1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 #include <linux/utsname.h> 31 32 #include <asm/cpu.h> 33 #include <asm/delay.h> 34 #include <asm/elf.h> 35 #include <asm/ia32.h> 36 #include <asm/irq.h> 37 #include <asm/kexec.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sal.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/unwind.h> 44 #include <asm/user.h> 45 46 #include "entry.h" 47 48 #ifdef CONFIG_PERFMON 49 # include <asm/perfmon.h> 50 #endif 51 52 #include "sigframe.h" 53 54 void (*ia64_mark_idle)(int); 55 56 unsigned long boot_option_idle_override = 0; 57 EXPORT_SYMBOL(boot_option_idle_override); 58 59 void 60 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 61 { 62 unsigned long ip, sp, bsp; 63 char buf[128]; /* don't make it so big that it overflows the stack! */ 64 65 printk("\nCall Trace:\n"); 66 do { 67 unw_get_ip(info, &ip); 68 if (ip == 0) 69 break; 70 71 unw_get_sp(info, &sp); 72 unw_get_bsp(info, &bsp); 73 snprintf(buf, sizeof(buf), 74 " [<%016lx>] %%s\n" 75 " sp=%016lx bsp=%016lx\n", 76 ip, sp, bsp); 77 print_symbol(buf, ip); 78 } while (unw_unwind(info) >= 0); 79 } 80 81 void 82 show_stack (struct task_struct *task, unsigned long *sp) 83 { 84 if (!task) 85 unw_init_running(ia64_do_show_stack, NULL); 86 else { 87 struct unw_frame_info info; 88 89 unw_init_from_blocked_task(&info, task); 90 ia64_do_show_stack(&info, NULL); 91 } 92 } 93 94 void 95 dump_stack (void) 96 { 97 show_stack(NULL, NULL); 98 } 99 100 EXPORT_SYMBOL(dump_stack); 101 102 void 103 show_regs (struct pt_regs *regs) 104 { 105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 106 107 print_modules(); 108 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current), 109 smp_processor_id(), current->comm); 110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 112 init_utsname()->release); 113 print_symbol("ip is at %s\n", ip); 114 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 115 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 116 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 117 regs->ar_rnat, regs->ar_bspstore, regs->pr); 118 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 119 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 120 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 121 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 122 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 123 regs->f6.u.bits[1], regs->f6.u.bits[0], 124 regs->f7.u.bits[1], regs->f7.u.bits[0]); 125 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 126 regs->f8.u.bits[1], regs->f8.u.bits[0], 127 regs->f9.u.bits[1], regs->f9.u.bits[0]); 128 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 129 regs->f10.u.bits[1], regs->f10.u.bits[0], 130 regs->f11.u.bits[1], regs->f11.u.bits[0]); 131 132 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 133 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 134 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 135 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 136 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 137 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 138 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 139 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 140 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 141 142 if (user_mode(regs)) { 143 /* print the stacked registers */ 144 unsigned long val, *bsp, ndirty; 145 int i, sof, is_nat = 0; 146 147 sof = regs->cr_ifs & 0x7f; /* size of frame */ 148 ndirty = (regs->loadrs >> 19); 149 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 150 for (i = 0; i < sof; ++i) { 151 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 152 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 153 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 154 } 155 } else 156 show_stack(NULL, NULL); 157 } 158 159 void tsk_clear_notify_resume(struct task_struct *tsk) 160 { 161 #ifdef CONFIG_PERFMON 162 if (tsk->thread.pfm_needs_checking) 163 return; 164 #endif 165 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE)) 166 return; 167 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME); 168 } 169 170 void 171 do_notify_resume_user (sigset_t *unused, struct sigscratch *scr, long in_syscall) 172 { 173 if (fsys_mode(current, &scr->pt)) { 174 /* defer signal-handling etc. until we return to privilege-level 0. */ 175 if (!ia64_psr(&scr->pt)->lp) 176 ia64_psr(&scr->pt)->lp = 1; 177 return; 178 } 179 180 #ifdef CONFIG_PERFMON 181 if (current->thread.pfm_needs_checking) 182 pfm_handle_work(); 183 #endif 184 185 /* deal with pending signal delivery */ 186 if (test_thread_flag(TIF_SIGPENDING)||test_thread_flag(TIF_RESTORE_SIGMASK)) 187 ia64_do_signal(scr, in_syscall); 188 189 /* copy user rbs to kernel rbs */ 190 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) 191 ia64_sync_krbs(); 192 } 193 194 static int pal_halt = 1; 195 static int can_do_pal_halt = 1; 196 197 static int __init nohalt_setup(char * str) 198 { 199 pal_halt = can_do_pal_halt = 0; 200 return 1; 201 } 202 __setup("nohalt", nohalt_setup); 203 204 void 205 update_pal_halt_status(int status) 206 { 207 can_do_pal_halt = pal_halt && status; 208 } 209 210 /* 211 * We use this if we don't have any better idle routine.. 