1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #define __KERNEL_SYSCALLS__ /* see <asm/unistd.h> */ 12 #include <linux/config.h> 13 14 #include <linux/cpu.h> 15 #include <linux/pm.h> 16 #include <linux/elf.h> 17 #include <linux/errno.h> 18 #include <linux/kallsyms.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/module.h> 22 #include <linux/notifier.h> 23 #include <linux/personality.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/smp_lock.h> 27 #include <linux/stddef.h> 28 #include <linux/thread_info.h> 29 #include <linux/unistd.h> 30 #include <linux/efi.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/kprobes.h> 34 35 #include <asm/cpu.h> 36 #include <asm/delay.h> 37 #include <asm/elf.h> 38 #include <asm/ia32.h> 39 #include <asm/irq.h> 40 #include <asm/kdebug.h> 41 #include <asm/pgalloc.h> 42 #include <asm/processor.h> 43 #include <asm/sal.h> 44 #include <asm/tlbflush.h> 45 #include <asm/uaccess.h> 46 #include <asm/unwind.h> 47 #include <asm/user.h> 48 49 #include "entry.h" 50 51 #ifdef CONFIG_PERFMON 52 # include <asm/perfmon.h> 53 #endif 54 55 #include "sigframe.h" 56 57 void (*ia64_mark_idle)(int); 58 static DEFINE_PER_CPU(unsigned int, cpu_idle_state); 59 60 unsigned long boot_option_idle_override = 0; 61 EXPORT_SYMBOL(boot_option_idle_override); 62 63 void 64 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 65 { 66 unsigned long ip, sp, bsp; 67 char buf[128]; /* don't make it so big that it overflows the stack! */ 68 69 printk("\nCall Trace:\n"); 70 do { 71 unw_get_ip(info, &ip); 72 if (ip == 0) 73 break; 74 75 unw_get_sp(info, &sp); 76 unw_get_bsp(info, &bsp); 77 snprintf(buf, sizeof(buf), 78 " [<%016lx>] %%s\n" 79 " sp=%016lx bsp=%016lx\n", 80 ip, sp, bsp); 81 print_symbol(buf, ip); 82 } while (unw_unwind(info) >= 0); 83 } 84 85 void 86 show_stack (struct task_struct *task, unsigned long *sp) 87 { 88 if (!task) 89 unw_init_running(ia64_do_show_stack, NULL); 90 else { 91 struct unw_frame_info info; 92 93 unw_init_from_blocked_task(&info, task); 94 ia64_do_show_stack(&info, NULL); 95 } 96 } 97 98 void 99 dump_stack (void) 100 { 101 show_stack(NULL, NULL); 102 } 103 104 EXPORT_SYMBOL(dump_stack); 105 106 void 107 show_regs (struct pt_regs *regs) 108 { 109 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 110 111 print_modules(); 112 printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm); 113 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n", 114 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted()); 115 print_symbol("ip is at %s\n", ip); 116 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 117 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 118 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 119 regs->ar_rnat, regs->ar_bspstore, regs->pr); 120 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 121 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 122 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 123 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 124 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 125 regs->f6.u.bits[1], regs->f6.u.bits[0], 126 regs->f7.u.bits[1], regs->f7.u.bits[0]); 127 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 128 regs->f8.u.bits[1], regs->f8.u.bits[0], 129 regs->f9.u.bits[1], regs->f9.u.bits[0]); 130 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 131 regs->f10.u.bits[1], regs->f10.u.bits[0], 132 regs->f11.u.bits[1], regs->f11.u.bits[0]); 133 134 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 135 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 136 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 137 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 138 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 139 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 140 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 141 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 142 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 143 144 if (user_mode(regs)) { 145 /* print the stacked registers */ 146 unsigned long val, *bsp, ndirty; 147 int i, sof, is_nat = 0; 148 149 sof = regs->cr_ifs & 0x7f; /* size of frame */ 150 ndirty = (regs->loadrs >> 19); 151 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 152 for (i = 0; i < sof; ++i) { 153 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 154 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 155 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 156 } 157 } else 158 show_stack(NULL, NULL); 159 } 160 161 void 162 do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall) 163 { 164 if (fsys_mode(current, &scr->pt)) { 165 /* defer signal-handling etc. until we return to privilege-level 0. */ 166 if (!ia64_psr(&scr->pt)->lp) 167 ia64_psr(&scr->pt)->lp = 1; 168 return; 169 } 170 171 #ifdef CONFIG_PERFMON 172 if (current->thread.pfm_needs_checking) 173 pfm_handle_work(); 174 #endif 175 176 /* deal with pending signal delivery */ 177 if (test_thread_flag(TIF_SIGPENDING)) 178 ia64_do_signal(oldset, scr, in_syscall); 179 } 180 181 static int pal_halt = 1; 182 static int can_do_pal_halt = 1; 183 184 static int __init nohalt_setup(char * str) 185 { 186 pal_halt = can_do_pal_halt = 0; 187 return 1; 188 } 189 __setup("nohalt", nohalt_setup); 190 191 void 192 update_pal_halt_status(int status) 193 { 194 can_do_pal_halt = pal_halt && status; 195 } 196 197 /* 198 * We use this if we don't have any better idle routine.. 199 */ 200 void 201 default_idle (void) 202 { 203 local_irq_enable(); 204 while (!need_resched()) { 205 if (can_do_pal_halt) 206 safe_halt(); 207 else 208 cpu_relax(); 209 } 210 } 211 212 #ifdef CONFIG_HOTPLUG_CPU 213 /* We don't actually take CPU down, just spin without interrupts. */ 214 static inline void play_dead(void) 215 { 216 extern void ia64_cpu_local_tick (void); 217 unsigned int this_cpu = smp_processor_id(); 218 219 /* Ack it */ 220 __get_cpu_var(cpu_state) = CPU_DEAD; 221 222 max_xtp(); 223 local_irq_disable(); 224 idle_task_exit(); 225 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 226 /* 227 * The above is a point of no-return, the processor is 228 * expected to be in SAL loop now. 229 */ 230 BUG(); 231 } 232 #else 233 static inline void play_dead(void) 234 { 235 BUG(); 236 } 237 #endif /* CONFIG_HOTPLUG_CPU */ 238 239 void cpu_idle_wait(void) 240 { 241 unsigned int cpu, this_cpu = get_cpu(); 242 cpumask_t map; 243 244 set_cpus_allowed(current, cpumask_of_cpu(this_cpu)); 245 put_cpu(); 246 247 cpus_clear(map); 248 for_each_online_cpu(cpu) { 249 per_cpu(cpu_idle_state, cpu) = 1; 250 cpu_set(cpu, map); 251 } 252 253 __get_cpu_var(cpu_idle_state) = 0; 254 255 wmb(); 256 do { 257 ssleep(1); 258 for_each_online_cpu(cpu) { 259 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu)) 260 cpu_clear(cpu, map); 261 } 262 cpus_and(map, map, cpu_online_map); 263 } while (!cpus_empty(map)); 264 } 265 EXPORT_SYMBOL_GPL(cpu_idle_wait); 266 267 void __attribute__((noreturn)) 268 cpu_idle (void) 269 { 270 void (*mark_idle)(int) = ia64_mark_idle; 271 int cpu = smp_processor_id(); 272 273 /* endless idle loop with no priority at all */ 274 while (1) { 275 if (can_do_pal_halt) 276 clear_thread_flag(TIF_POLLING_NRFLAG); 277 else 278 set_thread_flag(TIF_POLLING_NRFLAG); 279 280 if (!need_resched()) { 281 void (*idle)(void); 282 #ifdef CONFIG_SMP 283 min_xtp(); 284 #endif 285 if (__get_cpu_var(cpu_idle_state)) 286 __get_cpu_var(cpu_idle_state) = 0; 287 288 rmb(); 289 if (mark_idle) 290 (*mark_idle)(1); 291 292 idle = pm_idle; 293 if (!idle) 294 idle = default_idle; 295 (*idle)(); 296 if (mark_idle) 297 (*mark_idle)(0); 298 #ifdef CONFIG_SMP 299 normal_xtp(); 300 #endif 301 } 302 preempt_enable_no_resched(); 303 schedule(); 304 preempt_disable(); 305 check_pgt_cache(); 306 if (cpu_is_offline(cpu)) 307 play_dead(); 308 } 309 } 310 311 void 312 ia64_save_extra (struct task_struct *task) 313 { 314 #ifdef CONFIG_PERFMON 315 unsigned long info; 316 #endif 317 318 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 319 ia64_save_debug_regs(&task->thread.dbr[0]); 320 321 #ifdef CONFIG_PERFMON 322 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 323 pfm_save_regs(task); 324 325 info = __get_cpu_var(pfm_syst_info); 326 if (info & PFM_CPUINFO_SYST_WIDE) 327 pfm_syst_wide_update_task(task, info, 0); 328 #endif 329 330 #ifdef CONFIG_IA32_SUPPORT 331 if (IS_IA32_PROCESS(ia64_task_regs(task))) 332 ia32_save_state(task); 333 #endif 334 } 335 336 void 337 ia64_load_extra (struct task_struct *task) 338 { 339 #ifdef CONFIG_PERFMON 340 unsigned long info; 341 #endif 342 343 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 344 ia64_load_debug_regs(&task->thread.dbr[0]); 345 346 #ifdef CONFIG_PERFMON 347 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 348 pfm_load_regs(task); 349 350 info = __get_cpu_var(pfm_syst_info); 351 if (info & PFM_CPUINFO_SYST_WIDE) 352 pfm_syst_wide_update_task(task, info, 1); 353 #endif 354 355 #ifdef CONFIG_IA32_SUPPORT 356 if (IS_IA32_PROCESS(ia64_task_regs(task))) 357 ia32_load_state(task); 358 #endif 359 } 360 361 /* 362 * Copy the state of an ia-64 thread. 