1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Architecture-specific setup. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 8 * 9 * 2005-10-07 Keith Owens <kaos@sgi.com> 10 * Add notify_die() hooks. 11 */ 12 #include <linux/cpu.h> 13 #include <linux/pm.h> 14 #include <linux/elf.h> 15 #include <linux/errno.h> 16 #include <linux/kallsyms.h> 17 #include <linux/kernel.h> 18 #include <linux/mm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/notifier.h> 22 #include <linux/personality.h> 23 #include <linux/sched.h> 24 #include <linux/sched/debug.h> 25 #include <linux/sched/hotplug.h> 26 #include <linux/sched/task.h> 27 #include <linux/sched/task_stack.h> 28 #include <linux/stddef.h> 29 #include <linux/thread_info.h> 30 #include <linux/unistd.h> 31 #include <linux/efi.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/kdebug.h> 35 #include <linux/utsname.h> 36 #include <linux/tracehook.h> 37 #include <linux/rcupdate.h> 38 39 #include <asm/cpu.h> 40 #include <asm/delay.h> 41 #include <asm/elf.h> 42 #include <asm/irq.h> 43 #include <asm/kexec.h> 44 #include <asm/pgalloc.h> 45 #include <asm/processor.h> 46 #include <asm/sal.h> 47 #include <asm/switch_to.h> 48 #include <asm/tlbflush.h> 49 #include <linux/uaccess.h> 50 #include <asm/unwind.h> 51 #include <asm/user.h> 52 53 #include "entry.h" 54 55 #ifdef CONFIG_PERFMON 56 # include <asm/perfmon.h> 57 #endif 58 59 #include "sigframe.h" 60 61 void (*ia64_mark_idle)(int); 62 63 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 64 EXPORT_SYMBOL(boot_option_idle_override); 65 void (*pm_power_off) (void); 66 EXPORT_SYMBOL(pm_power_off); 67 68 void 69 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 70 { 71 unsigned long ip, sp, bsp; 72 char buf[128]; /* don't make it so big that it overflows the stack! */ 73 74 printk("\nCall Trace:\n"); 75 do { 76 unw_get_ip(info, &ip); 77 if (ip == 0) 78 break; 79 80 unw_get_sp(info, &sp); 81 unw_get_bsp(info, &bsp); 82 snprintf(buf, sizeof(buf), 83 " [<%016lx>] %%s\n" 84 " sp=%016lx bsp=%016lx\n", 85 ip, sp, bsp); 86 print_symbol(buf, ip); 87 } while (unw_unwind(info) >= 0); 88 } 89 90 void 91 show_stack (struct task_struct *task, unsigned long *sp) 92 { 93 if (!task) 94 unw_init_running(ia64_do_show_stack, NULL); 95 else { 96 struct unw_frame_info info; 97 98 unw_init_from_blocked_task(&info, task); 99 ia64_do_show_stack(&info, NULL); 100 } 101 } 102 103 void 104 show_regs (struct pt_regs *regs) 105 { 106 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 107 108 print_modules(); 109 printk("\n"); 110 show_regs_print_info(KERN_DEFAULT); 111 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 112 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 113 init_utsname()->release); 114 print_symbol("ip is at %s\n", ip); 115 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 116 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 117 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 118 regs->ar_rnat, regs->ar_bspstore, regs->pr); 119 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 120 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 121 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 122 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 123 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 124 regs->f6.u.bits[1], regs->f6.u.bits[0], 125 regs->f7.u.bits[1], regs->f7.u.bits[0]); 126 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 127 regs->f8.u.bits[1], regs->f8.u.bits[0], 128 regs->f9.u.bits[1], regs->f9.u.bits[0]); 129 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 130 regs->f10.u.bits[1], regs->f10.u.bits[0], 131 regs->f11.u.bits[1], regs->f11.u.bits[0]); 132 133 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 134 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 135 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 136 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 137 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 138 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 139 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 140 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 141 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 142 143 if (user_mode(regs)) { 144 /* print the stacked registers */ 145 unsigned long val, *bsp, ndirty; 146 int i, sof, is_nat = 0; 147 148 sof = regs->cr_ifs & 0x7f; /* size of frame */ 149 ndirty = (regs->loadrs >> 19); 150 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 151 for (i = 0; i < sof; ++i) { 152 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 153 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 154 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 155 } 156 } else 157 show_stack(NULL, NULL); 158 } 159 160 /* local support for deprecated console_print */ 161 void 162 console_print(const char *s) 163 { 164 printk(KERN_EMERG "%s", s); 165 } 166 167 void 168 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 169 { 170 if (fsys_mode(current, &scr->pt)) { 171 /* 172 * defer signal-handling etc. until we return to 173 * privilege-level 0. 174 */ 175 if (!ia64_psr(&scr->pt)->lp) 176 ia64_psr(&scr->pt)->lp = 1; 177 return; 178 } 179 180 #ifdef CONFIG_PERFMON 181 if (current->thread.pfm_needs_checking) 182 /* 183 * Note: pfm_handle_work() allow us to call it with interrupts 184 * disabled, and may enable interrupts within the function. 