212 */ 213 void 214 default_idle (void) 215 { 216 local_irq_enable(); 217 while (!need_resched()) { 218 if (can_do_pal_halt) { 219 local_irq_disable(); 220 if (!need_resched()) { 221 safe_halt(); 222 } 223 local_irq_enable(); 224 } else 225 cpu_relax(); 226 } 227 } 228 229 #ifdef CONFIG_HOTPLUG_CPU 230 /* We don't actually take CPU down, just spin without interrupts. */ 231 static inline void play_dead(void) 232 { 233 extern void ia64_cpu_local_tick (void); 234 unsigned int this_cpu = smp_processor_id(); 235 236 /* Ack it */ 237 __get_cpu_var(cpu_state) = CPU_DEAD; 238 239 max_xtp(); 240 local_irq_disable(); 241 idle_task_exit(); 242 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 243 /* 244 * The above is a point of no-return, the processor is 245 * expected to be in SAL loop now. 246 */ 247 BUG(); 248 } 249 #else 250 static inline void play_dead(void) 251 { 252 BUG(); 253 } 254 #endif /* CONFIG_HOTPLUG_CPU */ 255 256 static void do_nothing(void *unused) 257 { 258 } 259 260 /* 261 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 262 * pm_idle and update to new pm_idle value. Required while changing pm_idle 263 * handler on SMP systems. 264 * 265 * Caller must have changed pm_idle to the new value before the call. Old 266 * pm_idle value will not be used by any CPU after the return of this function. 267 */ 268 void cpu_idle_wait(void) 269 { 270 smp_mb(); 271 /* kick all the CPUs so that they exit out of pm_idle */ 272 smp_call_function(do_nothing, NULL, 0, 1); 273 } 274 EXPORT_SYMBOL_GPL(cpu_idle_wait); 275 276 void __attribute__((noreturn)) 277 cpu_idle (void) 278 { 279 void (*mark_idle)(int) = ia64_mark_idle; 280 int cpu = smp_processor_id(); 281 282 /* endless idle loop with no priority at all */ 283 while (1) { 284 if (can_do_pal_halt) { 285 current_thread_info()->status &= ~TS_POLLING; 286 /* 287 * TS_POLLING-cleared state must be visible before we 288 * test NEED_RESCHED: 289 */ 290 smp_mb(); 291 } else { 292 current_thread_info()->status |= TS_POLLING; 293 } 294 295 if (!need_resched()) { 296 void (*idle)(void); 297 #ifdef CONFIG_SMP 298 min_xtp(); 299 #endif 300 rmb(); 301 if (mark_idle) 302 (*mark_idle)(1); 303 304 idle = pm_idle; 305 if (!idle) 306 idle = default_idle; 307 (*idle)(); 308 if (mark_idle) 309 (*mark_idle)(0); 310 #ifdef CONFIG_SMP 311 normal_xtp(); 312 #endif 313 } 314 preempt_enable_no_resched(); 315 schedule(); 316 preempt_disable(); 317 check_pgt_cache(); 318 if (cpu_is_offline(cpu)) 319 play_dead(); 320 } 321 } 322 323 void 324 ia64_save_extra (struct task_struct *task) 325 { 326 #ifdef CONFIG_PERFMON 327 unsigned long info; 328 #endif 329 330 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 331 ia64_save_debug_regs(&task->thread.dbr[0]); 332 333 #ifdef CONFIG_PERFMON 334 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 335 pfm_save_regs(task); 336 337 info = __get_cpu_var(pfm_syst_info); 338 if (info & PFM_CPUINFO_SYST_WIDE) 339 pfm_syst_wide_update_task(task, info, 0); 340 #endif 341 342 #ifdef CONFIG_IA32_SUPPORT 343 if (IS_IA32_PROCESS(task_pt_regs(task))) 344 ia32_save_state(task); 345 #endif 346 } 347 348 void 349 ia64_load_extra (struct task_struct *task) 350 { 351 #ifdef CONFIG_PERFMON 352 unsigned long info; 353 #endif 354 355 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 356 ia64_load_debug_regs(&task->thread.dbr[0]); 357 358 #ifdef CONFIG_PERFMON 359 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 360 pfm_load_regs(task); 361 362 info = __get_cpu_var(pfm_syst_info); 363 if (info & PFM_CPUINFO_SYST_WIDE) 364 pfm_syst_wide_update_task(task, info, 1); 365 #endif 366 367 #ifdef CONFIG_IA32_SUPPORT 368 if (IS_IA32_PROCESS(task_pt_regs(task))) 369 ia32_load_state(task); 370 #endif 371 } 372 373 /* 374 * Copy the state of an ia-64 thread. 