1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 #include <linux/utsname.h> 31 32 #include <asm/cpu.h> 33 #include <asm/delay.h> 34 #include <asm/elf.h> 35 #include <asm/ia32.h> 36 #include <asm/irq.h> 37 #include <asm/kexec.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sal.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/unwind.h> 44 #include <asm/user.h> 45 46 #include "entry.h" 47 48 #ifdef CONFIG_PERFMON 49 # include <asm/perfmon.h> 50 #endif 51 52 #include "sigframe.h" 53 54 void (*ia64_mark_idle)(int); 55 56 unsigned long boot_option_idle_override = 0; 57 EXPORT_SYMBOL(boot_option_idle_override); 58 59 void 60 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 61 { 62 unsigned long ip, sp, bsp; 63 char buf[128]; /* don't make it so big that it overflows the stack! */ 64 65 printk("\nCall Trace:\n"); 66 do { 67 unw_get_ip(info, &ip); 68 if (ip == 0) 69 break; 70 71 unw_get_sp(info, &sp); 72 unw_get_bsp(info, &bsp); 73 snprintf(buf, sizeof(buf), 74 " [<%016lx>] %%s\n" 75 " sp=%016lx bsp=%016lx\n", 76 ip, sp, bsp); 77 print_symbol(buf, ip); 78 } while (unw_unwind(info) >= 0); 79 } 80 81 void 82 show_stack (struct task_struct *task, unsigned long *sp) 83 { 84 if (!task) 85 unw_init_running(ia64_do_show_stack, NULL); 86 else { 87 struct unw_frame_info info; 88 89 unw_init_from_blocked_task(&info, task); 90 ia64_do_show_stack(&info, NULL); 91 } 92 } 93 94 void 95 dump_stack (void) 96 { 97 show_stack(NULL, NULL); 98 } 99 100 EXPORT_SYMBOL(dump_stack); 101 102 void 103 show_regs (struct pt_regs *regs) 104 { 105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 106 107 print_modules(); 108 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current), 109 smp_processor_id(), current->comm); 110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 112 init_utsname()->release); 113 print_symbol("ip is at %s\n", ip); 114 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 115 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 116 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 117 regs->ar_rnat, regs->ar_bspstore, regs->pr); 118 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 119 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 120 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 121 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 122 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 123 regs->f6.u.bits[1], regs->f6.u.bits[0], 124 regs->f7.u.bits[1], regs->f7.u.bits[0]); 125 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 126 regs->f8.u.bits[1], regs->f8.u.bits[0], 127 regs->f9.u.bits[1], regs->f9.u.bits[0]); 128 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 129 regs->f10.u.bits[1], regs->f10.u.bits[0], 130 regs->f11.u.bits[1], regs->f11.u.bits[0]); 131 132 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 133 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 134 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 135 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 136 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 137 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 138 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 139 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 140 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 141 142 if (user_mode(regs)) { 143 /* print the stacked registers */ 144 unsigned long val, *bsp, ndirty; 145 int i, sof, is_nat = 0; 146 147 sof = regs->cr_ifs & 0x7f; /* size of frame */ 148 ndirty = (regs->loadrs >> 19); 149 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 150 for (i = 0; i < sof; ++i) { 151 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 152 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 153 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 154 } 155 } else 156 show_stack(NULL, NULL); 157 } 158 159 void tsk_clear_notify_resume(struct task_struct *tsk) 160 { 161 #ifdef CONFIG_PERFMON 162 if (tsk->thread.pfm_needs_checking) 163 return; 164 #endif 165 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE)) 166 return; 167 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME); 168 } 169 170 /* 171 * do_notify_resume_user(): 172 * Called from notify_resume_user at entry.S, with interrupts disabled. 173 */ 174 void 175 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 176 { 177 if (fsys_mode(current, &scr->pt)) { 178 /* 179 * defer signal-handling etc. until we return to 180 * privilege-level 0. 