185 */ 186 pfm_handle_work(); 187 #endif 188 189 /* deal with pending signal delivery */ 190 if (test_thread_flag(TIF_SIGPENDING)) { 191 local_irq_enable(); /* force interrupt enable */ 192 ia64_do_signal(scr, in_syscall); 193 } 194 195 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 196 local_irq_enable(); /* force interrupt enable */ 197 tracehook_notify_resume(&scr->pt); 198 } 199 200 /* copy user rbs to kernel rbs */ 201 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 202 local_irq_enable(); /* force interrupt enable */ 203 ia64_sync_krbs(); 204 } 205 206 local_irq_disable(); /* force interrupt disable */ 207 } 208 209 static int __init nohalt_setup(char * str) 210 { 211 cpu_idle_poll_ctrl(true); 212 return 1; 213 } 214 __setup("nohalt", nohalt_setup); 215 216 #ifdef CONFIG_HOTPLUG_CPU 217 /* We don't actually take CPU down, just spin without interrupts. */ 218 static inline void play_dead(void) 219 { 220 unsigned int this_cpu = smp_processor_id(); 221 222 /* Ack it */ 223 __this_cpu_write(cpu_state, CPU_DEAD); 224 225 max_xtp(); 226 local_irq_disable(); 227 idle_task_exit(); 228 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 229 /* 230 * The above is a point of no-return, the processor is 231 * expected to be in SAL loop now. 232 */ 233 BUG(); 234 } 235 #else 236 static inline void play_dead(void) 237 { 238 BUG(); 239 } 240 #endif /* CONFIG_HOTPLUG_CPU */ 241 242 void arch_cpu_idle_dead(void) 243 { 244 play_dead(); 245 } 246 247 void arch_cpu_idle(void) 248 { 249 void (*mark_idle)(int) = ia64_mark_idle; 250 251 #ifdef CONFIG_SMP 252 min_xtp(); 253 #endif 254 rmb(); 255 if (mark_idle) 256 (*mark_idle)(1); 257 258 safe_halt(); 259 260 if (mark_idle) 261 (*mark_idle)(0); 262 #ifdef CONFIG_SMP 263 normal_xtp(); 264 #endif 265 } 266 267 void 268 ia64_save_extra (struct task_struct *task) 269 { 270 #ifdef CONFIG_PERFMON 271 unsigned long info; 272 #endif 273 274 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 275 ia64_save_debug_regs(&task->thread.dbr[0]); 276 277 #ifdef CONFIG_PERFMON 278 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 279 pfm_save_regs(task); 280 281 info = __this_cpu_read(pfm_syst_info); 282 if (info & PFM_CPUINFO_SYST_WIDE) 283 pfm_syst_wide_update_task(task, info, 0); 284 #endif 285 } 286 287 void 288 ia64_load_extra (struct task_struct *task) 289 { 290 #ifdef CONFIG_PERFMON 291 unsigned long info; 292 #endif 293 294 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 295 ia64_load_debug_regs(&task->thread.dbr[0]); 296 297 #ifdef CONFIG_PERFMON 298 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 299 pfm_load_regs(task); 300 301 info = __this_cpu_read(pfm_syst_info); 302 if (info & PFM_CPUINFO_SYST_WIDE) 303 pfm_syst_wide_update_task(task, info, 1); 304 #endif 305 } 306 307 /* 308 * Copy the state of an ia-64 thread. 309 * 310 * We get here through the following call chain: 311 * 312 * from user-level: from kernel: 313 * 314 * <clone syscall> <some kernel call frames> 315 * sys_clone : 316 * do_fork do_fork 317 * copy_thread copy_thread 318 * 319 * This means that the stack layout is as follows: 320 * 321 * +---------------------+ (highest addr) 322 * | struct pt_regs | 323 * +---------------------+ 324 * | struct switch_stack | 325 * +---------------------+ 326 * | | 327 * | memory stack | 328 * | | <-- sp (lowest addr) 329 * +---------------------+ 330 * 331 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 332 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 333 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 334 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 335 * the stack is page aligned and the page size is at least 4KB, this is always the case, 336 * so there is nothing to worry about. 337 */ 338 int 339 copy_thread(unsigned long clone_flags, 340 unsigned long user_stack_base, unsigned long user_stack_size, 341 struct task_struct *p) 342 { 343 extern char ia64_ret_from_clone; 344 struct switch_stack *child_stack, *stack; 345 unsigned long rbs, child_rbs, rbs_size; 346 struct pt_regs *child_ptregs; 347 struct pt_regs *regs = current_pt_regs(); 348 int retval = 0; 349 350 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 351 child_stack = (struct switch_stack *) child_ptregs - 1; 352 353 rbs = (unsigned long) current + IA64_RBS_OFFSET; 354 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 355 356 /* copy parts of thread_struct: */ 357 p->thread.ksp = (unsigned long) child_stack - 16; 358 359 /* 360 * NOTE: The calling convention considers all floating point 361 * registers in the high partition (fph) to be scratch. Since 362 * the only way to get to this point is through a system call, 363 * we know that the values in fph are all dead. Hence, there 364 * is no need to inherit the fph state from the parent to the 365 * child and all we have to do is to make sure that 366 * IA64_THREAD_FPH_VALID is cleared in the child. 367 * 368 * XXX We could push this optimization a bit further by 369 * clearing IA64_THREAD_FPH_VALID on ANY system call. 370 * However, it's not clear this is worth doing. Also, it 371 * would be a slight deviation from the normal Linux system 372 * call behavior where scratch registers are preserved across 373 * system calls (unless used by the system call itself). 