1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 #include <linux/utsname.h> 31 #include <linux/tracehook.h> 32 #include <linux/rcupdate.h> 33 34 #include <asm/cpu.h> 35 #include <asm/delay.h> 36 #include <asm/elf.h> 37 #include <asm/irq.h> 38 #include <asm/kexec.h> 39 #include <asm/pgalloc.h> 40 #include <asm/processor.h> 41 #include <asm/sal.h> 42 #include <asm/switch_to.h> 43 #include <asm/tlbflush.h> 44 #include <asm/uaccess.h> 45 #include <asm/unwind.h> 46 #include <asm/user.h> 47 48 #include "entry.h" 49 50 #ifdef CONFIG_PERFMON 51 # include <asm/perfmon.h> 52 #endif 53 54 #include "sigframe.h" 55 56 void (*ia64_mark_idle)(int); 57 58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 59 EXPORT_SYMBOL(boot_option_idle_override); 60 void (*pm_idle) (void); 61 EXPORT_SYMBOL(pm_idle); 62 void (*pm_power_off) (void); 63 EXPORT_SYMBOL(pm_power_off); 64 65 void 66 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 67 { 68 unsigned long ip, sp, bsp; 69 char buf[128]; /* don't make it so big that it overflows the stack! */ 70 71 printk("\nCall Trace:\n"); 72 do { 73 unw_get_ip(info, &ip); 74 if (ip == 0) 75 break; 76 77 unw_get_sp(info, &sp); 78 unw_get_bsp(info, &bsp); 79 snprintf(buf, sizeof(buf), 80 " [<%016lx>] %%s\n" 81 " sp=%016lx bsp=%016lx\n", 82 ip, sp, bsp); 83 print_symbol(buf, ip); 84 } while (unw_unwind(info) >= 0); 85 } 86 87 void 88 show_stack (struct task_struct *task, unsigned long *sp) 89 { 90 if (!task) 91 unw_init_running(ia64_do_show_stack, NULL); 92 else { 93 struct unw_frame_info info; 94 95 unw_init_from_blocked_task(&info, task); 96 ia64_do_show_stack(&info, NULL); 97 } 98 } 99 100 void 101 dump_stack (void) 102 { 103 show_stack(NULL, NULL); 104 } 105 106 EXPORT_SYMBOL(dump_stack); 107 108 void 109 show_regs (struct pt_regs *regs) 110 { 111 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 112 113 print_modules(); 114 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current), 115 smp_processor_id(), current->comm); 116 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 117 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 118 init_utsname()->release); 119 print_symbol("ip is at %s\n", ip); 120 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 121 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 122 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 123 regs->ar_rnat, regs->ar_bspstore, regs->pr); 124 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 125 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 126 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 127 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 128 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 129 regs->f6.u.bits[1], regs->f6.u.bits[0], 130 regs->f7.u.bits[1], regs->f7.u.bits[0]); 131 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 132 regs->f8.u.bits[1], regs->f8.u.bits[0], 133 regs->f9.u.bits[1], regs->f9.u.bits[0]); 134 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 135 regs->f10.u.bits[1], regs->f10.u.bits[0], 136 regs->f11.u.bits[1], regs->f11.u.bits[0]); 137 138 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 139 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 140 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 141 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 142 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 143 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 144 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 145 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 146 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 147 148 if (user_mode(regs)) { 149 /* print the stacked registers */ 150 unsigned long val, *bsp, ndirty; 151 int i, sof, is_nat = 0; 152 153 sof = regs->cr_ifs & 0x7f; /* size of frame */ 154 ndirty = (regs->loadrs >> 19); 155 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 156 for (i = 0; i < sof; ++i) { 157 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 158 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 159 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 160 } 161 } else 162 show_stack(NULL, NULL); 163 } 164 165 /* local support for deprecated console_print */ 166 void 167 console_print(const char *s) 168 { 169 printk(KERN_EMERG "%s", s); 170 } 171 172 void 173 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 174 { 175 if (fsys_mode(current, &scr->pt)) { 176 /* 177 * defer signal-handling etc. until we return to 178 * privilege-level 0. 