1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 31 #include <asm/cpu.h> 32 #include <asm/delay.h> 33 #include <asm/elf.h> 34 #include <asm/ia32.h> 35 #include <asm/irq.h> 36 #include <asm/kexec.h> 37 #include <asm/pgalloc.h> 38 #include <asm/processor.h> 39 #include <asm/sal.h> 40 #include <asm/tlbflush.h> 41 #include <asm/uaccess.h> 42 #include <asm/unwind.h> 43 #include <asm/user.h> 44 45 #include "entry.h" 46 47 #ifdef CONFIG_PERFMON 48 # include <asm/perfmon.h> 49 #endif 50 51 #include "sigframe.h" 52 53 void (*ia64_mark_idle)(int); 54 static DEFINE_PER_CPU(unsigned int, cpu_idle_state); 55 56 unsigned long boot_option_idle_override = 0; 57 EXPORT_SYMBOL(boot_option_idle_override); 58 59 void 60 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 61 { 62 unsigned long ip, sp, bsp; 63 char buf[128]; /* don't make it so big that it overflows the stack! */ 64 65 printk("\nCall Trace:\n"); 66 do { 67 unw_get_ip(info, &ip); 68 if (ip == 0) 69 break; 70 71 unw_get_sp(info, &sp); 72 unw_get_bsp(info, &bsp); 73 snprintf(buf, sizeof(buf), 74 " [<%016lx>] %%s\n" 75 " sp=%016lx bsp=%016lx\n", 76 ip, sp, bsp); 77 print_symbol(buf, ip); 78 } while (unw_unwind(info) >= 0); 79 } 80 81 void 82 show_stack (struct task_struct *task, unsigned long *sp) 83 { 84 if (!task) 85 unw_init_running(ia64_do_show_stack, NULL); 86 else { 87 struct unw_frame_info info; 88 89 unw_init_from_blocked_task(&info, task); 90 ia64_do_show_stack(&info, NULL); 91 } 92 } 93 94 void 95 dump_stack (void) 96 { 97 show_stack(NULL, NULL); 98 } 99 100 EXPORT_SYMBOL(dump_stack); 101 102 void 103 show_regs (struct pt_regs *regs) 104 { 105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 106 107 print_modules(); 108 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); 109 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", 110 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); 111 print_symbol("ip is at %s\n", ip); 112 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 113 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 114 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 115 regs->ar_rnat, regs->ar_bspstore, regs->pr); 116 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 117 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 118 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 119 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 120 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 121 regs->f6.u.bits[1], regs->f6.u.bits[0], 122 regs->f7.u.bits[1], regs->f7.u.bits[0]); 123 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 124 regs->f8.u.bits[1], regs->f8.u.bits[0], 125 regs->f9.u.bits[1], regs->f9.u.bits[0]); 126 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 127 regs->f10.u.bits[1], regs->f10.u.bits[0], 128 regs->f11.u.bits[1], regs->f11.u.bits[0]); 129 130 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 131 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 132 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 133 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 134 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 135 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 136 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 137 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 138 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 139 140 if (user_mode(regs)) { 141 /* print the stacked registers */ 142 unsigned long val, *bsp, ndirty; 143 int i, sof, is_nat = 0; 144 145 sof = regs->cr_ifs & 0x7f; /* size of frame */ 146 ndirty = (regs->loadrs >> 19); 147 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 148 for (i = 0; i < sof; ++i) { 149 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 150 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 151 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 152 } 153 } else 154 show_stack(NULL, NULL); 155 } 156 157 void 158 do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall) 159 { 160 if (fsys_mode(current, &scr->pt)) { 161 /* defer signal-handling etc. until we return to privilege-level 0. */ 162 if (!ia64_psr(&scr->pt)->lp) 163 ia64_psr(&scr->pt)->lp = 1; 164 return; 165 } 166 167 #ifdef CONFIG_PERFMON 168 if (current->thread.pfm_needs_checking) 169 pfm_handle_work(); 170 #endif 171 172 /* deal with pending signal delivery */ 173 if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK)) 174 ia64_do_signal(scr, in_syscall); 175 } 176 177 static int pal_halt = 1; 178 static int can_do_pal_halt = 1; 179 180 static int __init nohalt_setup(char * str) 181 { 182 pal_halt = can_do_pal_halt = 0; 183 return 1; 184 } 185 __setup("nohalt", nohalt_setup); 186 187 void 188 update_pal_halt_status(int status) 189 { 190 can_do_pal_halt = pal_halt && status; 191 } 192 193 /* 194 * We use this if we don't have any better idle routine.. 