xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 799a545b)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <kaos@sgi.com>
9  *	      Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 #include <linux/tracehook.h>
32 #include <linux/rcupdate.h>
33 
34 #include <asm/cpu.h>
35 #include <asm/delay.h>
36 #include <asm/elf.h>
37 #include <asm/irq.h>
38 #include <asm/kexec.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sal.h>
42 #include <asm/switch_to.h>
43 #include <asm/tlbflush.h>
44 #include <asm/uaccess.h>
45 #include <asm/unwind.h>
46 #include <asm/user.h>
47 
48 #include "entry.h"
49 
50 #ifdef CONFIG_PERFMON
51 # include <asm/perfmon.h>
52 #endif
53 
54 #include "sigframe.h"
55 
56 void (*ia64_mark_idle)(int);
57 
58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
59 EXPORT_SYMBOL(boot_option_idle_override);
60 void (*pm_power_off) (void);
61 EXPORT_SYMBOL(pm_power_off);
62 
63 void
64 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
65 {
66 	unsigned long ip, sp, bsp;
67 	char buf[128];			/* don't make it so big that it overflows the stack! */
68 
69 	printk("\nCall Trace:\n");
70 	do {
71 		unw_get_ip(info, &ip);
72 		if (ip == 0)
73 			break;
74 
75 		unw_get_sp(info, &sp);
76 		unw_get_bsp(info, &bsp);
77 		snprintf(buf, sizeof(buf),
78 			 " [<%016lx>] %%s\n"
79 			 "                                sp=%016lx bsp=%016lx\n",
80 			 ip, sp, bsp);
81 		print_symbol(buf, ip);
82 	} while (unw_unwind(info) >= 0);
83 }
84 
85 void
86 show_stack (struct task_struct *task, unsigned long *sp)
87 {
88 	if (!task)
89 		unw_init_running(ia64_do_show_stack, NULL);
90 	else {
91 		struct unw_frame_info info;
92 
93 		unw_init_from_blocked_task(&info, task);
94 		ia64_do_show_stack(&info, NULL);
95 	}
96 }
97 
98 void
99 show_regs (struct pt_regs *regs)
100 {
101 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
102 
103 	print_modules();
104 	printk("\n");
105 	show_regs_print_info(KERN_DEFAULT);
106 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
107 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
108 	       init_utsname()->release);
109 	print_symbol("ip is at %s\n", ip);
110 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
111 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
112 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
113 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
114 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
115 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
116 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
117 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
118 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
119 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
120 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
121 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
122 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
123 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
124 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
125 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
126 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
127 
128 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
129 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
130 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
131 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
132 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
133 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
134 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
135 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
136 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
137 
138 	if (user_mode(regs)) {
139 		/* print the stacked registers */
140 		unsigned long val, *bsp, ndirty;
141 		int i, sof, is_nat = 0;
142 
143 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
144 		ndirty = (regs->loadrs >> 19);
145 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
146 		for (i = 0; i < sof; ++i) {
147 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
148 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
149 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
150 		}
151 	} else
152 		show_stack(NULL, NULL);
153 }
154 
155 /* local support for deprecated console_print */
156 void
157 console_print(const char *s)
158 {
159 	printk(KERN_EMERG "%s", s);
160 }
161 
162 void
163 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
164 {
165 	if (fsys_mode(current, &scr->pt)) {
166 		/*
167 		 * defer signal-handling etc. until we return to
168 		 * privilege-level 0.
169 		 */
170 		if (!ia64_psr(&scr->pt)->lp)
171 			ia64_psr(&scr->pt)->lp = 1;
172 		return;
173 	}
174 
175 #ifdef CONFIG_PERFMON
176 	if (current->thread.pfm_needs_checking)
177 		/*
178 		 * Note: pfm_handle_work() allow us to call it with interrupts
179 		 * disabled, and may enable interrupts within the function.