181 */ 182 if (!ia64_psr(&scr->pt)->lp) 183 ia64_psr(&scr->pt)->lp = 1; 184 return; 185 } 186 187 #ifdef CONFIG_PERFMON 188 if (current->thread.pfm_needs_checking) 189 /* 190 * Note: pfm_handle_work() allow us to call it with interrupts 191 * disabled, and may enable interrupts within the function. 192 */ 193 pfm_handle_work(); 194 #endif 195 196 /* deal with pending signal delivery */ 197 if (test_thread_flag(TIF_SIGPENDING)) { 198 local_irq_enable(); /* force interrupt enable */ 199 ia64_do_signal(scr, in_syscall); 200 } 201 202 /* copy user rbs to kernel rbs */ 203 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 204 local_irq_enable(); /* force interrupt enable */ 205 ia64_sync_krbs(); 206 } 207 208 local_irq_disable(); /* force interrupt disable */ 209 } 210 211 static int pal_halt = 1; 212 static int can_do_pal_halt = 1; 213 214 static int __init nohalt_setup(char * str) 215 { 216 pal_halt = can_do_pal_halt = 0; 217 return 1; 218 } 219 __setup("nohalt", nohalt_setup); 220 221 void 222 update_pal_halt_status(int status) 223 { 224 can_do_pal_halt = pal_halt && status; 225 } 226 227 /* 228 * We use this if we don't have any better idle routine.. 229 */ 230 void 231 default_idle (void) 232 { 233 local_irq_enable(); 234 while (!need_resched()) { 235 if (can_do_pal_halt) { 236 local_irq_disable(); 237 if (!need_resched()) { 238 safe_halt(); 239 } 240 local_irq_enable(); 241 } else 242 cpu_relax(); 243 } 244 } 245 246 #ifdef CONFIG_HOTPLUG_CPU 247 /* We don't actually take CPU down, just spin without interrupts. */ 248 static inline void play_dead(void) 249 { 250 extern void ia64_cpu_local_tick (void); 251 unsigned int this_cpu = smp_processor_id(); 252 253 /* Ack it */ 254 __get_cpu_var(cpu_state) = CPU_DEAD; 255 256 max_xtp(); 257 local_irq_disable(); 258 idle_task_exit(); 259 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 260 /* 261 * The above is a point of no-return, the processor is 262 * expected to be in SAL loop now. 263 */ 264 BUG(); 265 } 266 #else 267 static inline void play_dead(void) 268 { 269 BUG(); 270 } 271 #endif /* CONFIG_HOTPLUG_CPU */ 272 273 static void do_nothing(void *unused) 274 { 275 } 276 277 /* 278 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 279 * pm_idle and update to new pm_idle value. Required while changing pm_idle 280 * handler on SMP systems. 281 * 282 * Caller must have changed pm_idle to the new value before the call. Old 283 * pm_idle value will not be used by any CPU after the return of this function. 284 */ 285 void cpu_idle_wait(void) 286 { 287 smp_mb(); 288 /* kick all the CPUs so that they exit out of pm_idle */ 289 smp_call_function(do_nothing, NULL, 0, 1); 290 } 291 EXPORT_SYMBOL_GPL(cpu_idle_wait); 292 293 void __attribute__((noreturn)) 294 cpu_idle (void) 295 { 296 void (*mark_idle)(int) = ia64_mark_idle; 297 int cpu = smp_processor_id(); 298 299 /* endless idle loop with no priority at all */ 300 while (1) { 301 if (can_do_pal_halt) { 302 current_thread_info()->status &= ~TS_POLLING; 303 /* 304 * TS_POLLING-cleared state must be visible before we 305 * test NEED_RESCHED: 306 */ 307 smp_mb(); 308 } else { 309 current_thread_info()->status |= TS_POLLING; 310 } 311 312 if (!need_resched()) { 313 void (*idle)(void); 314 #ifdef CONFIG_SMP 315 min_xtp(); 316 #endif 317 rmb(); 318 if (mark_idle) 319 (*mark_idle)(1); 320 321 idle = pm_idle; 322 if (!idle) 323 idle = default_idle; 324 (*idle)(); 325 if (mark_idle) 326 (*mark_idle)(0); 327 #ifdef CONFIG_SMP 328 normal_xtp(); 329 #endif 330 } 331 preempt_enable_no_resched(); 332 schedule(); 333 preempt_disable(); 334 check_pgt_cache(); 335 if (cpu_is_offline(cpu)) 336 play_dead(); 337 } 338 } 339 340 void 341 ia64_save_extra (struct task_struct *task) 342 { 343 #ifdef CONFIG_PERFMON 344 unsigned long info; 345 #endif 346 347 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 348 ia64_save_debug_regs(&task->thread.dbr[0]); 349 350 #ifdef CONFIG_PERFMON 351 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 352 pfm_save_regs(task); 353 354 info = __get_cpu_var(pfm_syst_info); 355 if (info & PFM_CPUINFO_SYST_WIDE) 356 pfm_syst_wide_update_task(task, info, 0); 357 #endif 358 359 #ifdef CONFIG_IA32_SUPPORT 360 if (IS_IA32_PROCESS(task_pt_regs(task))) 361 ia32_save_state(task); 362 #endif 363 } 364 365 void 366 ia64_load_extra (struct task_struct *task) 367 { 368 #ifdef CONFIG_PERFMON 369 unsigned long info; 370 #endif 371 372 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 373 ia64_load_debug_regs(&task->thread.dbr[0]); 374 375 #ifdef CONFIG_PERFMON 376 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 377 pfm_load_regs(task); 378 379 info = __get_cpu_var(pfm_syst_info); 380 if (info & PFM_CPUINFO_SYST_WIDE) 381 pfm_syst_wide_update_task(task, info, 1); 382 #endif 383 384 #ifdef CONFIG_IA32_SUPPORT 385 if (IS_IA32_PROCESS(task_pt_regs(task))) 386 ia32_load_state(task); 387 #endif 388 } 389 390 /* 391 * Copy the state of an ia-64 thread. 