xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 83f865d7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
8  *
9  * 2005-10-07 Keith Owens <kaos@sgi.com>
10  *	      Add notify_die() hooks.
11  */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35 #include <linux/tracehook.h>
36 #include <linux/rcupdate.h>
37 
38 #include <asm/cpu.h>
39 #include <asm/delay.h>
40 #include <asm/elf.h>
41 #include <asm/irq.h>
42 #include <asm/kexec.h>
43 #include <asm/processor.h>
44 #include <asm/sal.h>
45 #include <asm/switch_to.h>
46 #include <asm/tlbflush.h>
47 #include <linux/uaccess.h>
48 #include <asm/unwind.h>
49 #include <asm/user.h>
50 #include <asm/xtp.h>
51 
52 #include "entry.h"
53 
54 #include "sigframe.h"
55 
56 void (*ia64_mark_idle)(int);
57 
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62 
63 static void
64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 	unsigned long ip, sp, bsp;
67 	const char *loglvl = arg;
68 
69 	printk("%s\nCall Trace:\n", loglvl);
70 	do {
71 		unw_get_ip(info, &ip);
72 		if (ip == 0)
73 			break;
74 
75 		unw_get_sp(info, &sp);
76 		unw_get_bsp(info, &bsp);
77 		printk("%s [<%016lx>] %pS\n"
78 			 "                                sp=%016lx bsp=%016lx\n",
79 			 loglvl, ip, (void *)ip, sp, bsp);
80 	} while (unw_unwind(info) >= 0);
81 }
82 
83 void
84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
85 {
86 	if (!task)
87 		unw_init_running(ia64_do_show_stack, (void *)loglvl);
88 	else {
89 		struct unw_frame_info info;
90 
91 		unw_init_from_blocked_task(&info, task);
92 		ia64_do_show_stack(&info, (void *)loglvl);
93 	}
94 }
95 
96 void
97 show_regs (struct pt_regs *regs)
98 {
99 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
100 
101 	print_modules();
102 	printk("\n");
103 	show_regs_print_info(KERN_DEFAULT);
104 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
105 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
106 	       init_utsname()->release);
107 	printk("ip is at %pS\n", (void *)ip);
108 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
109 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
110 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
111 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
112 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
113 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
114 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
115 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
116 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
117 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
118 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
119 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
120 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
121 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
122 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
123 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
124 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
125 
126 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
127 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
128 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
129 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
130 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
131 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
132 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
133 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
134 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
135 
136 	if (user_mode(regs)) {
137 		/* print the stacked registers */
138 		unsigned long val, *bsp, ndirty;
139 		int i, sof, is_nat = 0;
140 
141 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
142 		ndirty = (regs->loadrs >> 19);
143 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
144 		for (i = 0; i < sof; ++i) {
145 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
146 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
147 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
148 		}
149 	} else
150 		show_stack(NULL, NULL, KERN_DEFAULT);
151 }
152 
153 /* local support for deprecated console_print */
154 void
155 console_print(const char *s)
156 {
157 	printk(KERN_EMERG "%s", s);
158 }
159 
160 void
161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
162 {
163 	if (fsys_mode(current, &scr->pt)) {
164 		/*
165 		 * defer signal-handling etc. until we return to
166 		 * privilege-level 0.
