xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 732a675a)
1 /*
2  * Architecture-specific setup.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
7  *
8  * 2005-10-07 Keith Owens <kaos@sgi.com>
9  *	      Add notify_die() hooks.
10  */
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/elf.h>
14 #include <linux/errno.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/notifier.h>
20 #include <linux/personality.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stddef.h>
24 #include <linux/thread_info.h>
25 #include <linux/unistd.h>
26 #include <linux/efi.h>
27 #include <linux/interrupt.h>
28 #include <linux/delay.h>
29 #include <linux/kdebug.h>
30 #include <linux/utsname.h>
31 
32 #include <asm/cpu.h>
33 #include <asm/delay.h>
34 #include <asm/elf.h>
35 #include <asm/ia32.h>
36 #include <asm/irq.h>
37 #include <asm/kexec.h>
38 #include <asm/pgalloc.h>
39 #include <asm/processor.h>
40 #include <asm/sal.h>
41 #include <asm/tlbflush.h>
42 #include <asm/uaccess.h>
43 #include <asm/unwind.h>
44 #include <asm/user.h>
45 
46 #include "entry.h"
47 
48 #ifdef CONFIG_PERFMON
49 # include <asm/perfmon.h>
50 #endif
51 
52 #include "sigframe.h"
53 
54 void (*ia64_mark_idle)(int);
55 
56 unsigned long boot_option_idle_override = 0;
57 EXPORT_SYMBOL(boot_option_idle_override);
58 
59 void
60 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
61 {
62 	unsigned long ip, sp, bsp;
63 	char buf[128];			/* don't make it so big that it overflows the stack! */
64 
65 	printk("\nCall Trace:\n");
66 	do {
67 		unw_get_ip(info, &ip);
68 		if (ip == 0)
69 			break;
70 
71 		unw_get_sp(info, &sp);
72 		unw_get_bsp(info, &bsp);
73 		snprintf(buf, sizeof(buf),
74 			 " [<%016lx>] %%s\n"
75 			 "                                sp=%016lx bsp=%016lx\n",
76 			 ip, sp, bsp);
77 		print_symbol(buf, ip);
78 	} while (unw_unwind(info) >= 0);
79 }
80 
81 void
82 show_stack (struct task_struct *task, unsigned long *sp)
83 {
84 	if (!task)
85 		unw_init_running(ia64_do_show_stack, NULL);
86 	else {
87 		struct unw_frame_info info;
88 
89 		unw_init_from_blocked_task(&info, task);
90 		ia64_do_show_stack(&info, NULL);
91 	}
92 }
93 
94 void
95 dump_stack (void)
96 {
97 	show_stack(NULL, NULL);
98 }
99 
100 EXPORT_SYMBOL(dump_stack);
101 
102 void
103 show_regs (struct pt_regs *regs)
104 {
105 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
106 
107 	print_modules();
108 	printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
109 			smp_processor_id(), current->comm);
110 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
111 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
112 	       init_utsname()->release);
113 	print_symbol("ip is at %s\n", ip);
114 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
115 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
116 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
117 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
118 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
119 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
120 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
121 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
122 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
123 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
124 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
125 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
126 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
127 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
128 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
129 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
130 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
131 
132 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
133 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
134 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
135 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
136 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
137 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
138 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
139 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
140 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
141 
142 	if (user_mode(regs)) {
143 		/* print the stacked registers */
144 		unsigned long val, *bsp, ndirty;
145 		int i, sof, is_nat = 0;
146 
147 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
148 		ndirty = (regs->loadrs >> 19);
149 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
150 		for (i = 0; i < sof; ++i) {
151 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
152 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
153 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
154 		}
155 	} else
156 		show_stack(NULL, NULL);
157 }
158 
159 void tsk_clear_notify_resume(struct task_struct *tsk)
160 {
161 #ifdef CONFIG_PERFMON
162 	if (tsk->thread.pfm_needs_checking)
163 		return;
164 #endif
165 	if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
166 		return;
167 	clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
168 }
169 
170 /*
171  * do_notify_resume_user():
172  *	Called from notify_resume_user at entry.S, with interrupts disabled.
