xref: /openbmc/linux/arch/ia64/kernel/process.c (revision c21b37f6)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <kaos@sgi.com>
9  *	      Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 
31 #include <asm/cpu.h>
32 #include <asm/delay.h>
33 #include <asm/elf.h>
34 #include <asm/ia32.h>
35 #include <asm/irq.h>
36 #include <asm/kexec.h>
37 #include <asm/pgalloc.h>
38 #include <asm/processor.h>
39 #include <asm/sal.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/unwind.h>
43 #include <asm/user.h>
44 
45 #include "entry.h"
46 
47 #ifdef CONFIG_PERFMON
48 # include <asm/perfmon.h>
49 #endif
50 
51 #include "sigframe.h"
52 
53 void (*ia64_mark_idle)(int);
54 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
55 
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
58 
59 void
60 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
61 {
62 	unsigned long ip, sp, bsp;
63 	char buf[128];			/* don't make it so big that it overflows the stack! */
64 
65 	printk("\nCall Trace:\n");
66 	do {
67 		unw_get_ip(info, &ip);
68 		if (ip == 0)
69 			break;
70 
71 		unw_get_sp(info, &sp);
72 		unw_get_bsp(info, &bsp);
73 		snprintf(buf, sizeof(buf),
74 			 " [<%016lx>] %%s\n"
75 			 "                                sp=%016lx bsp=%016lx\n",
76 			 ip, sp, bsp);
77 		print_symbol(buf, ip);
78 	} while (unw_unwind(info) >= 0);
79 }
80 
81 void
82 show_stack (struct task_struct *task, unsigned long *sp)
83 {
84 	if (!task)
85 		unw_init_running(ia64_do_show_stack, NULL);
86 	else {
87 		struct unw_frame_info info;
88 
89 		unw_init_from_blocked_task(&info, task);
90 		ia64_do_show_stack(&info, NULL);
91 	}
92 }
93 
94 void
95 dump_stack (void)
96 {
97 	show_stack(NULL, NULL);
98 }
99 
100 EXPORT_SYMBOL(dump_stack);
101 
102 void
103 show_regs (struct pt_regs *regs)
104 {
105 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
106 
107 	print_modules();
108 	printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
109 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s\n",
110 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
111 	print_symbol("ip is at %s\n", ip);
112 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
113 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
114 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
115 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
116 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
117 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
118 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
119 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
120 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
121 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
122 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
123 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
124 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
125 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
126 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
127 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
128 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
129 
130 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
131 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
132 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
133 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
134 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
135 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
136 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
137 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
138 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139 
140 	if (user_mode(regs)) {
141 		/* print the stacked registers */
142 		unsigned long val, *bsp, ndirty;
143 		int i, sof, is_nat = 0;
144 
145 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
146 		ndirty = (regs->loadrs >> 19);
147 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
148 		for (i = 0; i < sof; ++i) {
149 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
150 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
151 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152 		}
153 	} else
154 		show_stack(NULL, NULL);
155 }
156 
157 void
158 do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall)
159 {
160 	if (fsys_mode(current, &scr->pt)) {
161 		/* defer signal-handling etc. until we return to privilege-level 0.  */
162 		if (!ia64_psr(&scr->pt)->lp)
163 			ia64_psr(&scr->pt)->lp = 1;
164 		return;
165 	}
166 
167 #ifdef CONFIG_PERFMON
168 	if (current->thread.pfm_needs_checking)
169 		pfm_handle_work();
170 #endif
171 
172 	/* deal with pending signal delivery */
173 	if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK))
174 		ia64_do_signal(scr, in_syscall);
175 }
176 
177 static int pal_halt        = 1;
178 static int can_do_pal_halt = 1;
179 
180 static int __init nohalt_setup(char * str)
181 {
182 	pal_halt = can_do_pal_halt = 0;
183 	return 1;
184 }
185 __setup("nohalt", nohalt_setup);
186 
187 void
188 update_pal_halt_status(int status)
189 {
190 	can_do_pal_halt = pal_halt && status;
191 }
192 
193 /*
194  * We use this if we don't have any better idle routine..
195  */
196 void
197 default_idle (void)
198 {
199 	local_irq_enable();
200 	while (!need_resched()) {
201 		if (can_do_pal_halt)
202 			safe_halt();
203 		else
204 			cpu_relax();
205 	}
206 }
207 
208 #ifdef CONFIG_HOTPLUG_CPU
209 /* We don't actually take CPU down, just spin without interrupts. */
210 static inline void play_dead(void)
211 {
212 	extern void ia64_cpu_local_tick (void);
213 	unsigned int this_cpu = smp_processor_id();
214 
215 	/* Ack it */
216 	__get_cpu_var(cpu_state) = CPU_DEAD;
217 
218 	max_xtp();
219 	local_irq_disable();
220 	idle_task_exit();
221 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
222 	/*
223 	 * The above is a point of no-return, the processor is
224 	 * expected to be in SAL loop now.