167 		 */
168 		if (!ia64_psr(&scr->pt)->lp)
169 			ia64_psr(&scr->pt)->lp = 1;
170 		return;
171 	}
172 
173 	/* deal with pending signal delivery */
174 	if (test_thread_flag(TIF_SIGPENDING)) {
175 		local_irq_enable();	/* force interrupt enable */
176 		ia64_do_signal(scr, in_syscall);
177 	}
178 
179 	if (test_thread_flag(TIF_NOTIFY_RESUME)) {
180 		local_irq_enable();	/* force interrupt enable */
181 		tracehook_notify_resume(&scr->pt);
182 	}
183 
184 	/* copy user rbs to kernel rbs */
185 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
186 		local_irq_enable();	/* force interrupt enable */
187 		ia64_sync_krbs();
188 	}
189 
190 	local_irq_disable();	/* force interrupt disable */
191 }
192 
193 static int __init nohalt_setup(char * str)
194 {
195 	cpu_idle_poll_ctrl(true);
196 	return 1;
197 }
198 __setup("nohalt", nohalt_setup);
199 
200 #ifdef CONFIG_HOTPLUG_CPU
201 /* We don't actually take CPU down, just spin without interrupts. */
202 static inline void play_dead(void)
203 {
204 	unsigned int this_cpu = smp_processor_id();
205 
206 	/* Ack it */
207 	__this_cpu_write(cpu_state, CPU_DEAD);
208 
209 	max_xtp();
210 	local_irq_disable();
211 	idle_task_exit();
212 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
213 	/*
214 	 * The above is a point of no-return, the processor is
215 	 * expected to be in SAL loop now.
216 	 */
217 	BUG();
218 }
219 #else
220 static inline void play_dead(void)
221 {
222 	BUG();
223 }
224 #endif /* CONFIG_HOTPLUG_CPU */
225 
226 void arch_cpu_idle_dead(void)
227 {
228 	play_dead();
229 }
230 
231 void arch_cpu_idle(void)
232 {
233 	void (*mark_idle)(int) = ia64_mark_idle;
234 
235 #ifdef CONFIG_SMP
236 	min_xtp();
237 #endif
238 	rmb();
239 	if (mark_idle)
240 		(*mark_idle)(1);
241 
242 	safe_halt();
243 
244 	if (mark_idle)
245 		(*mark_idle)(0);
246 #ifdef CONFIG_SMP
247 	normal_xtp();
248 #endif
249 }
250 
251 void
252 ia64_save_extra (struct task_struct *task)
253 {
254 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
255 		ia64_save_debug_regs(&task->thread.dbr[0]);
256 }
257 
258 void
259 ia64_load_extra (struct task_struct *task)
260 {
261 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
262 		ia64_load_debug_regs(&task->thread.dbr[0]);
263 }
264 
265 /*
266  * Copy the state of an ia-64 thread.
267  *
268  * We get here through the following  call chain:
269  *
270  *	from user-level:	from kernel:
271  *
272  *	<clone syscall>	        <some kernel call frames>
273  *	sys_clone		   :
274  *	kernel_clone		kernel_clone
275  *	copy_thread		copy_thread
276  *
277  * This means that the stack layout is as follows:
278  *
279  *	+---------------------+ (highest addr)
280  *	|   struct pt_regs    |
281  *	+---------------------+
282  *	| struct switch_stack |
283  *	+---------------------+
284  *	|                     |
285  *	|    memory stack     |
286  *	|                     | <-- sp (lowest addr)
287  *	+---------------------+
288  *
289  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
290  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
291  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
292  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
293  * the stack is page aligned and the page size is at least 4KB, this is always the case,
294  * so there is nothing to worry about.
295  */
296 int
297 copy_thread(unsigned long clone_flags, unsigned long user_stack_base,
298 	    unsigned long user_stack_size, struct task_struct *p, unsigned long tls)
299 {
300 	extern char ia64_ret_from_clone;
301 	struct switch_stack *child_stack, *stack;
302 	unsigned long rbs, child_rbs, rbs_size;
303 	struct pt_regs *child_ptregs;
304 	struct pt_regs *regs = current_pt_regs();
305 	int retval = 0;
306 
307 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
308 	child_stack = (struct switch_stack *) child_ptregs - 1;
309 
310 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
311 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
312 
313 	/* copy parts of thread_struct: */
314 	p->thread.ksp = (unsigned long) child_stack - 16;
315 
316 	/*
317 	 * NOTE: The calling convention considers all floating point
318 	 * registers in the high partition (fph) to be scratch.  Since
319 	 * the only way to get to this point is through a system call,
320 	 * we know that the values in fph are all dead.  Hence, there
321 	 * is no need to inherit the fph state from the parent to the
322 	 * child and all we have to do is to make sure that
323 	 * IA64_THREAD_FPH_VALID is cleared in the child.