173  */
174 void
175 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
176 {
177 	if (fsys_mode(current, &scr->pt)) {
178 		/*
179 		 * defer signal-handling etc. until we return to
180 		 * privilege-level 0.
181 		 */
182 		if (!ia64_psr(&scr->pt)->lp)
183 			ia64_psr(&scr->pt)->lp = 1;
184 		return;
185 	}
186 
187 #ifdef CONFIG_PERFMON
188 	if (current->thread.pfm_needs_checking)
189 		/*
190 		 * Note: pfm_handle_work() allow us to call it with interrupts
191 		 * disabled, and may enable interrupts within the function.
192 		 */
193 		pfm_handle_work();
194 #endif
195 
196 	/* deal with pending signal delivery */
197 	if (test_thread_flag(TIF_SIGPENDING)) {
198 		local_irq_enable();	/* force interrupt enable */
199 		ia64_do_signal(scr, in_syscall);
200 	}
201 
202 	/* copy user rbs to kernel rbs */
203 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
204 		local_irq_enable();	/* force interrupt enable */
205 		ia64_sync_krbs();
206 	}
207 
208 	local_irq_disable();	/* force interrupt disable */
209 }
210 
211 static int pal_halt        = 1;
212 static int can_do_pal_halt = 1;
213 
214 static int __init nohalt_setup(char * str)
215 {
216 	pal_halt = can_do_pal_halt = 0;
217 	return 1;
218 }
219 __setup("nohalt", nohalt_setup);
220 
221 void
222 update_pal_halt_status(int status)
223 {
224 	can_do_pal_halt = pal_halt && status;
225 }
226 
227 /*
228  * We use this if we don't have any better idle routine..
229  */
230 void
231 default_idle (void)
232 {
233 	local_irq_enable();
234 	while (!need_resched()) {
235 		if (can_do_pal_halt) {
236 			local_irq_disable();
237 			if (!need_resched()) {
238 				safe_halt();
239 			}
240 			local_irq_enable();
241 		} else
242 			cpu_relax();
243 	}
244 }
245 
246 #ifdef CONFIG_HOTPLUG_CPU
247 /* We don't actually take CPU down, just spin without interrupts. */
248 static inline void play_dead(void)
249 {
250 	extern void ia64_cpu_local_tick (void);
251 	unsigned int this_cpu = smp_processor_id();
252 
253 	/* Ack it */
254 	__get_cpu_var(cpu_state) = CPU_DEAD;
255 
256 	max_xtp();
257 	local_irq_disable();
258 	idle_task_exit();
259 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
260 	/*
261 	 * The above is a point of no-return, the processor is
262 	 * expected to be in SAL loop now.
263 	 */
264 	BUG();
265 }
266 #else
267 static inline void play_dead(void)
268 {
269 	BUG();
270 }
271 #endif /* CONFIG_HOTPLUG_CPU */
272 
273 static void do_nothing(void *unused)
274 {
275 }
276 
277 /*
278  * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
279  * pm_idle and update to new pm_idle value. Required while changing pm_idle
280  * handler on SMP systems.
281  *
282  * Caller must have changed pm_idle to the new value before the call. Old
283  * pm_idle value will not be used by any CPU after the return of this function.