179 */ 180 if (!ia64_psr(&scr->pt)->lp) 181 ia64_psr(&scr->pt)->lp = 1; 182 return; 183 } 184 185 #ifdef CONFIG_PERFMON 186 if (current->thread.pfm_needs_checking) 187 /* 188 * Note: pfm_handle_work() allow us to call it with interrupts 189 * disabled, and may enable interrupts within the function. 190 */ 191 pfm_handle_work(); 192 #endif 193 194 /* deal with pending signal delivery */ 195 if (test_thread_flag(TIF_SIGPENDING)) { 196 local_irq_enable(); /* force interrupt enable */ 197 ia64_do_signal(scr, in_syscall); 198 } 199 200 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 201 local_irq_enable(); /* force interrupt enable */ 202 tracehook_notify_resume(&scr->pt); 203 } 204 205 /* copy user rbs to kernel rbs */ 206 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 207 local_irq_enable(); /* force interrupt enable */ 208 ia64_sync_krbs(); 209 } 210 211 local_irq_disable(); /* force interrupt disable */ 212 } 213 214 static int pal_halt = 1; 215 static int can_do_pal_halt = 1; 216 217 static int __init nohalt_setup(char * str) 218 { 219 pal_halt = can_do_pal_halt = 0; 220 return 1; 221 } 222 __setup("nohalt", nohalt_setup); 223 224 void 225 update_pal_halt_status(int status) 226 { 227 can_do_pal_halt = pal_halt && status; 228 } 229 230 /* 231 * We use this if we don't have any better idle routine.. 232 */ 233 void 234 default_idle (void) 235 { 236 local_irq_enable(); 237 while (!need_resched()) { 238 if (can_do_pal_halt) { 239 local_irq_disable(); 240 if (!need_resched()) { 241 safe_halt(); 242 } 243 local_irq_enable(); 244 } else 245 cpu_relax(); 246 } 247 } 248 249 #ifdef CONFIG_HOTPLUG_CPU 250 /* We don't actually take CPU down, just spin without interrupts. */ 251 static inline void play_dead(void) 252 { 253 unsigned int this_cpu = smp_processor_id(); 254 255 /* Ack it */ 256 __get_cpu_var(cpu_state) = CPU_DEAD; 257 258 max_xtp(); 259 local_irq_disable(); 260 idle_task_exit(); 261 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 262 /* 263 * The above is a point of no-return, the processor is 264 * expected to be in SAL loop now. 265 */ 266 BUG(); 267 } 268 #else 269 static inline void play_dead(void) 270 { 271 BUG(); 272 } 273 #endif /* CONFIG_HOTPLUG_CPU */ 274 275 void __attribute__((noreturn)) 276 cpu_idle (void) 277 { 278 void (*mark_idle)(int) = ia64_mark_idle; 279 int cpu = smp_processor_id(); 280 281 /* endless idle loop with no priority at all */ 282 while (1) { 283 rcu_idle_enter(); 284 if (can_do_pal_halt) { 285 current_thread_info()->status &= ~TS_POLLING; 286 /* 287 * TS_POLLING-cleared state must be visible before we 288 * test NEED_RESCHED: 289 */ 290 smp_mb(); 291 } else { 292 current_thread_info()->status |= TS_POLLING; 293 } 294 295 if (!need_resched()) { 296 void (*idle)(void); 297 #ifdef CONFIG_SMP 298 min_xtp(); 299 #endif 300 rmb(); 301 if (mark_idle) 302 (*mark_idle)(1); 303 304 idle = pm_idle; 305 if (!idle) 306 idle = default_idle; 307 (*idle)(); 308 if (mark_idle) 309 (*mark_idle)(0); 310 #ifdef CONFIG_SMP 311 normal_xtp(); 312 #endif 313 } 314 rcu_idle_exit(); 315 schedule_preempt_disabled(); 316 check_pgt_cache(); 317 if (cpu_is_offline(cpu)) 318 play_dead(); 319 } 320 } 321 322 void 323 ia64_save_extra (struct task_struct *task) 324 { 325 #ifdef CONFIG_PERFMON 326 unsigned long info; 327 #endif 328 329 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 330 ia64_save_debug_regs(&task->thread.dbr[0]); 331 332 #ifdef CONFIG_PERFMON 333 