195 */ 196 void 197 default_idle (void) 198 { 199 local_irq_enable(); 200 while (!need_resched()) { 201 if (can_do_pal_halt) 202 safe_halt(); 203 else 204 cpu_relax(); 205 } 206 } 207 208 #ifdef CONFIG_HOTPLUG_CPU 209 /* We don't actually take CPU down, just spin without interrupts. */ 210 static inline void play_dead(void) 211 { 212 extern void ia64_cpu_local_tick (void); 213 unsigned int this_cpu = smp_processor_id(); 214 215 /* Ack it */ 216 __get_cpu_var(cpu_state) = CPU_DEAD; 217 218 max_xtp(); 219 local_irq_disable(); 220 idle_task_exit(); 221 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 222 /* 223 * The above is a point of no-return, the processor is 224 * expected to be in SAL loop now. 225 */ 226 BUG(); 227 } 228 #else 229 static inline void play_dead(void) 230 { 231 BUG(); 232 } 233 #endif /* CONFIG_HOTPLUG_CPU */ 234 235 void cpu_idle_wait(void) 236 { 237 unsigned int cpu, this_cpu = get_cpu(); 238 cpumask_t map; 239 cpumask_t tmp = current->cpus_allowed; 240 241 set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); 242 put_cpu(); 243 244 cpus_clear(map); 245 for_each_online_cpu(cpu) { 246 per_cpu(cpu_idle_state, cpu) = 1; 247 cpu_set(cpu, map); 248 } 249 250 __get_cpu_var(cpu_idle_state) = 0; 251 252 wmb(); 253 do { 254 ssleep(1); 255 for_each_online_cpu(cpu) { 256 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) 257 cpu_clear(cpu, map); 258 } 259 cpus_and(map, map, cpu_online_map); 260 } while (!cpus_empty(map)); 261 set_cpus_allowed(current, tmp); 262 } 263 EXPORT_SYMBOL_GPL(cpu_idle_wait); 264 265 void __attribute__((noreturn)) 266 cpu_idle (void) 267 { 268 void (*mark_idle)(int) = ia64_mark_idle; 269 int cpu = smp_processor_id(); 270 271 /* endless idle loop with no priority at all */ 272 while (1) { 273 if (can_do_pal_halt) { 274 current_thread_info()->status &= ~TS_POLLING; 275 /* 276 * TS_POLLING-cleared state must be visible before we 277 * test NEED_RESCHED: 278 */ 279 smp_mb(); 280 } else { 281 current_thread_info()->status |= TS_POLLING; 282 } 283 284 if (!need_resched()) { 285 void (*idle)(void); 286 #ifdef CONFIG_SMP 287 min_xtp(); 288 #endif 289 if (__get_cpu_var(cpu_idle_state)) 290 __get_cpu_var(cpu_idle_state) = 0; 291 292 rmb(); 293 if (mark_idle) 294 (*mark_idle)(1); 295 296 idle = pm_idle; 297 if (!idle) 298 idle = default_idle; 299 (*idle)(); 300 if (mark_idle) 301 (*mark_idle)(0); 302 #ifdef CONFIG_SMP 303 normal_xtp(); 304 #endif 305 } 306 preempt_enable_no_resched(); 307 schedule(); 308 preempt_disable(); 309 check_pgt_cache(); 310 if (cpu_is_offline(cpu)) 311 play_dead(); 312 } 313 } 314 315 void 316 ia64_save_extra (struct task_struct *task) 317 { 318 #ifdef CONFIG_PERFMON 319 unsigned long info; 320 #endif 321 322 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 323 ia64_save_debug_regs(&task->thread.dbr[0]); 324 325 #ifdef CONFIG_PERFMON 326 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 327 pfm_save_regs(task); 328 329 info = __get_cpu_var(pfm_syst_info); 330 if (info & PFM_CPUINFO_SYST_WIDE) 331 pfm_syst_wide_update_task(task, info, 0); 332 #endif 333 334 #ifdef CONFIG_IA32_SUPPORT 335 if (IS_IA32_PROCESS(task_pt_regs(task))) 336 ia32_save_state(task); 337 #endif 338 } 339 340 void 341 ia64_load_extra (struct task_struct *task) 342 { 343 #ifdef CONFIG_PERFMON 344 unsigned long info; 345 #endif 346 347 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 348 ia64_load_debug_regs(&task->thread.dbr[0]); 349 350 #ifdef CONFIG_PERFMON 351 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 352 pfm_load_regs(task); 353 354 info = __get_cpu_var(pfm_syst_info); 355 if (info & PFM_CPUINFO_SYST_WIDE) 356 pfm_syst_wide_update_task(task, info, 1); 357 #endif 358 359 #ifdef CONFIG_IA32_SUPPORT 360 if (IS_IA32_PROCESS(task_pt_regs(task))) 361 ia32_load_state(task); 362 #endif 363 } 364 365 /* 366 * Copy the state of an ia-64 thread. 