284  */
285 void cpu_idle_wait(void)
286 {
287 	smp_mb();
288 	/* kick all the CPUs so that they exit out of pm_idle */
289 	smp_call_function(do_nothing, NULL, 0, 1);
290 }
291 EXPORT_SYMBOL_GPL(cpu_idle_wait);
292 
293 void __attribute__((noreturn))
294 cpu_idle (void)
295 {
296 	void (*mark_idle)(int) = ia64_mark_idle;
297   	int cpu = smp_processor_id();
298 
299 	/* endless idle loop with no priority at all */
300 	while (1) {
301 		if (can_do_pal_halt) {
302 			current_thread_info()->status &= ~TS_POLLING;
303 			/*
304 			 * TS_POLLING-cleared state must be visible before we
305 			 * test NEED_RESCHED:
306 			 */
307 			smp_mb();
308 		} else {
309 			current_thread_info()->status |= TS_POLLING;
310 		}
311 
312 		if (!need_resched()) {
313 			void (*idle)(void);
314 #ifdef CONFIG_SMP
315 			min_xtp();
316 #endif
317 			rmb();
318 			if (mark_idle)
319 				(*mark_idle)(1);
320 
321 			idle = pm_idle;
322 			if (!idle)
323 				idle = default_idle;
324 			(*idle)();
325 			if (mark_idle)
326 				(*mark_idle)(0);
327 #ifdef CONFIG_SMP
328 			normal_xtp();
329 #endif
330 		}
331 		preempt_enable_no_resched();
332 		schedule();
333 		preempt_disable();
334 		check_pgt_cache();
335 		if (cpu_is_offline(cpu))
336 			play_dead();
337 	}
338 }
339 
340 void
341 ia64_save_extra (struct task_struct *task)
342 {
343 #ifdef CONFIG_PERFMON
344 	unsigned long info;
345 #endif
346 
347 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
348 		ia64_save_debug_regs(&task->thread.dbr[0]);
349 
350 #ifdef CONFIG_PERFMON
351 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
352 		pfm_save_regs(task);
353 
354 	info = __get_cpu_var(pfm_syst_info);
355 	if (info & PFM_CPUINFO_SYST_WIDE)
356 		pfm_syst_wide_update_task(task, info, 0);
357 #endif
358 
359 #ifdef CONFIG_IA32_SUPPORT
360 	if (IS_IA32_PROCESS(task_pt_regs(task)))
361 		ia32_save_state(task);
362 #endif
363 }
364 
365 void
366 ia64_load_extra (struct task_struct *task)
367 {
368 #ifdef CONFIG_PERFMON
369 	unsigned long info;
370 #endif
371 
372 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
373 		ia64_load_debug_regs(&task->thread.dbr[0]);
374 
375 #ifdef CONFIG_PERFMON
376 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
377 		pfm_load_regs(task);
378 
379 	info = __get_cpu_var(pfm_syst_info);
380 	if (info & PFM_CPUINFO_SYST_WIDE)
381 		pfm_syst_wide_update_task(task, info, 1);
382 #endif
383 
384 #ifdef CONFIG_IA32_SUPPORT
385 	if (IS_IA32_PROCESS(task_pt_regs(task)))
386 		ia32_load_state(task);
387 #endif
388 }
389 
390 /*
391  * Copy the state of an ia-64 thread.
392  *
393  * We get here through the following  call chain:
394  *
395  *	from user-level:	from kernel:
396  *
397  *	<clone syscall>	        <some kernel call frames>
398  *	sys_clone		   :
399  *	do_fork			do_fork
400  *	copy_thread		copy_thread
401  *
402  * This means that the stack layout is as follows:
403  *
404  *	+---------------------+ (highest addr)
405  *	|   struct pt_regs    |
406  *	+---------------------+
407  *	| struct switch_stack |
408  *	+---------------------+
409  *	|                     |
410  *	|    memory stack     |
411  *	|                     | <-- sp (lowest addr)
412  *	+---------------------+
413  *
414  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
415  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
416  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
417  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
418  * the stack is page aligned and the page size is at least 4KB, this is always the case,
419  * so there is nothing to worry about.
420  */
421 int
422 copy_thread (int nr, unsigned long clone_flags,
423 	     unsigned long user_stack_base, unsigned long user_stack_size,
424 	     struct task_struct *p, struct pt_regs *regs)
425 {
426 	extern char ia64_ret_from_clone, ia32_ret_from_clone;
427 	struct switch_stack *child_stack, *stack;
428 	unsigned long rbs, child_rbs, rbs_size;
429 	struct pt_regs *child_ptregs;
430 	int retval = 0;
431 
432 #ifdef CONFIG_SMP
433 	/*
434 	 * For SMP idle threads, fork_by_hand() calls do_fork with
435 	 * NULL regs.