392 * 393 * We get here through the following call chain: 394 * 395 * from user-level: from kernel: 396 * 397 * <clone syscall> <some kernel call frames> 398 * sys_clone : 399 * do_fork do_fork 400 * copy_thread copy_thread 401 * 402 * This means that the stack layout is as follows: 403 * 404 * +---------------------+ (highest addr) 405 * | struct pt_regs | 406 * +---------------------+ 407 * | struct switch_stack | 408 * +---------------------+ 409 * | | 410 * | memory stack | 411 * | | <-- sp (lowest addr) 412 * +---------------------+ 413 * 414 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 415 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 416 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 417 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 418 * the stack is page aligned and the page size is at least 4KB, this is always the case, 419 * so there is nothing to worry about. 420 */ 421 int 422 copy_thread (int nr, unsigned long clone_flags, 423 unsigned long user_stack_base, unsigned long user_stack_size, 424 struct task_struct *p, struct pt_regs *regs) 425 { 426 extern char ia64_ret_from_clone, ia32_ret_from_clone; 427 struct switch_stack *child_stack, *stack; 428 unsigned long rbs, child_rbs, rbs_size; 429 struct pt_regs *child_ptregs; 430 int retval = 0; 431 432 #ifdef CONFIG_SMP 433 /* 434 * For SMP idle threads, fork_by_hand() calls do_fork with 435 * NULL regs. 436 */ 437 if (!regs) 438 return 0; 439 #endif 440 441 stack = ((struct switch_stack *) regs) - 1; 442 443 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 444 child_stack = (struct switch_stack *) child_ptregs - 1; 445 446 /* copy parent's switch_stack & pt_regs to child: */ 447 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 448 449 rbs = (unsigned long) current + IA64_RBS_OFFSET; 450 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 451 rbs_size = stack->ar_bspstore - rbs; 452 453 /* copy the parent's register backing store to the child: */ 454 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 455 456 if (likely(user_mode(child_ptregs))) { 457 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 458 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 459 if (user_stack_base) { 460 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 461 child_ptregs->ar_bspstore = user_stack_base; 462 child_ptregs->ar_rnat = 0; 463 child_ptregs->loadrs = 0; 464 } 465 } else { 466 /* 467 * Note: we simply preserve the relative position of 468 * the stack pointer here. There is no need to 469 * allocate a scratch area here, since that will have 470 * been taken care of by the caller of sys_clone() 471 * already. 472 */ 473 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 474 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 475 } 476 child_stack->ar_bspstore = child_rbs + rbs_size; 477 if (IS_IA32_PROCESS(regs)) 478 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 479 else 480 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 481 482 /* copy parts of thread_struct: */ 483 p->thread.ksp = (unsigned long) child_stack - 16; 484 485 /* stop some PSR bits from being inherited. 486 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 487 * therefore we must specify them explicitly here and not include them in 488 * IA64_PSR_BITS_TO_CLEAR. 489 */ 490 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 491 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 492 493 /* 494 * NOTE: The calling convention considers all floating point 495 * registers in the high partition (fph) to be scratch. Since 496 * the only way to get to this point is through a system call, 497 * we know that the values in fph are all dead. Hence, there 498 * is no need to inherit the fph state from the parent to the 499 * child and all we have to do is to make sure that 500 * IA64_THREAD_FPH_VALID is cleared in the child. 501 * 502 * XXX We could push this optimization a bit further by 503 * clearing IA64_THREAD_FPH_VALID on ANY system call. 504 * However, it's not clear this is worth doing. Also, it 505 * would be a slight deviation from the normal Linux system 506 * call behavior where scratch registers are preserved across 507 * system calls (unless used by the system call itself). 