225 	 */
226 	BUG();
227 }
228 #else
229 static inline void play_dead(void)
230 {
231 	BUG();
232 }
233 #endif /* CONFIG_HOTPLUG_CPU */
234 
235 void cpu_idle_wait(void)
236 {
237 	unsigned int cpu, this_cpu = get_cpu();
238 	cpumask_t map;
239 	cpumask_t tmp = current->cpus_allowed;
240 
241 	set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
242 	put_cpu();
243 
244 	cpus_clear(map);
245 	for_each_online_cpu(cpu) {
246 		per_cpu(cpu_idle_state, cpu) = 1;
247 		cpu_set(cpu, map);
248 	}
249 
250 	__get_cpu_var(cpu_idle_state) = 0;
251 
252 	wmb();
253 	do {
254 		ssleep(1);
255 		for_each_online_cpu(cpu) {
256 			if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
257 				cpu_clear(cpu, map);
258 		}
259 		cpus_and(map, map, cpu_online_map);
260 	} while (!cpus_empty(map));
261 	set_cpus_allowed(current, tmp);
262 }
263 EXPORT_SYMBOL_GPL(cpu_idle_wait);
264 
265 void __attribute__((noreturn))
266 cpu_idle (void)
267 {
268 	void (*mark_idle)(int) = ia64_mark_idle;
269   	int cpu = smp_processor_id();
270 
271 	/* endless idle loop with no priority at all */
272 	while (1) {
273 		if (can_do_pal_halt) {
274 			current_thread_info()->status &= ~TS_POLLING;
275 			/*
276 			 * TS_POLLING-cleared state must be visible before we
277 			 * test NEED_RESCHED:
278 			 */
279 			smp_mb();
280 		} else {
281 			current_thread_info()->status |= TS_POLLING;
282 		}
283 
284 		if (!need_resched()) {
285 			void (*idle)(void);
286 #ifdef CONFIG_SMP
287 			min_xtp();
288 #endif
289 			if (__get_cpu_var(cpu_idle_state))
290 				__get_cpu_var(cpu_idle_state) = 0;
291 
292 			rmb();
293 			if (mark_idle)
294 				(*mark_idle)(1);
295 
296 			idle = pm_idle;
297 			if (!idle)
298 				idle = default_idle;
299 			(*idle)();
300 			if (mark_idle)
301 				(*mark_idle)(0);
302 #ifdef CONFIG_SMP
303 			normal_xtp();
304 #endif
305 		}
306 		preempt_enable_no_resched();
307 		schedule();
308 		preempt_disable();
309 		check_pgt_cache();
310 		if (cpu_is_offline(cpu))
311 			play_dead();
312 	}
313 }
314 
315 void
316 ia64_save_extra (struct task_struct *task)
317 {
318 #ifdef CONFIG_PERFMON
319 	unsigned long info;
320 #endif
321 
322 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
323 		ia64_save_debug_regs(&task->thread.dbr[0]);
324 
325 #ifdef CONFIG_PERFMON
326 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
327 		pfm_save_regs(task);
328 
329 	info = __get_cpu_var(pfm_syst_info);
330 	if (info & PFM_CPUINFO_SYST_WIDE)
331 		pfm_syst_wide_update_task(task, info, 0);
332 #endif
333 
334 #ifdef CONFIG_IA32_SUPPORT
335 	if (IS_IA32_PROCESS(task_pt_regs(task)))
336 		ia32_save_state(task);
337 #endif
338 }
339 
340 void
341 ia64_load_extra (struct task_struct *task)
342 {
343 #ifdef CONFIG_PERFMON
344 	unsigned long info;
345 #endif
346 
347 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
348 		ia64_load_debug_regs(&task->thread.dbr[0]);
349 
350 #ifdef CONFIG_PERFMON
351 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
352 		pfm_load_regs(task);
353 
354 	info = __get_cpu_var(pfm_syst_info);
355 	if (info & PFM_CPUINFO_SYST_WIDE)
356 		pfm_syst_wide_update_task(task, info, 1);
357 #endif
358 
359 #ifdef CONFIG_IA32_SUPPORT
360 	if (IS_IA32_PROCESS(task_pt_regs(task)))
361 		ia32_load_state(task);
362 #endif
363 }
364 
365 /*
366  * Copy the state of an ia-64 thread.