367 * 368 * We get here through the following call chain: 369 * 370 * from user-level: from kernel: 371 * 372 * <clone syscall> <some kernel call frames> 373 * sys_clone : 374 * do_fork do_fork 375 * copy_thread copy_thread 376 * 377 * This means that the stack layout is as follows: 378 * 379 * +---------------------+ (highest addr) 380 * | struct pt_regs | 381 * +---------------------+ 382 * | struct switch_stack | 383 * +---------------------+ 384 * | | 385 * | memory stack | 386 * | | <-- sp (lowest addr) 387 * +---------------------+ 388 * 389 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 390 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 391 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 392 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 393 * the stack is page aligned and the page size is at least 4KB, this is always the case, 394 * so there is nothing to worry about. 395 */ 396 int 397 copy_thread (int nr, unsigned long clone_flags, 398 unsigned long user_stack_base, unsigned long user_stack_size, 399 struct task_struct *p, struct pt_regs *regs) 400 { 401 extern char ia64_ret_from_clone, ia32_ret_from_clone; 402 struct switch_stack *child_stack, *stack; 403 unsigned long rbs, child_rbs, rbs_size; 404 struct pt_regs *child_ptregs; 405 int retval = 0; 406 407 #ifdef CONFIG_SMP 408 /* 409 * For SMP idle threads, fork_by_hand() calls do_fork with 410 * NULL regs. 411 */ 412 if (!regs) 413 return 0; 414 #endif 415 416 stack = ((struct switch_stack *) regs) - 1; 417 418 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 419 child_stack = (struct switch_stack *) child_ptregs - 1; 420 421 /* copy parent's switch_stack & pt_regs to child: */ 422 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 423 424 rbs = (unsigned long) current + IA64_RBS_OFFSET; 425 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 426 rbs_size = stack->ar_bspstore - rbs; 427 428 /* copy the parent's register backing store to the child: */ 429 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 430 431 if (likely(user_mode(child_ptregs))) { 432 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 433 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 434 if (user_stack_base) { 435 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 436 child_ptregs->ar_bspstore = user_stack_base; 437 child_ptregs->ar_rnat = 0; 438 child_ptregs->loadrs = 0; 439 } 440 } else { 441 /* 442 * Note: we simply preserve the relative position of 443 * the stack pointer here. There is no need to 444 * allocate a scratch area here, since that will have 445 * been taken care of by the caller of sys_clone() 446 * already. 447 */ 448 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 449 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 450 } 451 child_stack->ar_bspstore = child_rbs + rbs_size; 452 if (IS_IA32_PROCESS(regs)) 453 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 454 else 455 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 456 457 /* copy parts of thread_struct: */ 458 p->thread.ksp = (unsigned long) child_stack - 16; 459 460 /* stop some PSR bits from being inherited. 461 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 462 * therefore we must specify them explicitly here and not include them in 463 * IA64_PSR_BITS_TO_CLEAR. 464 */ 465 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 466 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 467 468 /* 469 * NOTE: The calling convention considers all floating point 470 * registers in the high partition (fph) to be scratch. Since 471 * the only way to get to this point is through a system call, 472 * we know that the values in fph are all dead. Hence, there 473 * is no need to inherit the fph state from the parent to the 474 * child and all we have to do is to make sure that 475 * IA64_THREAD_FPH_VALID is cleared in the child. 476 * 477 * XXX We could push this optimization a bit further by 478 * clearing IA64_THREAD_FPH_VALID on ANY system call. 479 * However, it's not clear this is worth doing. Also, it 480 * would be a slight deviation from the normal Linux system 481 * call behavior where scratch registers are preserved across 482 * system calls (unless used by the system call itself). 483 */ 484 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 485 | IA64_THREAD_PM_VALID) 486 # define THREAD_FLAGS_TO_SET 0 487 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 488 | THREAD_FLAGS_TO_SET); 489 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 490 #ifdef CONFIG_IA32_SUPPORT 491 /* 492 * If we're cloning an IA32 task then save the IA32 extra 493 * state from the current task to the new task 494 */ 495 if (IS_IA32_PROCESS(task_pt_regs(current))) { 496 ia32_save_state(p); 497 if (clone_flags & CLONE_SETTLS) 498 retval = ia32_clone_tls(p, child_ptregs); 499 500 /* Copy partially mapped page list */ 501 if (!retval) 502 retval = ia32_copy_ia64_partial_page_list(p, 503 clone_flags); 504 } 505 #endif 506 507 #ifdef CONFIG_PERFMON 508 if (current->thread.pfm_context) 509 pfm_inherit(p, child_ptregs); 510 #endif 511 return retval; 512 } 513 514 static void 515 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 516 { 517 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 518 unsigned long uninitialized_var(ip); /* GCC be quiet */ 519 elf_greg_t *dst = arg; 520 struct pt_regs *pt; 521 char nat; 522 int i; 523 524 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 525 526 if (unw_unwind_to_user(info) < 0) 527 return; 528 529 unw_get_sp(info, &sp); 530 pt = (struct pt_regs *) (sp + 16); 531 532 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 533 534 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 535 return; 536 537 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 538 &ar_rnat); 539 540 /* 541 * coredump format: 542 * r0-r31 543 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 544 * predicate registers (p0-p63) 545 * b0-b7 546 * ip cfm user-mask 547 * ar.rsc ar.bsp ar.bspstore ar.rnat 548 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 549 */ 550 551 /* r0 is zero */ 552 for (i = 1, mask = (1UL << i); i < 32; ++i) { 553 unw_get_gr(info, i, &dst[i], &nat); 554 if (nat) 555 nat_bits |= mask; 556 mask <<= 1; 557 } 558 dst[32] = nat_bits; 559 unw_get_pr(info, &dst[33]); 560 561 for (i = 0; i < 8; ++i) 562 unw_get_br(info, i, &dst[34 + i]); 563 564 unw_get_rp(info, &ip); 565 dst[42] = ip + ia64_psr(pt)->ri; 566 dst[43] = cfm; 567 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 568 569 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 570 /* 571 * For bsp and bspstore, unw_get_ar() would return the kernel 572 * addresses, but we need the user-level addresses instead: 573 */ 574 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 575 dst[47] = pt->ar_bspstore; 576 dst[48] = ar_rnat; 577 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 578 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 579 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 580 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 581 unw_get_ar(info, UNW_AR_LC, &dst[53]); 582 unw_get_ar(info, UNW_AR_EC, &dst[54]); 583 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 584 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 585 } 586 587 void 588 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 589 { 590 elf_fpreg_t *dst = arg; 591 int i; 592 593 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 594 595 if (unw_unwind_to_user(info) < 0) 596 return; 597 598 /* f0 is 0.0, f1 is 1.0 */ 599 600 for (i = 2; i < 32; ++i) 601 unw_get_fr(info, i, dst + i); 602 603 ia64_flush_fph(task); 604 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 605 memcpy(dst + 32, task->thread.fph, 96*16); 606 } 607 608 void 609 do_copy_regs (struct unw_frame_info *info, void *arg) 610 { 611 do_copy_task_regs(current, info, arg); 612 } 613 614 void 615 do_dump_fpu (struct unw_frame_info *info, void *arg) 616 { 617 do_dump_task_fpu(current, info, arg); 618 } 619 620 int 621 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 622 { 623 struct unw_frame_info tcore_info; 624 625 if (current == task) { 626 unw_init_running(do_copy_regs, regs); 627 } else { 628 memset(&tcore_info, 0, sizeof(tcore_info)); 629 unw_init_from_blocked_task(&tcore_info, task); 630 do_copy_task_regs(task, &tcore_info, regs); 631 } 632 return 1; 633 } 634 635 void 636 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 637 { 638 unw_init_running(do_copy_regs, dst); 639 } 640 641 int 642 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 643 { 644 struct unw_frame_info tcore_info; 645 646 if (current == task) { 647 unw_init_running(do_dump_fpu, dst); 648 } else { 649 memset(&tcore_info, 0, sizeof(tcore_info)); 650 unw_init_from_blocked_task(&tcore_info, task); 651 do_dump_task_fpu(task, &tcore_info, dst); 652 } 653 return 1; 654 } 655 656 int 657 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 658 { 659 unw_init_running(do_dump_fpu, dst); 660 return 1; /* f0-f31 are always valid so we always return 1 */ 661 } 662 663 long 664 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 665 struct pt_regs *regs) 666 { 667 char *fname; 668 int error; 669 670 fname = getname(filename); 671 error = PTR_ERR(fname); 672 if (IS_ERR(fname)) 673 goto out; 674 error = do_execve(fname, argv, envp, regs); 675 putname(fname); 676 out: 677 return error; 678 } 679 680 pid_t 681 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 682 { 683 extern void start_kernel_thread (void); 684 