324 	 *
325 	 * XXX We could push this optimization a bit further by
326 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
327 	 * However, it's not clear this is worth doing.  Also, it
328 	 * would be a slight deviation from the normal Linux system
329 	 * call behavior where scratch registers are preserved across
330 	 * system calls (unless used by the system call itself).
331 	 */
332 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
333 					 | IA64_THREAD_PM_VALID)
334 #	define THREAD_FLAGS_TO_SET	0
335 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
336 			   | THREAD_FLAGS_TO_SET);
337 
338 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
339 
340 	if (unlikely(p->flags & PF_KTHREAD)) {
341 		if (unlikely(!user_stack_base)) {
342 			/* fork_idle() called us */
343 			return 0;
344 		}
345 		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
346 		child_stack->r4 = user_stack_base;	/* payload */
347 		child_stack->r5 = user_stack_size;	/* argument */
348 		/*
349 		 * Preserve PSR bits, except for bits 32-34 and 37-45,
350 		 * which we can't read.
351 		 */
352 		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
353 		/* mark as valid, empty frame */
354 		child_ptregs->cr_ifs = 1UL << 63;
355 		child_stack->ar_fpsr = child_ptregs->ar_fpsr
356 			= ia64_getreg(_IA64_REG_AR_FPSR);
357 		child_stack->pr = (1 << PRED_KERNEL_STACK);
358 		child_stack->ar_bspstore = child_rbs;
359 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
360 
361 		/* stop some PSR bits from being inherited.
362 		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
363 		 * therefore we must specify them explicitly here and not include them in
364 		 * IA64_PSR_BITS_TO_CLEAR.
365 		 */
366 		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
367 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
368 
369 		return 0;
370 	}
371 	stack = ((struct switch_stack *) regs) - 1;
372 	/* copy parent's switch_stack & pt_regs to child: */
373 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
374 
375 	/* copy the parent's register backing store to the child: */
376 	rbs_size = stack->ar_bspstore - rbs;
377 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
378 	if (clone_flags & CLONE_SETTLS)
379 		child_ptregs->r13 = tls;
380 	if (user_stack_base) {
381 		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
382 		child_ptregs->ar_bspstore = user_stack_base;
383 		child_ptregs->ar_rnat = 0;
384 		child_ptregs->loadrs = 0;
385 	}
386 	child_stack->ar_bspstore = child_rbs + rbs_size;
387 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
388 
389 	/* stop some PSR bits from being inherited.
390 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
391 	 * therefore we must specify them explicitly here and not include them in
392 	 * IA64_PSR_BITS_TO_CLEAR.
393 	 */
394 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
395 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
396 	return retval;
397 }
398 
399 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
400 			   unsigned long stack_size, unsigned long parent_tidptr,
401 			   unsigned long child_tidptr, unsigned long tls)
402 {
403 	struct kernel_clone_args args = {
404 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
405 		.pidfd		= (int __user *)parent_tidptr,
406 		.child_tid	= (int __user *)child_tidptr,
407 		.parent_tid	= (int __user *)parent_tidptr,
408 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
409 		.stack		= stack_start,
410 		.stack_size	= stack_size,
411 		.tls		= tls,
412 	};
413 
414 	return kernel_clone(&args);
415 }
416 
417 static void
418 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
419 {
420 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
421 	unsigned long ip;
422 	elf_greg_t *dst = arg;
423 	struct pt_regs *pt;
424 	char nat;
425 	int i;
426 
427 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
428 
429 	if (unw_unwind_to_user(info) < 0)
430 		return;
431 
432 	unw_get_sp(info, &sp);
433 	pt = (struct pt_regs *) (sp + 16);
434 
435 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
436 
437 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
438 		return;
439 
440 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
441 		  &ar_rnat);
442 
443 	/*
444 	 * coredump format:
445 	 *	r0-r31
446 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