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 334 pfm_save_regs(task); 335 336 info = __get_cpu_var(pfm_syst_info); 337 if (info & PFM_CPUINFO_SYST_WIDE) 338 pfm_syst_wide_update_task(task, info, 0); 339 #endif 340 } 341 342 void 343 ia64_load_extra (struct task_struct *task) 344 { 345 #ifdef CONFIG_PERFMON 346 unsigned long info; 347 #endif 348 349 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 350 ia64_load_debug_regs(&task->thread.dbr[0]); 351 352 #ifdef CONFIG_PERFMON 353 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 354 pfm_load_regs(task); 355 356 info = __get_cpu_var(pfm_syst_info); 357 if (info & PFM_CPUINFO_SYST_WIDE) 358 pfm_syst_wide_update_task(task, info, 1); 359 #endif 360 } 361 362 /* 363 * Copy the state of an ia-64 thread. 364 * 365 * We get here through the following call chain: 366 * 367 * from user-level: from kernel: 368 * 369 * <clone syscall> <some kernel call frames> 370 * sys_clone : 371 * do_fork do_fork 372 * copy_thread copy_thread 373 * 374 * This means that the stack layout is as follows: 375 * 376 * +---------------------+ (highest addr) 377 * | struct pt_regs | 378 * +---------------------+ 379 * | struct switch_stack | 380 * +---------------------+ 381 * | | 382 * | memory stack | 383 * | | <-- sp (lowest addr) 384 * +---------------------+ 385 * 386 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 387 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 388 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 389 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 390 * the stack is page aligned and the page size is at least 4KB, this is always the case, 391 * so there is nothing to worry about. 392 */ 393 int 394 copy_thread(unsigned long clone_flags, 395 unsigned long user_stack_base, unsigned long user_stack_size, 396 struct task_struct *p) 397 { 398 extern char ia64_ret_from_clone; 399 struct switch_stack *child_stack, *stack; 400 unsigned long rbs, child_rbs, rbs_size; 401 struct pt_regs *child_ptregs; 402 struct pt_regs *regs = current_pt_regs(); 403 int retval = 0; 404 405 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 406 child_stack = (struct switch_stack *) child_ptregs - 1; 407 408 rbs = (unsigned long) current + IA64_RBS_OFFSET; 409 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 410 411 /* copy parts of thread_struct: */ 412 p->thread.ksp = (unsigned long) child_stack - 16; 413 414 /* 415 * NOTE: The calling convention considers all floating point 416 * registers in the high partition (fph) to be scratch. Since 417 * the only way to get to this point is through a system call, 418 * we know that the values in fph are all dead. Hence, there 419 * is no need to inherit the fph state from the parent to the 420 * child and all we have to do is to make sure that 421 * IA64_THREAD_FPH_VALID is cleared in the child. 422 * 423 * XXX We could push this optimization a bit further by 424 * clearing IA64_THREAD_FPH_VALID on ANY system call. 425 * However, it's not clear this is worth doing. Also, it 426 * would be a slight deviation from the normal Linux system 427 * call behavior where scratch registers are preserved across 428 * system calls (unless used by the system call itself). 429 */ 430 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 431 | IA64_THREAD_PM_VALID) 432 # define THREAD_FLAGS_TO_SET 0 433 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 434 | THREAD_FLAGS_TO_SET); 435 436 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 437 438 if (unlikely(p->flags & PF_KTHREAD)) { 439 if (unlikely(!user_stack_base)) { 440 /* fork_idle() called us */ 441 return 0; 442 } 443 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 444 child_stack->r4 = user_stack_base; /* payload */ 445 child_stack->r5 = user_stack_size; /* argument */ 446 /* 447 * Preserve PSR bits, except for bits 32-34 and 37-45, 448 * which we can't read. 449 */ 450 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 451 /* mark as valid, empty frame */ 452 child_ptregs->cr_ifs = 1UL << 63; 453 child_stack->ar_fpsr = child_ptregs->ar_fpsr 454 = ia64_getreg(_IA64_REG_AR_FPSR); 455 child_stack->pr = (1 << PRED_KERNEL_STACK); 456 child_stack->ar_bspstore = child_rbs; 457 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 458 459 /* stop some PSR bits from being inherited. 