180 		 */
181 		pfm_handle_work();
182 #endif
183 
184 	/* deal with pending signal delivery */
185 	if (test_thread_flag(TIF_SIGPENDING)) {
186 		local_irq_enable();	/* force interrupt enable */
187 		ia64_do_signal(scr, in_syscall);
188 	}
189 
190 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
191 		local_irq_enable();	/* force interrupt enable */
192 		tracehook_notify_resume(&scr->pt);
193 	}
194 
195 	/* copy user rbs to kernel rbs */
196 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
197 		local_irq_enable();	/* force interrupt enable */
198 		ia64_sync_krbs();
199 	}
200 
201 	local_irq_disable();	/* force interrupt disable */
202 }
203 
204 static int __init nohalt_setup(char * str)
205 {
206 	cpu_idle_poll_ctrl(true);
207 	return 1;
208 }
209 __setup("nohalt", nohalt_setup);
210 
211 #ifdef CONFIG_HOTPLUG_CPU
212 /* We don't actually take CPU down, just spin without interrupts. */
213 static inline void play_dead(void)
214 {
215 	unsigned int this_cpu = smp_processor_id();
216 
217 	/* Ack it */
218 	__this_cpu_write(cpu_state, CPU_DEAD);
219 
220 	max_xtp();
221 	local_irq_disable();
222 	idle_task_exit();
223 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
224 	/*
225 	 * The above is a point of no-return, the processor is
226 	 * expected to be in SAL loop now.
227 	 */
228 	BUG();
229 }
230 #else
231 static inline void play_dead(void)
232 {
233 	BUG();
234 }
235 #endif /* CONFIG_HOTPLUG_CPU */
236 
237 void arch_cpu_idle_dead(void)
238 {
239 	play_dead();
240 }
241 
242 void arch_cpu_idle(void)
243 {
244 	void (*mark_idle)(int) = ia64_mark_idle;
245 
246 #ifdef CONFIG_SMP
247 	min_xtp();
248 #endif
249 	rmb();
250 	if (mark_idle)
251 		(*mark_idle)(1);
252 
253 	safe_halt();
254 
255 	if (mark_idle)
256 		(*mark_idle)(0);
257 #ifdef CONFIG_SMP
258 	normal_xtp();
259 #endif
260 }
261 
262 void
263 ia64_save_extra (struct task_struct *task)
264 {
265 #ifdef CONFIG_PERFMON
266 	unsigned long info;
267 #endif
268 
269 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
270 		ia64_save_debug_regs(&task->thread.dbr[0]);
271 
272 #ifdef CONFIG_PERFMON
273 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
274 		pfm_save_regs(task);
275 
276 	info = __this_cpu_read(pfm_syst_info);
277 	if (info & PFM_CPUINFO_SYST_WIDE)
278 		pfm_syst_wide_update_task(task, info, 0);
279 #endif
280 }
281 
282 void
283 ia64_load_extra (struct task_struct *task)
284 {
285 #ifdef CONFIG_PERFMON
286 	unsigned long info;
287 #endif
288 
289 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
290 		ia64_load_debug_regs(&task->thread.dbr[0]);
291 
292 #ifdef CONFIG_PERFMON
293 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
294 		pfm_load_regs(task);
295 
296 	info = __this_cpu_read(pfm_syst_info);
297 	if (info & PFM_CPUINFO_SYST_WIDE)
298 		pfm_syst_wide_update_task(task, info, 1);
299 #endif
300 }
301 
302 /*
303  * Copy the state of an ia-64 thread.
304  *
305  * We get here through the following  call chain:
306  *
307  *	from user-level:	from kernel:
308  *
309  *	<clone syscall>	        <some kernel call frames>
310  *	sys_clone		   :
311  *	do_fork			do_fork
312  *	copy_thread		copy_thread
313  *
314  * This means that the stack layout is as follows:
315  *
316  *	+---------------------+ (highest addr)
317  *	|   struct pt_regs    |
318  *	+---------------------+
319  *	| struct switch_stack |
320  *	+---------------------+
321  *	|                     |
322  *	|    memory stack     |
323  *	|                     | <-- sp (lowest addr)
324  *	+---------------------+
325  *
326  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
327  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
328  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
329  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
330  * the stack is page aligned and the page size is at least 4KB, this is always the case,
331  * so there is nothing to worry about.
332  */
333 int
334 copy_thread(unsigned long clone_flags,
335 	     unsigned long user_stack_base, unsigned long user_stack_size,
336 	     struct task_struct *p)
337 {
338 	extern char ia64_ret_from_clone;
339 	struct switch_stack *child_stack, *stack;
340 	unsigned long rbs, child_rbs, rbs_size;
341 	struct pt_regs *child_ptregs;
342 	struct pt_regs *regs = current_pt_regs();
343 	int retval = 0;
344 
345 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
346 	child_stack = (struct switch_stack *) child_ptregs - 1;
347 
348 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
349 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
350 
351 	/* copy parts of thread_struct: */
352 	p->thread.ksp = (unsigned long) child_stack - 16;
353 
354 	/*
355 	 * NOTE: The calling convention considers all floating point
356 	 * registers in the high partition (fph) to be scratch.  Since
357 	 * the only way to get to this point is through a system call,
358 	 * we know that the values in fph are all dead.  Hence, there
359 	 * is no need to inherit the fph state from the parent to the
360 	 * child and all we have to do is to make sure that
361 	 * IA64_THREAD_FPH_VALID is cleared in the child.