367  *
368  * We get here through the following  call chain:
369  *
370  *	from user-level:	from kernel:
371  *
372  *	<clone syscall>	        <some kernel call frames>
373  *	sys_clone		   :
374  *	do_fork			do_fork
375  *	copy_thread		copy_thread
376  *
377  * This means that the stack layout is as follows:
378  *
379  *	+---------------------+ (highest addr)
380  *	|   struct pt_regs    |
381  *	+---------------------+
382  *	| struct switch_stack |
383  *	+---------------------+
384  *	|                     |
385  *	|    memory stack     |
386  *	|                     | <-- sp (lowest addr)
387  *	+---------------------+
388  *
389  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
390  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
391  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
392  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
393  * the stack is page aligned and the page size is at least 4KB, this is always the case,
394  * so there is nothing to worry about.
395  */
396 int
397 copy_thread (int nr, unsigned long clone_flags,
398 	     unsigned long user_stack_base, unsigned long user_stack_size,
399 	     struct task_struct *p, struct pt_regs *regs)
400 {
401 	extern char ia64_ret_from_clone, ia32_ret_from_clone;
402 	struct switch_stack *child_stack, *stack;
403 	unsigned long rbs, child_rbs, rbs_size;
404 	struct pt_regs *child_ptregs;
405 	int retval = 0;
406 
407 #ifdef CONFIG_SMP
408 	/*
409 	 * For SMP idle threads, fork_by_hand() calls do_fork with
410 	 * NULL regs.
411 	 */
412 	if (!regs)
413 		return 0;
414 #endif
415 
416 	stack = ((struct switch_stack *) regs) - 1;
417 
418 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
419 	child_stack = (struct switch_stack *) child_ptregs - 1;
420 
421 	/* copy parent's switch_stack & pt_regs to child: */
422 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
423 
424 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
425 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
426 	rbs_size = stack->ar_bspstore - rbs;
427 
428 	/* copy the parent's register backing store to the child: */
429 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
430 
431 	if (likely(user_mode(child_ptregs))) {
432 		if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
433 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
434 		if (user_stack_base) {
435 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
436 			child_ptregs->ar_bspstore = user_stack_base;
437 			child_ptregs->ar_rnat = 0;
438 			child_ptregs->loadrs = 0;
439 		}
440 	} else {
441 		/*
442 		 * Note: we simply preserve the relative position of
443 		 * the stack pointer here.  There is no need to
444 		 * allocate a scratch area here, since that will have
445 		 * been taken care of by the caller of sys_clone()
446 		 * already.
447 		 */
448 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
449 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
450 	}
451 	child_stack->ar_bspstore = child_rbs + rbs_size;
452 	if (IS_IA32_PROCESS(regs))
453 		child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
454 	else
455 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
456 
457 	/* copy parts of thread_struct: */
458 	p->thread.ksp = (unsigned long) child_stack - 16;
459 
460 	/* stop some PSR bits from being inherited.
461 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
462 	 * therefore we must specify them explicitly here and not include them in
463 	 * IA64_PSR_BITS_TO_CLEAR.
464 	 */
465 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
466 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
467 
468 	/*
469 	 * NOTE: The calling convention considers all floating point
470 	 * registers in the high partition (fph) to be scratch.  Since
471 	 * the only way to get to this point is through a system call,
472 	 * we know that the values in fph are all dead.  Hence, there
473 	 * is no need to inherit the fph state from the parent to the
474 	 * child and all we have to do is to make sure that
475 	 * IA64_THREAD_FPH_VALID is cleared in the child.
476 	 *
477 	 * XXX We could push this optimization a bit further by
478 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
479 	 * However, it's not clear this is worth doing.  Also, it
480 	 * would be a slight deviation from the normal Linux system
481 	 * call behavior where scratch registers are preserved across
482 	 * system calls (unless used by the system call itself).