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 685 struct { 686 struct switch_stack sw; 687 struct pt_regs pt; 688 } regs; 689 690 memset(®s, 0, sizeof(regs)); 691 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 692 regs.pt.r1 = helper_fptr[1]; /* set GP */ 693 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 694 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 695 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 696 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 697 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 698 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 699 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 700 regs.sw.pr = (1 << PRED_KERNEL_STACK); 701 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 702 } 703 EXPORT_SYMBOL(kernel_thread); 704 705 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 706 int 707 kernel_thread_helper (int (*fn)(void *), void *arg) 708 { 709 #ifdef CONFIG_IA32_SUPPORT 710 if (IS_IA32_PROCESS(task_pt_regs(current))) { 711 /* A kernel thread is always a 64-bit process. */ 712 current->thread.map_base = DEFAULT_MAP_BASE; 713 current->thread.task_size = DEFAULT_TASK_SIZE; 714 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 715 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 716 } 717 #endif 718 return (*fn)(arg); 719 } 720 721 /* 722 * Flush thread state. This is called when a thread does an execve(). 723 */ 724 void 725 flush_thread (void) 726 { 727 /* drop floating-point and debug-register state if it exists: */ 728 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 729 ia64_drop_fpu(current); 730 #ifdef CONFIG_IA32_SUPPORT 731 if (IS_IA32_PROCESS(task_pt_regs(current))) { 732 ia32_drop_ia64_partial_page_list(current); 733 current->thread.task_size = IA32_PAGE_OFFSET; 734 set_fs(USER_DS); 735 } 736 #endif 737 } 738 739 /* 740 * Clean up state associated with current thread. This is called when 741 * the thread calls exit(). 742 */ 743 void 744 exit_thread (void) 745 { 746 747 ia64_drop_fpu(current); 748 #ifdef CONFIG_PERFMON 749 /* if needed, stop monitoring and flush state to perfmon context */ 750 if (current->thread.pfm_context) 751 pfm_exit_thread(current); 752 753 /* free debug register resources */ 754 if (current->thread.flags & IA64_THREAD_DBG_VALID) 755 pfm_release_debug_registers(current); 756 #endif 757 if (IS_IA32_PROCESS(task_pt_regs(current))) 758 ia32_drop_ia64_partial_page_list(current); 759 } 760 761 unsigned long 762 get_wchan (struct task_struct *p) 763 { 764 struct unw_frame_info info; 765 unsigned long ip; 766 int count = 0; 767 768 if (!p || p == current || p->state == TASK_RUNNING) 769 return 0; 770 771 /* 772 * Note: p may not be a blocked task (it could be current or 773 * another process running on some other CPU. Rather than 774 * trying to determine if p is really blocked, we just assume 775 * it's blocked and rely on the unwind routines to fail 776 * gracefully if the process wasn't really blocked after all. 777 * --davidm 99/12/15 778 */ 779 unw_init_from_blocked_task(&info, p); 780 do { 781 if (p->state == TASK_RUNNING) 782 return 0; 783 if (unw_unwind(&info) < 0) 784 return 0; 785 unw_get_ip(&info, &ip); 786 if (!in_sched_functions(ip)) 787 return ip; 788 } while (count++ < 16); 789 return 0; 790 } 791 792 void 793 cpu_halt (void) 794 { 795 pal_power_mgmt_info_u_t power_info[8]; 796 unsigned long min_power; 797 int i, min_power_state; 798 799 if (ia64_pal_halt_info(power_info) != 0) 800 return; 801 802 min_power_state = 0; 803 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 804 for (i = 1; i < 8; ++i) 805 if (power_info[i].pal_power_mgmt_info_s.im 806 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 807 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 808 min_power_state = i; 809 } 810 811 while (1) 812 ia64_pal_halt(min_power_state); 813 } 814 815 void machine_shutdown(void) 816 { 817 #ifdef CONFIG_HOTPLUG_CPU 818 int cpu; 819 820 for_each_online_cpu(cpu) { 821 if (cpu != smp_processor_id()) 822 cpu_down(cpu); 823 } 824 #endif 825 #ifdef CONFIG_KEXEC 826 kexec_disable_iosapic(); 827 #endif 828 } 829 830 void 831 machine_restart (char *restart_cmd) 832 { 833 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 834 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 835 } 836 837 void 838 machine_halt (void) 839 { 840 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 841 cpu_halt(); 842 } 843 844 void 845 machine_power_off (void) 846 { 847 if (pm_power_off) 848 pm_power_off(); 849 machine_halt(); 850 } 851 852