363 * 364 * We get here through the following call chain: 365 * 366 * from user-level: from kernel: 367 * 368 * <clone syscall> <some kernel call frames> 369 * sys_clone : 370 * do_fork do_fork 371 * copy_thread copy_thread 372 * 373 * This means that the stack layout is as follows: 374 * 375 * +---------------------+ (highest addr) 376 * | struct pt_regs | 377 * +---------------------+ 378 * | struct switch_stack | 379 * +---------------------+ 380 * | | 381 * | memory stack | 382 * | | <-- sp (lowest addr) 383 * +---------------------+ 384 * 385 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 386 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 387 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 388 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 389 * the stack is page aligned and the page size is at least 4KB, this is always the case, 390 * so there is nothing to worry about. 391 */ 392 int 393 copy_thread (int nr, unsigned long clone_flags, 394 unsigned long user_stack_base, unsigned long user_stack_size, 395 struct task_struct *p, struct pt_regs *regs) 396 { 397 extern char ia64_ret_from_clone, ia32_ret_from_clone; 398 struct switch_stack *child_stack, *stack; 399 unsigned long rbs, child_rbs, rbs_size; 400 struct pt_regs *child_ptregs; 401 int retval = 0; 402 403 #ifdef CONFIG_SMP 404 /* 405 * For SMP idle threads, fork_by_hand() calls do_fork with 406 * NULL regs. 407 */ 408 if (!regs) 409 return 0; 410 #endif 411 412 stack = ((struct switch_stack *) regs) - 1; 413 414 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 415 child_stack = (struct switch_stack *) child_ptregs - 1; 416 417 /* copy parent's switch_stack & pt_regs to child: */ 418 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 419 420 rbs = (unsigned long) current + IA64_RBS_OFFSET; 421 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 422 rbs_size = stack->ar_bspstore - rbs; 423 424 /* copy the parent's register backing store to the child: */ 425 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 426 427 if (likely(user_mode(child_ptregs))) { 428 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 429 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 430 if (user_stack_base) { 431 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 432 child_ptregs->ar_bspstore = user_stack_base; 433 child_ptregs->ar_rnat = 0; 434 child_ptregs->loadrs = 0; 435 } 436 } else { 437 /* 438 * Note: we simply preserve the relative position of 439 * the stack pointer here. There is no need to 440 * allocate a scratch area here, since that will have 441 * been taken care of by the caller of sys_clone() 442 * already. 443 */ 444 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 445 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 446 } 447 child_stack->ar_bspstore = child_rbs + rbs_size; 448 if (IS_IA32_PROCESS(regs)) 449 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 450 else 451 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 452 453 /* copy parts of thread_struct: */ 454 p->thread.ksp = (unsigned long) child_stack - 16; 455 456 /* stop some PSR bits from being inherited. 457 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 458 * therefore we must specify them explicitly here and not include them in 459 * IA64_PSR_BITS_TO_CLEAR. 460 */ 461 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 462 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 463 464 /* 465 * NOTE: The calling convention considers all floating point 466 * registers in the high partition (fph) to be scratch. Since 467 * the only way to get to this point is through a system call, 468 * we know that the values in fph are all dead. Hence, there 469 * is no need to inherit the fph state from the parent to the 470 * child and all we have to do is to make sure that 471 * IA64_THREAD_FPH_VALID is cleared in the child. 472 * 473 * XXX We could push this optimization a bit further by 474 * clearing IA64_THREAD_FPH_VALID on ANY system call. 475 * However, it's not clear this is worth doing. Also, it 476 * would be a slight deviation from the normal Linux system 477 * call behavior where scratch registers are preserved across 478 * system calls (unless used by the system call itself). 