483 	 */
484 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
485 					 | IA64_THREAD_PM_VALID)
486 #	define THREAD_FLAGS_TO_SET	0
487 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
488 			   | THREAD_FLAGS_TO_SET);
489 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
490 #ifdef CONFIG_IA32_SUPPORT
491 	/*
492 	 * If we're cloning an IA32 task then save the IA32 extra
493 	 * state from the current task to the new task
494 	 */
495 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
496 		ia32_save_state(p);
497 		if (clone_flags & CLONE_SETTLS)
498 			retval = ia32_clone_tls(p, child_ptregs);
499 
500 		/* Copy partially mapped page list */
501 		if (!retval)
502 			retval = ia32_copy_ia64_partial_page_list(p,
503 								clone_flags);
504 	}
505 #endif
506 
507 #ifdef CONFIG_PERFMON
508 	if (current->thread.pfm_context)
509 		pfm_inherit(p, child_ptregs);
510 #endif
511 	return retval;
512 }
513 
514 static void
515 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
516 {
517 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
518 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
519 	elf_greg_t *dst = arg;
520 	struct pt_regs *pt;
521 	char nat;
522 	int i;
523 
524 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
525 
526 	if (unw_unwind_to_user(info) < 0)
527 		return;
528 
529 	unw_get_sp(info, &sp);
530 	pt = (struct pt_regs *) (sp + 16);
531 
532 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
533 
534 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
535 		return;
536 
537 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
538 		  &ar_rnat);
539 
540 	/*
541 	 * coredump format:
542 	 *	r0-r31
543 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
544 	 *	predicate registers (p0-p63)
545 	 *	b0-b7
546 	 *	ip cfm user-mask
547 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
548 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
549 	 */
550 
551 	/* r0 is zero */
552 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
553 		unw_get_gr(info, i, &dst[i], &nat);
554 		if (nat)
555 			nat_bits |= mask;
556 		mask <<= 1;
557 	}
558 	dst[32] = nat_bits;
559 	unw_get_pr(info, &dst[33]);
560 
561 	for (i = 0; i < 8; ++i)
562 		unw_get_br(info, i, &dst[34 + i]);
563 
564 	unw_get_rp(info, &ip);
565 	dst[42] = ip + ia64_psr(pt)->ri;
566 	dst[43] = cfm;
567 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
568 
569 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
570 	/*
571 	 * For bsp and bspstore, unw_get_ar() would return the kernel
572 	 * addresses, but we need the user-level addresses instead:
573 	 */
574 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
575 	dst[47] = pt->ar_bspstore;
576 	dst[48] = ar_rnat;
577 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
578 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
579 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
580 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
581 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
582 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
583 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
584 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
585 }
586 
587 void
588 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
589 {
590 	elf_fpreg_t *dst = arg;
591 	int i;
592 
593 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
594 
595 	if (unw_unwind_to_user(info) < 0)
596 		return;
597 
598 	/* f0 is 0.0, f1 is 1.0 */
599 
600 	for (i = 2; i < 32; ++i)
601 		unw_get_fr(info, i, dst + i);
602 
603 	ia64_flush_fph(task);
604 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
605 		memcpy(dst + 32, task->thread.fph, 96*16);
606 }
607 
608 void
609 do_copy_regs (struct unw_frame_info *info, void *arg)
610 {
611 	do_copy_task_regs(current, info, arg);
612 }
613 
614 void
615 do_dump_fpu (struct unw_frame_info *info, void *arg)
616 {
617 	do_dump_task_fpu(current, info, arg);
618 }
619 
620 int
621 dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
622 {
623 	struct unw_frame_info tcore_info;
624 
625 	if (current == task) {
626 		unw_init_running(do_copy_regs, regs);
627 	} else {
628 		memset(&tcore_info, 0, sizeof(tcore_info));
629 		unw_init_from_blocked_task(&tcore_info, task);
630 		do_copy_task_regs(task, &tcore_info, regs);
631 	}
632 	return 1;
633 }
634 
635 void
636 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
637 {
638 	unw_init_running(do_copy_regs, dst);
639 }
640 
641 int
642 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
643 {
644 	struct unw_frame_info tcore_info;
645 
646 	if (current == task) {
647 		unw_init_running(do_dump_fpu, dst);
648 	} else {
649 		memset(&tcore_info, 0, sizeof(tcore_info));
650 		unw_init_from_blocked_task(&tcore_info, task);
651 		do_dump_task_fpu(task, &tcore_info, dst);
652 	}
653 	return 1;
654 }
655 
656 int
657 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
658 {
659 	unw_init_running(do_dump_fpu, dst);
660 	return 1;	/* f0-f31 are always valid so we always return 1 */
661 }
662 
663 long
664 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
665 	    struct pt_regs *regs)
666 {
667 	char *fname;
668 	int error;
669 
670 	fname = getname(filename);
671 	error = PTR_ERR(fname);
672 	if (IS_ERR(fname))
673 		goto out;
674 	error = do_execve(fname, argv, envp, regs);
675 	putname(fname);
676 out:
677 	return error;
678 }
679 
680 pid_t
681 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
682 {
683 	extern void start_kernel_thread (void);
684 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
685 	struct {
686 		struct switch_stack sw;
687 		struct pt_regs pt;
688 	} regs;
689 
690 	memset(&regs, 0, sizeof(regs));
691 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */
692 	regs.pt.r1 = helper_fptr[1];		/* set GP */
693 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */
694 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */
695 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
696 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
697 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */
698 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
699 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
700 	regs.sw.pr = (1 << PRED_KERNEL_STACK);
701 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
702 }
703 EXPORT_SYMBOL(kernel_thread);
704 
705 /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
706 int
707 kernel_thread_helper (int (*fn)(void *), void *arg)
708 {
709 #ifdef CONFIG_IA32_SUPPORT
710 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
711 		/* A kernel thread is always a 64-bit process. */
712 		current->thread.map_base  = DEFAULT_MAP_BASE;
713 		current->thread.task_size = DEFAULT_TASK_SIZE;
714 		ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
715 		ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
716 	}
717 #endif
718 	return (*fn)(arg);
719 }
720 
721 /*
722  * Flush thread state.  This is called when a thread does an execve().