460 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 461 * therefore we must specify them explicitly here and not include them in 462 * IA64_PSR_BITS_TO_CLEAR. 463 */ 464 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 465 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 466 467 return 0; 468 } 469 stack = ((struct switch_stack *) regs) - 1; 470 /* copy parent's switch_stack & pt_regs to child: */ 471 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 472 473 /* copy the parent's register backing store to the child: */ 474 rbs_size = stack->ar_bspstore - rbs; 475 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 476 if (clone_flags & CLONE_SETTLS) 477 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 478 if (user_stack_base) { 479 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 480 child_ptregs->ar_bspstore = user_stack_base; 481 child_ptregs->ar_rnat = 0; 482 child_ptregs->loadrs = 0; 483 } 484 child_stack->ar_bspstore = child_rbs + rbs_size; 485 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 486 487 /* stop some PSR bits from being inherited. 488 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 489 * therefore we must specify them explicitly here and not include them in 490 * IA64_PSR_BITS_TO_CLEAR. 491 */ 492 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 493 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 494 495 #ifdef CONFIG_PERFMON 496 if (current->thread.pfm_context) 497 pfm_inherit(p, child_ptregs); 498 #endif 499 return retval; 500 } 501 502 static void 503 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 504 { 505 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 506 unsigned long uninitialized_var(ip); /* GCC be quiet */ 507 elf_greg_t *dst = arg; 508 struct pt_regs *pt; 509 char nat; 510 int i; 511 512 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 513 514 if (unw_unwind_to_user(info) < 0) 515 return; 516 517 unw_get_sp(info, &sp); 518 pt = (struct pt_regs *) (sp + 16); 519 520 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 521 522 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 523 return; 524 525 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 526 &ar_rnat); 527 528 /* 529 * coredump format: 530 * r0-r31 531 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 532 * predicate registers (p0-p63) 533 * b0-b7 534 * ip cfm user-mask 535 * ar.rsc ar.bsp ar.bspstore ar.rnat 536 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 537 */ 538 539 /* r0 is zero */ 540 for (i = 1, mask = (1UL << i); i < 32; ++i) { 541 unw_get_gr(info, i, &dst[i], &nat); 542 if (nat) 543 nat_bits |= mask; 544 mask <<= 1; 545 } 546 dst[32] = nat_bits; 547 unw_get_pr(info, &dst[33]); 548 549 for (i = 0; i < 8; ++i) 550 unw_get_br(info, i, &dst[34 + i]); 551 552 unw_get_rp(info, &ip); 553 dst[42] = ip + ia64_psr(pt)->ri; 554 dst[43] = cfm; 555 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 556 557 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 558 /* 559 * For bsp and bspstore, unw_get_ar() would return the kernel 560 * addresses, but we need the user-level addresses instead: 561 */ 562 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 563 dst[47] = pt->ar_bspstore; 564 dst[48] = ar_rnat; 565 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 566 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 567 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 568 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 569 unw_get_ar(info, UNW_AR_LC, &dst[53]); 570 unw_get_ar(info, UNW_AR_EC, &dst[54]); 571 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 572 