362 	 *
363 	 * XXX We could push this optimization a bit further by
364 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
365 	 * However, it's not clear this is worth doing.  Also, it
366 	 * would be a slight deviation from the normal Linux system
367 	 * call behavior where scratch registers are preserved across
368 	 * system calls (unless used by the system call itself).
369 	 */
370 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
371 					 | IA64_THREAD_PM_VALID)
372 #	define THREAD_FLAGS_TO_SET	0
373 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
374 			   | THREAD_FLAGS_TO_SET);
375 
376 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
377 
378 	if (unlikely(p->flags & PF_KTHREAD)) {
379 		if (unlikely(!user_stack_base)) {
380 			/* fork_idle() called us */
381 			return 0;
382 		}
383 		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
384 		child_stack->r4 = user_stack_base;	/* payload */
385 		child_stack->r5 = user_stack_size;	/* argument */
386 		/*
387 		 * Preserve PSR bits, except for bits 32-34 and 37-45,
388 		 * which we can't read.
389 		 */
390 		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
391 		/* mark as valid, empty frame */
392 		child_ptregs->cr_ifs = 1UL << 63;
393 		child_stack->ar_fpsr = child_ptregs->ar_fpsr
394 			= ia64_getreg(_IA64_REG_AR_FPSR);
395 		child_stack->pr = (1 << PRED_KERNEL_STACK);
396 		child_stack->ar_bspstore = child_rbs;
397 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
398 
399 		/* stop some PSR bits from being inherited.
400 		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
401 		 * therefore we must specify them explicitly here and not include them in
402 		 * IA64_PSR_BITS_TO_CLEAR.
403 		 */
404 		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
405 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
406 
407 		return 0;
408 	}
409 	stack = ((struct switch_stack *) regs) - 1;
410 	/* copy parent's switch_stack & pt_regs to child: */
411 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
412 
413 	/* copy the parent's register backing store to the child: */
414 	rbs_size = stack->ar_bspstore - rbs;
415 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
416 	if (clone_flags & CLONE_SETTLS)
417 		child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
418 	if (user_stack_base) {
419 		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
420 		child_ptregs->ar_bspstore = user_stack_base;
421 		child_ptregs->ar_rnat = 0;
422 		child_ptregs->loadrs = 0;
423 	}
424 	child_stack->ar_bspstore = child_rbs + rbs_size;
425 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
426 
427 	/* stop some PSR bits from being inherited.
428 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
429 	 * therefore we must specify them explicitly here and not include them in
430 	 * IA64_PSR_BITS_TO_CLEAR.
431 	 */
432 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
433 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
434 
435 #ifdef CONFIG_PERFMON
436 	if (current->thread.pfm_context)
437 		pfm_inherit(p, child_ptregs);
438 #endif
439 	return retval;
440 }
441 
442 static void
443 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
444 {
445 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
446 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
447 	elf_greg_t *dst = arg;
448 	struct pt_regs *pt;
449 	char nat;
450 	int i;
451 
452 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
453 
454 	if (unw_unwind_to_user(info) < 0)
455 		return;
456 
457 	unw_get_sp(info, &sp);
458 	pt = (struct pt_regs *) (sp + 16);
459 
460 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
461 
462 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
463 		return;
464 
465 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
466 		  &ar_rnat);
467 
468 	/*
469 	 * coredump format:
470 	 *	r0-r31
471 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
472 	 *	predicate registers (p0-p63)
473 	 *	b0-b7
474 	 *	ip cfm user-mask
475 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
476 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
477 	 */
478 
479 	/* r0 is zero */
480 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
481 		unw_get_gr(info, i, &dst[i], &nat);
482 		if (nat)
483 			nat_bits |= mask;
484 		mask <<= 1;
485 	}
486 	dst[32] = nat_bits;
487 	unw_get_pr(info, &dst[33]);
488 
489 	for (i = 0; i < 8; ++i)
490 		unw_get_br(info, i, &dst[34 + i]);
491 
492 	unw_get_rp(info, &ip);
493 	dst[42] = ip + ia64_psr(pt)->ri;
494 	dst[43] = cfm;
495 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
496 
497 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
498 	/*
499 	 * For bsp and bspstore, unw_get_ar() would return the kernel
500 	 * addresses, but we need the user-level addresses instead:
501 	 */
502 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
503 	dst[47] = pt->ar_bspstore;
504 	dst[48] = ar_rnat;
505 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
506 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
507 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
508 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
509 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
510 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
511 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
512 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
513 }
514 
515 void
516 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
517 {
518 	elf_fpreg_t *dst = arg;
519 	int i;
520 
521 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
522 
523 	if (unw_unwind_to_user(info) < 0)
524 		return;
525 
526 	/* f0 is 0.0, f1 is 1.0 */
527 
528 	for (i = 2; i < 32; ++i)
529 		unw_get_fr(info, i, dst + i);
530 
531 	ia64_flush_fph(task);
532 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
533 		memcpy(dst + 32, task->thread.fph, 96*16);
534 }
535 
536 void
537 do_copy_regs (struct unw_frame_info *info, void *arg)
538 {
539 	do_copy_task_regs(current, info, arg);
540 }
541 
542 void
543 do_dump_fpu (struct unw_frame_info *info, void *arg)
544 {
545 	do_dump_task_fpu(current, info, arg);
546 }
547 
548 void
549 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
550 {
551 	unw_init_running(do_copy_regs, dst);
552 }
553 
554 int
555 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
556 {
557 	unw_init_running(do_dump_fpu, dst);
558 	return 1;	/* f0-f31 are always valid so we always return 1 */
559 }
560 
561 /*
562  * Flush thread state.  This is called when a thread does an execve().