436 	 */
437 	if (!regs)
438 		return 0;
439 #endif
440 
441 	stack = ((struct switch_stack *) regs) - 1;
442 
443 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
444 	child_stack = (struct switch_stack *) child_ptregs - 1;
445 
446 	/* copy parent's switch_stack & pt_regs to child: */
447 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
448 
449 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
450 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
451 	rbs_size = stack->ar_bspstore - rbs;
452 
453 	/* copy the parent's register backing store to the child: */
454 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
455 
456 	if (likely(user_mode(child_ptregs))) {
457 		if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
458 			child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
459 		if (user_stack_base) {
460 			child_ptregs->r12 = user_stack_base + user_stack_size - 16;
461 			child_ptregs->ar_bspstore = user_stack_base;
462 			child_ptregs->ar_rnat = 0;
463 			child_ptregs->loadrs = 0;
464 		}
465 	} else {
466 		/*
467 		 * Note: we simply preserve the relative position of
468 		 * the stack pointer here.  There is no need to
469 		 * allocate a scratch area here, since that will have
470 		 * been taken care of by the caller of sys_clone()
471 		 * already.
472 		 */
473 		child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
474 		child_ptregs->r13 = (unsigned long) p;		/* set `current' pointer */
475 	}
476 	child_stack->ar_bspstore = child_rbs + rbs_size;
477 	if (IS_IA32_PROCESS(regs))
478 		child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
479 	else
480 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
481 
482 	/* copy parts of thread_struct: */
483 	p->thread.ksp = (unsigned long) child_stack - 16;
484 
485 	/* stop some PSR bits from being inherited.
486 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
487 	 * therefore we must specify them explicitly here and not include them in
488 	 * IA64_PSR_BITS_TO_CLEAR.
489 	 */
490 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
491 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
492 
493 	/*
494 	 * NOTE: The calling convention considers all floating point
495 	 * registers in the high partition (fph) to be scratch.  Since
496 	 * the only way to get to this point is through a system call,
497 	 * we know that the values in fph are all dead.  Hence, there
498 	 * is no need to inherit the fph state from the parent to the
499 	 * child and all we have to do is to make sure that
500 	 * IA64_THREAD_FPH_VALID is cleared in the child.
501 	 *
502 	 * XXX We could push this optimization a bit further by
503 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
504 	 * However, it's not clear this is worth doing.  Also, it
505 	 * would be a slight deviation from the normal Linux system
506 	 * call behavior where scratch registers are preserved across
507 	 * system calls (unless used by the system call itself).
508 	 */
509 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
510 					 | IA64_THREAD_PM_VALID)
511 #	define THREAD_FLAGS_TO_SET	0
512 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
513 			   | THREAD_FLAGS_TO_SET);
514 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
515 #ifdef CONFIG_IA32_SUPPORT
516 	/*
517 	 * If we're cloning an IA32 task then save the IA32 extra
518 	 * state from the current task to the new task
519 	 */
520 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
521 		ia32_save_state(p);
522 		if (clone_flags & CLONE_SETTLS)
523 			retval = ia32_clone_tls(p, child_ptregs);
524 
525 		/* Copy partially mapped page list */
526 		if (!retval)
527 			retval = ia32_copy_ia64_partial_page_list(p,
528 								clone_flags);
529 	}
530 #endif
531 
532 #ifdef CONFIG_PERFMON
533 	if (current->thread.pfm_context)
534 		pfm_inherit(p, child_ptregs);
535 #endif
536 	return retval;
537 }
538 
539 static void
540 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
541 {
542 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
543 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
544 	elf_greg_t *dst = arg;
545 	struct pt_regs *pt;
546 	char nat;
547 	int i;
548 
549 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
550 
551 	if (unw_unwind_to_user(info) < 0)
552 		return;
553 
554 	unw_get_sp(info, &sp);
555 	pt = (struct pt_regs *) (sp + 16);
556 
557 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
558 
559 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
560 		return;
561 
562 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
563 		  &ar_rnat);
564 
565 	/*