375 * 376 * We get here through the following call chain: 377 * 378 * from user-level: from kernel: 379 * 380 * <clone syscall> <some kernel call frames> 381 * sys_clone : 382 * do_fork do_fork 383 * copy_thread copy_thread 384 * 385 * This means that the stack layout is as follows: 386 * 387 * +---------------------+ (highest addr) 388 * | struct pt_regs | 389 * +---------------------+ 390 * | struct switch_stack | 391 * +---------------------+ 392 * | | 393 * | memory stack | 394 * | | <-- sp (lowest addr) 395 * +---------------------+ 396 * 397 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 398 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 399 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 400 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 401 * the stack is page aligned and the page size is at least 4KB, this is always the case, 402 * so there is nothing to worry about. 403 */ 404 int 405 copy_thread (int nr, unsigned long clone_flags, 406 unsigned long user_stack_base, unsigned long user_stack_size, 407 struct task_struct *p, struct pt_regs *regs) 408 { 409 extern char ia64_ret_from_clone, ia32_ret_from_clone; 410 struct switch_stack *child_stack, *stack; 411 unsigned long rbs, child_rbs, rbs_size; 412 struct pt_regs *child_ptregs; 413 int retval = 0; 414 415 #ifdef CONFIG_SMP 416 /* 417 * For SMP idle threads, fork_by_hand() calls do_fork with 418 * NULL regs. 419 */ 420 if (!regs) 421 return 0; 422 #endif 423 424 stack = ((struct switch_stack *) regs) - 1; 425 426 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 427 child_stack = (struct switch_stack *) child_ptregs - 1; 428 429 /* copy parent's switch_stack & pt_regs to child: */ 430 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 431 432 rbs = (unsigned long) current + IA64_RBS_OFFSET; 433 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 434 rbs_size = stack->ar_bspstore - rbs; 435 436 /* copy the parent's register backing store to the child: */ 437 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 438 439 if (likely(user_mode(child_ptregs))) { 440 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 441 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 442 if (user_stack_base) { 443 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 444 child_ptregs->ar_bspstore = user_stack_base; 445 child_ptregs->ar_rnat = 0; 446 child_ptregs->loadrs = 0; 447 } 448 } else { 449 /* 450 * Note: we simply preserve the relative position of 451 * the stack pointer here. There is no need to 452 * allocate a scratch area here, since that will have 453 * been taken care of by the caller of sys_clone() 454 * already. 455 */ 456 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 457 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 458 } 459 child_stack->ar_bspstore = child_rbs + rbs_size; 460 if (IS_IA32_PROCESS(regs)) 461 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 462 else 463 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 464 465 /* copy parts of thread_struct: */ 466 p->thread.ksp = (unsigned long) child_stack - 16; 467 468 /* stop some PSR bits from being inherited. 469 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 470 * therefore we must specify them explicitly here and not include them in 471 * IA64_PSR_BITS_TO_CLEAR. 472 */ 473 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 474 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 475 476 /* 477 * NOTE: The calling convention considers all floating point 478 * registers in the high partition (fph) to be scratch. Since 479 * the only way to get to this point is through a system call, 480 * we know that the values in fph are all dead. Hence, there 481 * is no need to inherit the fph state from the parent to the 482 * child and all we have to do is to make sure that 483 * IA64_THREAD_FPH_VALID is cleared in the child. 484 * 485 * XXX We could push this optimization a bit further by 486 * clearing IA64_THREAD_FPH_VALID on ANY system call. 487 * However, it's not clear this is worth doing. Also, it 488 * would be a slight deviation from the normal Linux system 489 * call behavior where scratch registers are preserved across 490 * system calls (unless used by the system call itself). 