479 */ 480 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 481 | IA64_THREAD_PM_VALID) 482 # define THREAD_FLAGS_TO_SET 0 483 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 484 | THREAD_FLAGS_TO_SET); 485 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 486 #ifdef CONFIG_IA32_SUPPORT 487 /* 488 * If we're cloning an IA32 task then save the IA32 extra 489 * state from the current task to the new task 490 */ 491 if (IS_IA32_PROCESS(ia64_task_regs(current))) { 492 ia32_save_state(p); 493 if (clone_flags & CLONE_SETTLS) 494 retval = ia32_clone_tls(p, child_ptregs); 495 496 /* Copy partially mapped page list */ 497 if (!retval) 498 retval = ia32_copy_partial_page_list(p, clone_flags); 499 } 500 #endif 501 502 #ifdef CONFIG_PERFMON 503 if (current->thread.pfm_context) 504 pfm_inherit(p, child_ptregs); 505 #endif 506 return retval; 507 } 508 509 static void 510 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 511 { 512 unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm; 513 elf_greg_t *dst = arg; 514 struct pt_regs *pt; 515 char nat; 516 int i; 517 518 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 519 520 if (unw_unwind_to_user(info) < 0) 521 return; 522 523 unw_get_sp(info, &sp); 524 pt = (struct pt_regs *) (sp + 16); 525 526 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 527 528 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 529 return; 530 531 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 532 &ar_rnat); 533 534 /* 535 * coredump format: 536 * r0-r31 537 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 538 * predicate registers (p0-p63) 539 * b0-b7 540 * ip cfm user-mask 541 * ar.rsc ar.bsp ar.bspstore ar.rnat 542 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 543 */ 544 545 /* r0 is zero */ 546 for (i = 1, mask = (1UL << i); i < 32; ++i) { 547 unw_get_gr(info, i, &dst[i], &nat); 548 if (nat) 549 nat_bits |= mask; 550 mask <<= 1; 551 } 552 dst[32] = nat_bits; 553 unw_get_pr(info, &dst[33]); 554 555 for (i = 0; i < 8; ++i) 556 unw_get_br(info, i, &dst[34 + i]); 557 558 unw_get_rp(info, &ip); 559 dst[42] = ip + ia64_psr(pt)->ri; 560 dst[43] = cfm; 561 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 562 563 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 564 /* 565 * For bsp and bspstore, unw_get_ar() would return the kernel 566 * addresses, but we need the user-level addresses instead: 567 */ 568 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 569 dst[47] = pt->ar_bspstore; 570 dst[48] = ar_rnat; 571 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 572 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 573 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 574 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 575 unw_get_ar(info, UNW_AR_LC, &dst[53]); 576 unw_get_ar(info, UNW_AR_EC, &dst[54]); 577 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 578 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 579 } 580 581 void 582 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 583 { 584 elf_fpreg_t *dst = arg; 585 int i; 586 587 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 588 589 if (unw_unwind_to_user(info) < 0) 590 return; 591 592 /* f0 is 0.0, f1 is 1.0 */ 593 594 for (i = 2; i < 32; ++i) 595 unw_get_fr(info, i, dst + i); 596 597 ia64_flush_fph(task); 598 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 599 memcpy(dst + 32, task->thread.fph, 96*16); 600 } 601 602 void 603 do_copy_regs (struct unw_frame_info *info, void *arg) 604 { 605 do_copy_task_regs(current, info, arg); 606 } 607 608 void 609 do_dump_fpu (struct unw_frame_info *info, void *arg) 610 { 611 do_dump_task_fpu(current, info, arg); 612 } 613 614 int 615 dump_task_regs(struct task_struct *task, elf_gregset_t *regs) 616 { 617 struct unw_frame_info tcore_info; 618 619 if (current == task) { 620 unw_init_running(do_copy_regs, regs); 621 } else { 622 memset(&tcore_info, 0, sizeof(tcore_info)); 623 unw_init_from_blocked_task(&tcore_info, task); 624 do_copy_task_regs(task, &tcore_info, regs); 625 } 626 return 1; 627 } 628 629 void 630 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 631 { 632 unw_init_running(do_copy_regs, dst); 633 } 634 635 int 636 dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst) 637 { 638 struct unw_frame_info tcore_info; 639 640 if (current == task) { 641 unw_init_running(do_dump_fpu, dst); 642 } else { 643 memset(&tcore_info, 0, sizeof(tcore_info)); 644 unw_init_from_blocked_task(&tcore_info, task); 645 do_dump_task_fpu(task, &tcore_info, dst); 646 } 647 return 1; 648 } 649 650 int 651 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 652 { 653 unw_init_running(do_dump_fpu, dst); 654 return 1; /* f0-f31 are always valid so we always return 1 */ 655 } 656 657 long 658 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 659 struct pt_regs *regs) 660 { 661 char *fname; 662 int error; 663 664 fname = getname(filename); 665 error = PTR_ERR(fname); 666 if (IS_ERR(fname)) 667 goto out; 668 error = do_execve(fname, argv, envp, regs); 669 putname(fname); 670 