu);
584 
585 #ifdef CONFIG_KEXEC
586 	kexec_disable_iosapic();
587 #endif
588 }
589 
590 void
591 machine_restart (char *restart_cmd)
592 {
593 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
594 	efi_reboot(REBOOT_WARM, NULL);
595 }
596 
597 void
598 machine_halt (void)
599 {
600 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
601 	cpu_halt();
602 }
603 
604 void
605 machine_power_off (void)
606 {
607 	do_kernel_power_off();
608 	machine_halt();
609 }
610 
611 EXPORT_SYMBOL(ia64_delay_loop);
612