491 */ 492 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 493 | IA64_THREAD_PM_VALID) 494 # define THREAD_FLAGS_TO_SET 0 495 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 496 | THREAD_FLAGS_TO_SET); 497 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 498 #ifdef CONFIG_IA32_SUPPORT 499 /* 500 * If we're cloning an IA32 task then save the IA32 extra 501 * state from the current task to the new task 502 */ 503 if (IS_IA32_PROCESS(task_pt_regs(current))) { 504 ia32_save_state(p); 505 if (clone_flags & CLONE_SETTLS) 506 retval = ia32_clone_tls(p, child_ptregs); 507 508 /* Copy partially mapped page list */ 509 if (!retval) 510 retval = ia32_copy_ia64_partial_page_list(p, 511 clone_flags); 512 } 513 #endif 514 515 #ifdef CONFIG_PERFMON 516 if (current->thread.pfm_context) 517 pfm_inherit(p, child_ptregs); 518 #endif 519 return retval; 520 } 521 522 static void 523 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 524 { 525 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 526 unsigned long uninitialized_var(ip); /* GCC be quiet */ 527 elf_greg_t *dst = arg; 528 struct pt_regs *pt; 529 char nat; 530 int i; 531 532 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 533 534 if (unw_unwind_to_user(info) < 0) 535 return; 536 537 unw_get_sp(info, &sp); 538 pt = (struct pt_regs *) (sp + 16); 539 540 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 541 542 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 543 return; 544 545 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 546 &ar_rnat); 547 548 /* 549 * coredump format: 550 * r0-r31 551 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 552 * predicate registers (p0-p63) 553 * b0-b7 554 * ip cfm user-mask 555 * ar.rsc ar.bsp ar.bspstore ar.rnat 556 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 557 */ 558 559 /* r0 is zero */ 560 for (i = 1, mask = (1UL << i); i < 32; ++i) { 561 unw_get_gr(info, i, &dst[i], &nat); 562 if (nat) 563 nat_bits |= mask; 564 mask <<= 1; 565 } 566 dst[32] = nat_bits; 567 unw_get_pr(info, &dst[33]); 568 569 for (i = 0; i < 8; ++i) 570 unw_get_br(info, i, &dst[34 + i]); 571 572 unw_get_rp(info, &ip); 573 dst[42] = ip + ia64_psr(pt)->ri; 574 dst[43] = cfm; 575 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 576 577 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 578 /* 579 * For bsp and bspstore, unw_get_ar() would return the kernel 580 * addresses, but we need the user-level addresses instead: 581 */ 582 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 583 dst[47] = pt->ar_bspstore; 584 dst[48] = ar_rnat; 585 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 586 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 587 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 588 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 589 unw_get_ar(info, UNW_AR_LC, &dst[53]); 590 unw_get_ar(info, UNW_AR_EC, &dst[54]); 591 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 592 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 593 } 594 595 void 596 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 597 { 598 elf_fpreg_t *dst = arg; 599 int i; 600 601 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 602 603 if (unw_unwind_to_user(info) < 0) 604 return; 605 606 /* f0 is 0.0, f1 is 1.0 */ 607 608 for (i = 2; i < 32; ++i) 609 unw_get_fr(info, i, dst + i); 610 611 ia64_flush_fph(task); 612 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 613 memcpy(dst + 32, task->thread.fph, 96*16); 614 } 615 616 void 617 do_copy_regs (struct unw_frame_info *info, void *arg) 618 { 619 do_copy_task_regs(current, info, arg); 620 } 621 622 void 623 do_dump_fpu (struct unw_frame_info *info, void *arg) 624 { 625 do_dump_task_fpu(current, info, arg); 626 } 627 628 int 629 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 630 { 631 struct unw_frame_info tcore_info; 632 633 if (current == task) { 634 unw_init_running(do_copy_regs, regs); 635 } else { 636 memset(&tcore_info, 0, sizeof(tcore_info)); 637 unw_init_from_blocked_task(&tcore_info, task); 638 do_copy_task_regs(task, &tcore_info, regs); 639 } 640 return 1; 641 } 642 643 void 644 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 645 { 646 unw_init_running(do_copy_regs, dst); 647 } 648 649 int 650 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 651 { 652 struct unw_frame_info tcore_info; 653 654 if (current == task) { 655 unw_init_running(do_dump_fpu, dst); 656 } else { 657 memset(&tcore_info, 0, sizeof(tcore_info)); 658 unw_init_from_blocked_task(&tcore_info, task); 659 do_dump_task_fpu(task, &tcore_info, dst); 660 } 661 return 1; 662 } 663 664 int 665 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 666 { 667 unw_init_running(do_dump_fpu, dst); 668 return 1; /* f0-f31 are always valid so we always return 1 */ 669 } 670 671 long 672 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 673 struct pt_regs *regs) 674 { 675 char *fname; 676 int error; 677 678 fname = getname(filename); 679 error = PTR_ERR(fname); 680 if (IS_ERR(fname)) 681 goto out; 682 error = do_execve(fname, argv, envp, regs); 683 putname(fname); 684 out: 685 return error; 686 } 687 688 pid_t 689 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 690 { 691 extern void start_kernel_thread (void); 