447 	 *	predicate registers (p0-p63)
448 	 *	b0-b7
449 	 *	ip cfm user-mask
450 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
451 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
452 	 */
453 
454 	/* r0 is zero */
455 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
456 		unw_get_gr(info, i, &dst[i], &nat);
457 		if (nat)
458 			nat_bits |= mask;
459 		mask <<= 1;
460 	}
461 	dst[32] = nat_bits;
462 	unw_get_pr(info, &dst[33]);
463 
464 	for (i = 0; i < 8; ++i)
465 		unw_get_br(info, i, &dst[34 + i]);
466 
467 	unw_get_rp(info, &ip);
468 	dst[42] = ip + ia64_psr(pt)->ri;
469 	dst[43] = cfm;
470 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
471 
472 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
473 	/*
474 	 * For bsp and bspstore, unw_get_ar() would return the kernel
475 	 * addresses, but we need the user-level addresses instead:
476 	 */
477 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
478 	dst[47] = pt->ar_bspstore;
479 	dst[48] = ar_rnat;
480 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
481 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
482 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
483 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
484 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
485 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
486 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
487 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
488 }
489 
490 void
491 do_copy_regs (struct unw_frame_info *info, void *arg)
492 {
493 	do_copy_task_regs(current, info, arg);
494 }
495 
496 void
497 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
498 {
499 	unw_init_running(do_copy_regs, dst);
500 }
501 
502 /*
503  * Flush thread state.  This is called when a thread does an execve().
504  */
505 void
506 flush_thread (void)
507 {
508 	/* drop floating-point and debug-register state if it exists: */
509 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
510 	ia64_drop_fpu(current);
511 }
512 
513 /*
514  * Clean up state associated with a thread.  This is called when
515  * the thread calls exit().
516  */
517 void
518 exit_thread (struct task_struct *tsk)
519 {
520 
521 	ia64_drop_fpu(tsk);
522 }
523 
524 unsigned long
525 get_wchan (struct task_struct *p)
526 {
527 	struct unw_frame_info info;
528 	unsigned long ip;
529 	int count = 0;
530 
531 	if (!p || p == current || p->state == TASK_RUNNING)
532 		return 0;
533 
534 	/*
535 	 * Note: p may not be a blocked task (it could be current or
536 	 * another process running on some other CPU.  Rather than
537 	 * trying to determine if p is really blocked, we just assume
538 	 * it's blocked and rely on the unwind routines to fail
539 	 * gracefully if the process wasn't really blocked after all.
540 	 * --davidm 99/12/15
541 	 */
542 	unw_init_from_blocked_task(&info, p);
543 	do {
544 		if (p->state == TASK_RUNNING)
545 			return 0;
546 		if (unw_unwind(&info) < 0)
547 			return 0;
548 		unw_get_ip(&info, &ip);
549 		if (!in_sched_functions(ip))
550 			return ip;
551 	} while (count++ < 16);
552 	return 0;
553 }
554 
555 void
556 cpu_halt (void)
557 {
558 	pal_power_mgmt_info_u_t power_info[8];
559 	unsigned long min_power;
560 	int i, min_power_state;
561 
562 	if (ia64_pal_halt_info(power_info) != 0)
563 		return;
564 
565 	min_power_state = 0;
566 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
567 	for (i = 1; i < 8; ++i)
568 		if (power_info[i].pal_power_mgmt_info_s.im
569 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
570 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
571 			min_power_state = i;
572 		}
573 
574 	while (1)
575 		ia64_pal_halt(min_power_state);
576 }
577 
578 void machine_shutdown(void)
579 {
580 	smp_shutdown_nonboot_cpus(reboot_cpu);
581 
582 #ifdef CONFIG_KEXEC
583 	kexec_disable_iosapic();
584 #endif
585 }
586 
587 void
588 machine_restart (char *restart_cmd)
589 {
590 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
591 	efi_reboot(REBOOT_WARM, NULL);
592 }
593 
594 void
595 machine_halt (void)
596 {
597 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
598 	cpu_halt();
599 }
600 
601 void
602 machine_power_off (void)
603 {
604 	if (pm_power_off)
605 		pm_power_off();
606 	machine_halt();
607 }
608 
609 EXPORT_SYMBOL(ia64_delay_loop);
610