566 	 * coredump format:
567 	 *	r0-r31
568 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
569 	 *	predicate registers (p0-p63)
570 	 *	b0-b7
571 	 *	ip cfm user-mask
572 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
573 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
574 	 */
575 
576 	/* r0 is zero */
577 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
578 		unw_get_gr(info, i, &dst[i], &nat);
579 		if (nat)
580 			nat_bits |= mask;
581 		mask <<= 1;
582 	}
583 	dst[32] = nat_bits;
584 	unw_get_pr(info, &dst[33]);
585 
586 	for (i = 0; i < 8; ++i)
587 		unw_get_br(info, i, &dst[34 + i]);
588 
589 	unw_get_rp(info, &ip);
590 	dst[42] = ip + ia64_psr(pt)->ri;
591 	dst[43] = cfm;
592 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
593 
594 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
595 	/*
596 	 * For bsp and bspstore, unw_get_ar() would return the kernel
597 	 * addresses, but we need the user-level addresses instead:
598 	 */
599 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
600 	dst[47] = pt->ar_bspstore;
601 	dst[48] = ar_rnat;
602 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
603 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
604 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
605 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
606 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
607 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
608 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
609 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
610 }
611 
612 void
613 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
614 {
615 	elf_fpreg_t *dst = arg;
616 	int i;
617 
618 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
619 
620 	if (unw_unwind_to_user(info) < 0)
621 		return;
622 
623 	/* f0 is 0.0, f1 is 1.0 */
624 
625 	for (i = 2; i < 32; ++i)
626 		unw_get_fr(info, i, dst + i);
627 
628 	ia64_flush_fph(task);
629 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
630 		memcpy(dst + 32, task->thread.fph, 96*16);
631 }
632 
633 void
634 do_copy_regs (struct unw_frame_info *info, void *arg)
635 {
636 	do_copy_task_regs(current, info, arg);
637 }
638 
639 void
640 do_dump_fpu (struct unw_frame_info *info, void *arg)
641 {
642 	do_dump_task_fpu(current, info, arg);
643 }
644 
645 void
646 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
647 {
648 	unw_init_running(do_copy_regs, dst);
649 }
650 
651 int
652 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
653 {
654 	unw_init_running(do_dump_fpu, dst);
655 	return 1;	/* f0-f31 are always valid so we always return 1 */
656 }
657 
658 long
659 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
660 	    struct pt_regs *regs)
661 {
662 	char *fname;
663 	int error;
664 
665 	fname = getname(filename);
666 	error = PTR_ERR(fname);
667 	if (IS_ERR(fname))
668 		goto out;
669 	error = do_execve(fname, argv, envp, regs);
670 	putname(fname);
671 out:
672 	return error;
673 }
674 
675 pid_t
676 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
677 {
678 	extern void start_kernel_thread (void);
679 	unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
680 	struct {
681 		struct switch_stack sw;
682 		struct pt_regs pt;
683 	} regs;
684 
685 	memset(&regs, 0, sizeof(regs));
686 	regs.pt.cr_iip = helper_fptr[0];	/* set entry point (IP) */
687 	regs.pt.r1 = helper_fptr[1];		/* set GP */
688 	regs.pt.r9 = (unsigned long) fn;	/* 1st argument */
689 	regs.pt.r11 = (unsigned long) arg;	/* 2nd argument */
690 	/* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
691 	regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
692 	regs.pt.cr_ifs = 1UL << 63;		/* mark as valid, empty frame */
693 	regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
694 	regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
695 	regs.sw.pr = (1 << PRED_KERNEL_STACK);
696 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
697 }
698 EXPORT_SYMBOL(kernel_thread);
699 
700 /* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
701 int
702 kernel_thread_helper (int (*fn)(void *), void *arg)
703 {
704 #ifdef CONFIG_IA32_SUPPORT
705 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
706 		/* A kernel thread is always a 64-bit process. */
707 		current->thread.map_base  = DEFAULT_MAP_BASE;
708 		current->thread.task_size = DEFAULT_TASK_SIZE;
709 		ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
710 		ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
711 	}
712 #endif
713 	return (*fn)(arg);
714 }
715 
716 /*
717  * Flush thread state.  This is called when a thread does an execve().