563  */
564 void
565 flush_thread (void)
566 {
567 	/* drop floating-point and debug-register state if it exists: */
568 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
569 	ia64_drop_fpu(current);
570 }
571 
572 /*
573  * Clean up state associated with a thread.  This is called when
574  * the thread calls exit().
575  */
576 void
577 exit_thread (struct task_struct *tsk)
578 {
579 
580 	ia64_drop_fpu(tsk);
581 #ifdef CONFIG_PERFMON
582        /* if needed, stop monitoring and flush state to perfmon context */
583 	if (tsk->thread.pfm_context)
584 		pfm_exit_thread(tsk);
585 
586 	/* free debug register resources */
587 	if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
588 		pfm_release_debug_registers(tsk);
589 #endif
590 }
591 
592 unsigned long
593 get_wchan (struct task_struct *p)
594 {
595 	struct unw_frame_info info;
596 	unsigned long ip;
597 	int count = 0;
598 
599 	if (!p || p == current || p->state == TASK_RUNNING)
600 		return 0;
601 
602 	/*
603 	 * Note: p may not be a blocked task (it could be current or
604 	 * another process running on some other CPU.  Rather than
605 	 * trying to determine if p is really blocked, we just assume
606 	 * it's blocked and rely on the unwind routines to fail
607 	 * gracefully if the process wasn't really blocked after all.
608 	 * --davidm 99/12/15
609 	 */
610 	unw_init_from_blocked_task(&info, p);
611 	do {
612 		if (p->state == TASK_RUNNING)
613 			return 0;
614 		if (unw_unwind(&info) < 0)
615 			return 0;
616 		unw_get_ip(&info, &ip);
617 		if (!in_sched_functions(ip))
618 			return ip;
619 	} while (count++ < 16);
620 	return 0;
621 }
622 
623 void
624 cpu_halt (void)
625 {
626 	pal_power_mgmt_info_u_t power_info[8];
627 	unsigned long min_power;
628 	int i, min_power_state;
629 
630 	if (ia64_pal_halt_info(power_info) != 0)
631 		return;
632 
633 	min_power_state = 0;
634 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
635 	for (i = 1; i < 8; ++i)
636 		if (power_info[i].pal_power_mgmt_info_s.im
637 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
638 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
639 			min_power_state = i;
640 		}
641 
642 	while (1)
643 		ia64_pal_halt(min_power_state);
644 }
645 
646 void machine_shutdown(void)
647 {
648 #ifdef CONFIG_HOTPLUG_CPU
649 	int cpu;
650 
651 	for_each_online_cpu(cpu) {
652 		if (cpu != smp_processor_id())
653 			cpu_down(cpu);
654 	}
655 #endif
656 #ifdef CONFIG_KEXEC
657 	kexec_disable_iosapic();
658 #endif
659 }
660 
661 void
662 machine_restart (char *restart_cmd)
663 {
664 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
665 	efi_reboot(REBOOT_WARM, NULL);
666 }
667 
668 void
669 machine_halt (void)
670 {
671 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
672 	cpu_halt();
673 }
674 
675 void
676 machine_power_off (void)
677 {
678 	if (pm_power_off)
679 		pm_power_off();
680 	machine_halt();
681 }
682 
683