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 573 } 574 575 void 576 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 577 { 578 elf_fpreg_t *dst = arg; 579 int i; 580 581 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 582 583 if (unw_unwind_to_user(info) < 0) 584 return; 585 586 /* f0 is 0.0, f1 is 1.0 */ 587 588 for (i = 2; i < 32; ++i) 589 unw_get_fr(info, i, dst + i); 590 591 ia64_flush_fph(task); 592 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 593 memcpy(dst + 32, task->thread.fph, 96*16); 594 } 595 596 void 597 do_copy_regs (struct unw_frame_info *info, void *arg) 598 { 599 do_copy_task_regs(current, info, arg); 600 } 601 602 void 603 do_dump_fpu (struct unw_frame_info *info, void *arg) 604 { 605 do_dump_task_fpu(current, info, arg); 606 } 607 608 void 609 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 610 { 611 unw_init_running(do_copy_regs, dst); 612 } 613 614 int 615 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 616 { 617 unw_init_running(do_dump_fpu, dst); 618 return 1; /* f0-f31 are always valid so we always return 1 */ 619 } 620 621 /* 622 * Flush thread state. This is called when a thread does an execve(). 623 */ 624 void 625 flush_thread (void) 626 { 627 /* drop floating-point and debug-register state if it exists: */ 628 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 629 ia64_drop_fpu(current); 630 } 631 632 /* 633 * Clean up state associated with current thread. This is called when 634 * the thread calls exit(). 635 */ 636 void 637 exit_thread (void) 638 { 639 640 ia64_drop_fpu(current); 641 #ifdef CONFIG_PERFMON 642 /* if needed, stop monitoring and flush state to perfmon context */ 643 if (current->thread.pfm_context) 644 pfm_exit_thread(current); 645 646 /* free debug register resources */ 647 if (current->thread.flags & IA64_THREAD_DBG_VALID) 648 pfm_release_debug_registers(current); 649 #endif 650 } 651 652 unsigned long 653 get_wchan (struct task_struct *p) 654 { 655 struct unw_frame_info info; 656 unsigned long ip; 657 int count = 0; 658 659 if (!p || p == current || p->state == TASK_RUNNING) 660 return 0; 661 662 /* 663 * Note: p may not be a blocked task (it could be current or 664 * another process running on some other CPU. Rather than 665 * trying to determine if p is really blocked, we just assume 666 * it's blocked and rely on the unwind routines to fail 667 * gracefully if the process wasn't really blocked after all. 668 * --davidm 99/12/15 669 */ 670 unw_init_from_blocked_task(&info, p); 671 do { 672 if (p->state == TASK_RUNNING) 673 return 0; 674 if (unw_unwind(&info) < 0) 675 return 0; 676 unw_get_ip(&info, &ip); 677 if (!in_sched_functions(ip)) 678 return ip; 679 } while (count++ < 16); 680 return 0; 681 } 682 683 void 684 cpu_halt (void) 685 { 686 pal_power_mgmt_info_u_t power_info[8]; 687 unsigned long min_power; 688 int i, min_power_state; 689 690 if (ia64_pal_halt_info(power_info) != 0) 691 return; 692 693 min_power_state = 0; 694 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 695 for (i = 1; i < 8; ++i) 696 if (power_info[i].pal_power_mgmt_info_s.im 697 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 698 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 699 min_power_state = i; 700 } 701 702 while (1) 703 ia64_pal_halt(min_power_state); 704 } 705 706 void machine_shutdown(void) 707 { 708 #ifdef CONFIG_HOTPLUG_CPU 709 int cpu; 710 711 for_each_online_cpu(cpu) { 712 if (cpu != smp_processor_id()) 713 cpu_down(cpu); 714 } 715 #endif 716 #ifdef CONFIG_KEXEC 717 kexec_disable_iosapic(); 718 #endif 719 } 720 721 void 722 machine_restart (char *restart_cmd) 723 { 724 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 725 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 726 } 727 728 void 729 machine_halt (void) 730 { 731 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 732 cpu_halt(); 733 } 734 735 void 736 machine_power_off (void) 737 { 738 if (pm_power_off) 739 pm_power_off(); 740 machine_halt(); 741 } 742 743