718  */
719 void
720 flush_thread (void)
721 {
722 	/* drop floating-point and debug-register state if it exists: */
723 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
724 	ia64_drop_fpu(current);
725 #ifdef CONFIG_IA32_SUPPORT
726 	if (IS_IA32_PROCESS(task_pt_regs(current))) {
727 		ia32_drop_ia64_partial_page_list(current);
728 		current->thread.task_size = IA32_PAGE_OFFSET;
729 		set_fs(USER_DS);
730 		memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
731 	}
732 #endif
733 }
734 
735 /*
736  * Clean up state associated with current thread.  This is called when
737  * the thread calls exit().
738  */
739 void
740 exit_thread (void)
741 {
742 
743 	ia64_drop_fpu(current);
744 #ifdef CONFIG_PERFMON
745        /* if needed, stop monitoring and flush state to perfmon context */
746 	if (current->thread.pfm_context)
747 		pfm_exit_thread(current);
748 
749 	/* free debug register resources */
750 	if (current->thread.flags & IA64_THREAD_DBG_VALID)
751 		pfm_release_debug_registers(current);
752 #endif
753 	if (IS_IA32_PROCESS(task_pt_regs(current)))
754 		ia32_drop_ia64_partial_page_list(current);
755 }
756 
757 unsigned long
758 get_wchan (struct task_struct *p)
759 {
760 	struct unw_frame_info info;
761 	unsigned long ip;
762 	int count = 0;
763 
764 	if (!p || p == current || p->state == TASK_RUNNING)
765 		return 0;
766 
767 	/*
768 	 * Note: p may not be a blocked task (it could be current or
769 	 * another process running on some other CPU.  Rather than
770 	 * trying to determine if p is really blocked, we just assume
771 	 * it's blocked and rely on the unwind routines to fail
772 	 * gracefully if the process wasn't really blocked after all.
773 	 * --davidm 99/12/15
774 	 */
775 	unw_init_from_blocked_task(&info, p);
776 	do {
777 		if (p->state == TASK_RUNNING)
778 			return 0;
779 		if (unw_unwind(&info) < 0)
780 			return 0;
781 		unw_get_ip(&info, &ip);
782 		if (!in_sched_functions(ip))
783 			return ip;
784 	} while (count++ < 16);
785 	return 0;
786 }
787 
788 void
789 cpu_halt (void)
790 {
791 	pal_power_mgmt_info_u_t power_info[8];
792 	unsigned long min_power;
793 	int i, min_power_state;
794 
795 	if (ia64_pal_halt_info(power_info) != 0)
796 		return;
797 
798 	min_power_state = 0;
799 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
800 	for (i = 1; i < 8; ++i)
801 		if (power_info[i].pal_power_mgmt_info_s.im
802 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
803 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
804 			min_power_state = i;
805 		}
806 
807 	while (1)
808 		ia64_pal_halt(min_power_state);
809 }
810 
811 void machine_shutdown(void)
812 {
813 #ifdef CONFIG_HOTPLUG_CPU
814 	int cpu;
815 
816 	for_each_online_cpu(cpu) {
817 		if (cpu != smp_processor_id())
818 			cpu_down(cpu);
819 	}
820 #endif
821 #ifdef CONFIG_KEXEC
822 	kexec_disable_iosapic();
823 #endif
824 }
825 
826 void
827 machine_restart (char *restart_cmd)
828 {
829 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
830 	(*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
831 }
832 
833 void
834 machine_halt (void)
835 {
836 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
837 	cpu_halt();
838 }
839 
840 void
841 machine_power_off (void)
842 {
843 	if (pm_power_off)
844 		pm_power_off();
845 	machine_halt();
846 }
847 
848