508 */ 509 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 510 | IA64_THREAD_PM_VALID) 511 # define THREAD_FLAGS_TO_SET 0 512 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 513 | THREAD_FLAGS_TO_SET); 514 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 515 #ifdef CONFIG_IA32_SUPPORT 516 /* 517 * If we're cloning an IA32 task then save the IA32 extra 518 * state from the current task to the new task 519 */ 520 if (IS_IA32_PROCESS(task_pt_regs(current))) { 521 ia32_save_state(p); 522 if (clone_flags & CLONE_SETTLS) 523 retval = ia32_clone_tls(p, child_ptregs); 524 525 /* Copy partially mapped page list */ 526 if (!retval) 527 retval = ia32_copy_ia64_partial_page_list(p, 528 clone_flags); 529 } 530 #endif 531 532 #ifdef CONFIG_PERFMON 533 if (current->thread.pfm_context) 534 pfm_inherit(p, child_ptregs); 535 #endif 536 return retval; 537 } 538 539 static void 540 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 541 { 542 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 543 unsigned long uninitialized_var(ip); /* GCC be quiet */ 544 elf_greg_t *dst = arg; 545 struct pt_regs *pt; 546 char nat; 547 int i; 548 549 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 550 551 if (unw_unwind_to_user(info) < 0) 552 return; 553 554 unw_get_sp(info, &sp); 555 pt = (struct pt_regs *) (sp + 16); 556 557 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 558 559 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 560 return; 561 562 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 563 &ar_rnat); 564 565 /* 566 * coredump format: 567 * r0-r31 568 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 569 * predicate registers (p0-p63) 570 * b0-b7 571 * ip cfm user-mask 572 * ar.rsc ar.bsp ar.bspstore ar.rnat 573 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 574 */ 575 576 /* r0 is zero */ 577 for (i = 1, mask = (1UL << i); i < 32; ++i) { 578 unw_get_gr(info, i, &dst[i], &nat); 579 if (nat) 580 nat_bits |= mask; 581 mask <<= 1; 582 } 583 dst[32] = nat_bits; 584 unw_get_pr(info, &dst[33]); 585 586 for (i = 0; i < 8; ++i) 587 unw_get_br(info, i, &dst[34 + i]); 588 589 unw_get_rp(info, &ip); 590 dst[42] = ip + ia64_psr(pt)->ri; 591 dst[43] = cfm; 592 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 593 594 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 595 /* 596 * For bsp and bspstore, unw_get_ar() would return the kernel 597 * addresses, but we need the user-level addresses instead: 598 */ 599 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 600 dst[47] = pt->ar_bspstore; 601 dst[48] = ar_rnat; 602 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 603 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 604 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 605 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 606 unw_get_ar(info, UNW_AR_LC, &dst[53]); 607 unw_get_ar(info, UNW_AR_EC, &dst[54]); 608 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 609 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 610 } 611 612 void 613 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 614 { 615 elf_fpreg_t *dst = arg; 616 int i; 617 618 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 619 620 if (unw_unwind_to_user(info) < 0) 621 return; 622 623 /* f0 is 0.0, f1 is 1.0 */ 624 625 for (i = 2; i < 32; ++i) 626 unw_get_fr(info, i, dst + i); 627 628 ia64_flush_fph(task); 629 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 630 memcpy(dst + 32, task->thread.fph, 96*16); 631 } 632 633 void 634 do_copy_regs (struct unw_frame_info *info, void *arg) 635 { 636 do_copy_task_regs(current, info, arg); 637 } 638 639 void 640 do_dump_fpu (struct unw_frame_info *info, void *arg) 641 { 642 do_dump_task_fpu(current, info, arg); 643 } 644 645 void 646 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 647 { 648 unw_init_running(do_copy_regs, dst); 649 } 650 651 int 652 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 653 { 654 unw_init_running(do_dump_fpu, dst); 655 return 1; /* f0-f31 are always valid so we always return 1 */ 656 } 657 658 long 659 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 660 struct pt_regs *regs) 661 { 662 char *fname; 663 int error; 664 665 fname = getname(filename); 666 error = PTR_ERR(fname); 667 if (IS_ERR(fname)) 668 goto out; 669 error = do_execve(fname, argv, envp, regs); 670 putname(fname); 671 out: 672 return error; 673 } 674 675 pid_t 676 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 677 { 678 extern void start_kernel_thread (void); 679 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 680 struct { 681 struct switch_stack sw; 682 struct pt_regs pt; 683 } regs; 684 685 memset(®s, 0, sizeof(regs)); 686 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 687 regs.pt.r1 = helper_fptr[1]; /* set GP */ 688 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 689 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 690 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 691 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 692 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 693 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 694 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 695 regs.sw.pr = (1 << PRED_KERNEL_STACK); 696 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 697 } 698 EXPORT_SYMBOL(kernel_thread); 699 700 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 701 int 702 kernel_thread_helper (int (*fn)(void *), void *arg) 703 { 704 #ifdef CONFIG_IA32_SUPPORT 705 if (IS_IA32_PROCESS(task_pt_regs(current))) { 706 /* A kernel thread is always a 64-bit process. */ 707 current->thread.map_base = DEFAULT_MAP_BASE; 708 current->thread.task_size = DEFAULT_TASK_SIZE; 709 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 710 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 711 } 712 #endif 713 return (*fn)(arg); 714 } 715 716 /* 717 * Flush thread state. This is called when a thread does an execve(). 718 */ 719 void 720 flush_thread (void) 721 { 722 /* drop floating-point and debug-register state if it exists: */ 723 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 724 ia64_drop_fpu(current); 725 #ifdef CONFIG_IA32_SUPPORT 726 if (IS_IA32_PROCESS(task_pt_regs(current))) { 727 ia32_drop_ia64_partial_page_list(current); 728 current->thread.task_size = IA32_PAGE_OFFSET; 729 set_fs(USER_DS); 730 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array)); 731 } 732 #endif 733 } 734 735 /* 736 * Clean up state associated with current thread. This is called when 737 * the thread calls exit(). 738 */ 739 void 740 exit_thread (void) 741 { 742 743 ia64_drop_fpu(current); 744 #ifdef CONFIG_PERFMON 745 /* if needed, stop monitoring and flush state to perfmon context */ 746 if (current->thread.pfm_context) 747 pfm_exit_thread(current); 748 749 /* free debug register resources */ 750 if (current->thread.flags & IA64_THREAD_DBG_VALID) 751 pfm_release_debug_registers(current); 752 #endif 753 if (IS_IA32_PROCESS(task_pt_regs(current))) 754 ia32_drop_ia64_partial_page_list(current); 755 } 756 757 unsigned long 758 get_wchan (struct task_struct *p) 759 { 760 struct unw_frame_info info; 761 unsigned long ip; 762 int count = 0; 763 764 if (!p || p == current || p->state == TASK_RUNNING) 765 return 0; 766 767 /* 768 * Note: p may not be a blocked task (it could be current or 769 * another process running on some other CPU. Rather than 770 * trying to determine if p is really blocked, we just assume 771 * it's blocked and rely on the unwind routines to fail 772 * gracefully if the process wasn't really blocked after all. 773 * --davidm 99/12/15 774 */ 775 unw_init_from_blocked_task(&info, p); 776 do { 777 if (p->state == TASK_RUNNING) 778 return 0; 779 if (unw_unwind(&info) < 0) 780 return 0; 781 unw_get_ip(&info, &ip); 782 if (!in_sched_functions(ip)) 783 return ip; 784 } while (count++ < 16); 785 return 0; 786 } 787 788 void 789 cpu_halt (void) 790 { 791 pal_power_mgmt_info_u_t power_info[8]; 792 unsigned long min_power; 793 int i, min_power_state; 794 795 if (ia64_pal_halt_info(power_info) != 0) 796 return; 797 798 min_power_state = 0; 799 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 800 for (i = 1; i < 8; ++i) 801 if (power_info[i].pal_power_mgmt_info_s.im 802 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 803 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 804 min_power_state = i; 805 } 806 807 while (1) 808 ia64_pal_halt(min_power_state); 809 } 810 811 void machine_shutdown(void) 812 { 813 #ifdef CONFIG_HOTPLUG_CPU 814 int cpu; 815 816 for_each_online_cpu(cpu) { 817 if (cpu != smp_processor_id()) 818 cpu_down(cpu); 819 } 820 #endif 821 #ifdef CONFIG_KEXEC 822 kexec_disable_iosapic(); 823 #endif 824 } 825 826 void 827 machine_restart (char *restart_cmd) 828 { 829 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 830 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 831 } 832 833 void 834 machine_halt (void) 835 { 836 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 837 cpu_halt(); 838 } 839 840 void 841 machine_power_off (void) 842 { 843 if (pm_power_off) 844 pm_power_off(); 845 machine_halt(); 846 } 847 848