723  */
724 void
725 flush_thread (void)
726 {
727 	/* drop floating-point and debug-register state if it exists: */
728 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
729 	ia64_drop_fpu(current);
730 #ifdef CONFIG_IA32_SUPPORT
731 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
732 		ia32_drop_ia64_partial_page_list(current);
733 		current->thread.task_size = IA32_PAGE_OFFSET;
734 		set_fs(USER_DS);
735 	}
736 #endif
737 }
738 
739 /*
740  * Clean up state associated with current thread.  This is called when
741  * the thread calls exit().
742  */
743 void
744 exit_thread (void)
745 {
746 
747 	ia64_drop_fpu(current);
748 #ifdef CONFIG_PERFMON
749        /* if needed, stop monitoring and flush state to perfmon context */
750 	if (current->thread.pfm_context)
751 		pfm_exit_thread(current);
752 
753 	/* free debug register resources */
754 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
755 		pfm_release_debug_registers(current);
756 #endif
757 	if (IS_IA32_PROCESS(task_pt_regs(current)))
758 		ia32_drop_ia64_partial_page_list(current);
759 }
760 
761 unsigned long
762 get_wchan (struct task_struct *p)
763 {
764 	struct unw_frame_info info;
765 	unsigned long ip;
766 	int count = 0;
767 
768 	if (!p || p == current || p->state == TASK_RUNNING)
769 		return 0;
770 
771 	/*
772 	 * Note: p may not be a blocked task (it could be current or
773 	 * another process running on some other CPU.  Rather than
774 	 * trying to determine if p is really blocked, we just assume
775 	 * it's blocked and rely on the unwind routines to fail
776 	 * gracefully if the process wasn't really blocked after all.
777 	 * --davidm 99/12/15
778 	 */
779 	unw_init_from_blocked_task(&info, p);
780 	do {
781 		if (p->state == TASK_RUNNING)
782 			return 0;
783 		if (unw_unwind(&info) < 0)
784 			return 0;
785 		unw_get_ip(&info, &ip);
786 		if (!in_sched_functions(ip))
787 			return ip;
788 	} while (count++ < 16);
789 	return 0;
790 }
791 
792 void
793 cpu_halt (void)
794 {
795 	pal_power_mgmt_info_u_t power_info[8];
796 	unsigned long min_power;
797 	int i, min_power_state;
798 
799 	if (ia64_pal_halt_info(power_info) != 0)
800 		return;
801 
802 	min_power_state = 0;
803 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
804 	for (i = 1; i < 8; ++i)
805 		if (power_info[i].pal_power_mgmt_info_s.im
806 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
807 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
808 			min_power_state = i;
809 		}
810 
811 	while (1)
812 		ia64_pal_halt(min_power_state);
813 }
814 
815 void machine_shutdown(void)
816 {
817 #ifdef CONFIG_HOTPLUG_CPU
818 	int cpu;
819 
820 	for_each_online_cpu(cpu) {
821 		if (cpu != smp_processor_id())
822 			cpu_down(cpu);
823 	}
824 #endif
825 #ifdef CONFIG_KEXEC
826 	kexec_disable_iosapic();
827 #endif
828 }
829 
830 void
831 machine_restart (char *restart_cmd)
832 {
833 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
834 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
835 }
836 
837 void
838 machine_halt (void)
839 {
840 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
841 	cpu_halt();
842 }
843 
844 void
845 machine_power_off (void)
846 {
847 	if (pm_power_off)
848 		pm_power_off();
849 	machine_halt();
850 }
851 
852