out: 671 return error; 672 } 673 674 pid_t 675 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 676 { 677 extern void start_kernel_thread (void); 678 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 679 struct { 680 struct switch_stack sw; 681 struct pt_regs pt; 682 } regs; 683 684 memset(®s, 0, sizeof(regs)); 685 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 686 regs.pt.r1 = helper_fptr[1]; /* set GP */ 687 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 688 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 689 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 690 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 691 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 692 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 693 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 694 regs.sw.pr = (1 << PRED_KERNEL_STACK); 695 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 696 } 697 EXPORT_SYMBOL(kernel_thread); 698 699 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 700 int 701 kernel_thread_helper (int (*fn)(void *), void *arg) 702 { 703 #ifdef CONFIG_IA32_SUPPORT 704 if (IS_IA32_PROCESS(ia64_task_regs(current))) { 705 /* A kernel thread is always a 64-bit process. */ 706 current->thread.map_base = DEFAULT_MAP_BASE; 707 current->thread.task_size = DEFAULT_TASK_SIZE; 708 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 709 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 710 } 711 #endif 712 return (*fn)(arg); 713 } 714 715 /* 716 * Flush thread state. This is called when a thread does an execve(). 717 */ 718 void 719 flush_thread (void) 720 { 721 /* drop floating-point and debug-register state if it exists: */ 722 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 723 ia64_drop_fpu(current); 724 #ifdef CONFIG_IA32_SUPPORT 725 if (IS_IA32_PROCESS(ia64_task_regs(current))) { 726 ia32_drop_partial_page_list(current); 727 current->thread.task_size = IA32_PAGE_OFFSET; 728 set_fs(USER_DS); 729 } 730 #endif 731 } 732 733 /* 734 * Clean up state associated with current thread. This is called when 735 * the thread calls exit(). 736 */ 737 void 738 exit_thread (void) 739 { 740 741 /* 742 * Remove function-return probe instances associated with this task 743 * and put them back on the free list. Do not insert an exit probe for 744 * this function, it will be disabled by kprobe_flush_task if you do. 745 */ 746 kprobe_flush_task(current); 747 748 ia64_drop_fpu(current); 749 #ifdef CONFIG_PERFMON 750 /* if needed, stop monitoring and flush state to perfmon context */ 751 if (current->thread.pfm_context) 752 pfm_exit_thread(current); 753 754 /* free debug register resources */ 755 if (current->thread.flags & IA64_THREAD_DBG_VALID) 756 pfm_release_debug_registers(current); 757 #endif 758 if (IS_IA32_PROCESS(ia64_task_regs(current))) 759 ia32_drop_partial_page_list(current); 760 } 761 762 unsigned long 763 get_wchan (struct task_struct *p) 764 { 765 struct unw_frame_info info; 766 unsigned long ip; 767 int count = 0; 768 769 /* 770 * Note: p may not be a blocked task (it could be current or 771 * another process running on some other CPU. Rather than 772 * trying to determine if p is really blocked, we just assume 773 * it's blocked and rely on the unwind routines to fail 774 * gracefully if the process wasn't really blocked after all. 775 * --davidm 99/12/15 776 */ 777 unw_init_from_blocked_task(&info, p); 778 do { 779 if (unw_unwind(&info) < 0) 780 return 0; 781 unw_get_ip(&info, &ip); 782 if (!in_sched_functions(ip)) 783 return ip; 784 } while (count++ < 16); 785 return 0; 786 } 787 788 void 789 cpu_halt (void) 790 { 791 pal_power_mgmt_info_u_t power_info[8]; 792 unsigned long min_power; 793 int i, min_power_state; 794 795 if (ia64_pal_halt_info(power_info) != 0) 796 return; 797 798 min_power_state = 0; 799 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 800 for (i = 1; i < 8; ++i) 801 if (power_info[i].pal_power_mgmt_info_s.im 802 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 803 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 804 min_power_state = i; 805 } 806 807 while (1) 808 ia64_pal_halt(min_power_state); 809 } 810 811 void 812 machine_restart (char *restart_cmd) 813 { 814 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 815 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 816 } 817 818 void 819 machine_halt (void) 820 { 821 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 822 cpu_halt(); 823 } 824 825 void 826 machine_power_off (void) 827 { 828 if (pm_power_off) 829 pm_power_off(); 830 machine_halt(); 831 } 832 833