692 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 693 struct { 694 struct switch_stack sw; 695 struct pt_regs pt; 696 } regs; 697 698 memset(®s, 0, sizeof(regs)); 699 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 700 regs.pt.r1 = helper_fptr[1]; /* set GP */ 701 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 702 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 703 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 704 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 705 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 706 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 707 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 708 regs.sw.pr = (1 << PRED_KERNEL_STACK); 709 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 710 } 711 EXPORT_SYMBOL(kernel_thread); 712 713 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 714 int 715 kernel_thread_helper (int (*fn)(void *), void *arg) 716 { 717 #ifdef CONFIG_IA32_SUPPORT 718 if (IS_IA32_PROCESS(task_pt_regs(current))) { 719 /* A kernel thread is always a 64-bit process. */ 720 current->thread.map_base = DEFAULT_MAP_BASE; 721 current->thread.task_size = DEFAULT_TASK_SIZE; 722 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 723 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 724 } 725 #endif 726 return (*fn)(arg); 727 } 728 729 /* 730 * Flush thread state. This is called when a thread does an execve(). 731 */ 732 void 733 flush_thread (void) 734 { 735 /* drop floating-point and debug-register state if it exists: */ 736 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 737 ia64_drop_fpu(current); 738 #ifdef CONFIG_IA32_SUPPORT 739 if (IS_IA32_PROCESS(task_pt_regs(current))) { 740 ia32_drop_ia64_partial_page_list(current); 741 current->thread.task_size = IA32_PAGE_OFFSET; 742 set_fs(USER_DS); 743 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array)); 744 } 745 #endif 746 } 747 748 /* 749 * Clean up state associated with current thread. This is called when 750 * the thread calls exit(). 751 */ 752 void 753 exit_thread (void) 754 { 755 756 ia64_drop_fpu(current); 757 #ifdef CONFIG_PERFMON 758 /* if needed, stop monitoring and flush state to perfmon context */ 759 if (current->thread.pfm_context) 760 pfm_exit_thread(current); 761 762 /* free debug register resources */ 763 if (current->thread.flags & IA64_THREAD_DBG_VALID) 764 pfm_release_debug_registers(current); 765 #endif 766 if (IS_IA32_PROCESS(task_pt_regs(current))) 767 ia32_drop_ia64_partial_page_list(current); 768 } 769 770 unsigned long 771 get_wchan (struct task_struct *p) 772 { 773 struct unw_frame_info info; 774 unsigned long ip; 775 int count = 0; 776 777 if (!p || p == current || p->state == TASK_RUNNING) 778 return 0; 779 780 /* 781 * Note: p may not be a blocked task (it could be current or 782 * another process running on some other CPU. Rather than 783 * trying to determine if p is really blocked, we just assume 784 * it's blocked and rely on the unwind routines to fail 785 * gracefully if the process wasn't really blocked after all. 786 * --davidm 99/12/15 787 */ 788 unw_init_from_blocked_task(&info, p); 789 do { 790 if (p->state == TASK_RUNNING) 791 return 0; 792 if (unw_unwind(&info) < 0) 793 return 0; 794 unw_get_ip(&info, &ip); 795 if (!in_sched_functions(ip)) 796 return ip; 797 } while (count++ < 16); 798 return 0; 799 } 800 801 void 802 cpu_halt (void) 803 { 804 pal_power_mgmt_info_u_t power_info[8]; 805 unsigned long min_power; 806 int i, min_power_state; 807 808 if (ia64_pal_halt_info(power_info) != 0) 809 return; 810 811 min_power_state = 0; 812 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 813 for (i = 1; i < 8; ++i) 814 if (power_info[i].pal_power_mgmt_info_s.im 815 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 816 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 817 min_power_state = i; 818 } 819 820 while (1) 821 ia64_pal_halt(min_power_state); 822 } 823 824 void machine_shutdown(void) 825 { 826 #ifdef CONFIG_HOTPLUG_CPU 827 int cpu; 828 829 for_each_online_cpu(cpu) { 830 if (cpu != smp_processor_id()) 831 cpu_down(cpu); 832 } 833 #endif 834 #ifdef CONFIG_KEXEC 835 kexec_disable_iosapic(); 836 #endif 837 } 838 839 void 840 machine_restart (char *restart_cmd) 841 { 842 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 843 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 844 } 845 846 void 847 machine_halt (void) 848 { 849 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 850 cpu_halt(); 851 } 852 853 void 854 machine_power_off (void) 855 { 856 if (pm_power_off) 857 pm_power_off(); 858 machine_halt(); 859 } 860 861