374 */ 375 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 376 | IA64_THREAD_PM_VALID) 377 # define THREAD_FLAGS_TO_SET 0 378 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 379 | THREAD_FLAGS_TO_SET); 380 381 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 382 383 if (unlikely(p->flags & PF_KTHREAD)) { 384 if (unlikely(!user_stack_base)) { 385 /* fork_idle() called us */ 386 return 0; 387 } 388 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 389 child_stack->r4 = user_stack_base; /* payload */ 390 child_stack->r5 = user_stack_size; /* argument */ 391 /* 392 * Preserve PSR bits, except for bits 32-34 and 37-45, 393 * which we can't read. 394 */ 395 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 396 /* mark as valid, empty frame */ 397 child_ptregs->cr_ifs = 1UL << 63; 398 child_stack->ar_fpsr = child_ptregs->ar_fpsr 399 = ia64_getreg(_IA64_REG_AR_FPSR); 400 child_stack->pr = (1 << PRED_KERNEL_STACK); 401 child_stack->ar_bspstore = child_rbs; 402 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 403 404 /* stop some PSR bits from being inherited. 405 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 406 * therefore we must specify them explicitly here and not include them in 407 * IA64_PSR_BITS_TO_CLEAR. 408 */ 409 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 410 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 411 412 return 0; 413 } 414 stack = ((struct switch_stack *) regs) - 1; 415 /* copy parent's switch_stack & pt_regs to child: */ 416 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 417 418 /* copy the parent's register backing store to the child: */ 419 rbs_size = stack->ar_bspstore - rbs; 420 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 421 if (clone_flags & CLONE_SETTLS) 422 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 423 if (user_stack_base) { 424 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 425 child_ptregs->ar_bspstore = user_stack_base; 426 child_ptregs->ar_rnat = 0; 427 child_ptregs->loadrs = 0; 428 } 429 child_stack->ar_bspstore = child_rbs + rbs_size; 430 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 431 432 /* stop some PSR bits from being inherited. 433 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 434 * therefore we must specify them explicitly here and not include them in 435 * IA64_PSR_BITS_TO_CLEAR. 436 */ 437 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 438 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 439 440 #ifdef CONFIG_PERFMON 441 if (current->thread.pfm_context) 442 pfm_inherit(p, child_ptregs); 443 #endif 444 return retval; 445 } 446 447 static void 448 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 449 { 450 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 451 unsigned long uninitialized_var(ip); /* GCC be quiet */ 452 elf_greg_t *dst = arg; 453 struct pt_regs *pt; 454 char nat; 455 int i; 456 457 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 458 459 if (unw_unwind_to_user(info) < 0) 460 return; 461 462 unw_get_sp(info, &sp); 463 pt = (struct pt_regs *) (sp + 16); 464 465 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 466 467 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 468 return; 469 470 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 471 &ar_rnat); 472 473 /* 474 * coredump format: 475 * r0-r31 476 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 477 * predicate registers (p0-p63) 478 * b0-b7 479 * ip cfm user-mask 480 * ar.rsc ar.bsp ar.bspstore ar.rnat 481 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 482 */ 483 484 /* r0 is zero */ 485 for (i = 1, mask = (1UL << i); i < 32; ++i) { 486 unw_get_gr(info, i, &dst[i], &nat); 487 if (nat) 488 nat_bits |= mask; 489 mask <<= 1; 490 } 491 dst[32] = nat_bits; 492 unw_get_pr(info, &dst[33]); 493 494 for (i = 0; i < 8; ++i) 495 unw_get_br(info, i, &dst[34 + i]); 496 497 unw_get_rp(info, &ip); 498 dst[42] = ip + ia64_psr(pt)->ri; 499 dst[43] = cfm; 500 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 501 502 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 503 /* 504 * For bsp and bspstore, unw_get_ar() would return the kernel 505 * addresses, but we need the user-level addresses instead: 506 */ 507 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 508 dst[47] = pt->ar_bspstore; 509 dst[48] = ar_rnat; 510 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 511 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 512 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 513 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 514 unw_get_ar(info, UNW_AR_LC, &dst[53]); 515 unw_get_ar(info, UNW_AR_EC, &dst[54]); 516 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 517 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 518 } 519 520 void 521 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 522 { 523 elf_fpreg_t *dst = arg; 524 int i; 525 526 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 527 528 if (unw_unwind_to_user(info) < 0) 529 return; 530 531 /* f0 is 0.0, f1 is 1.0 */ 532 533 for (i = 2; i < 32; ++i) 534 unw_get_fr(info, i, dst + i); 535 536 ia64_flush_fph(task); 537 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 538 memcpy(dst + 32, task->thread.fph, 96*16); 539 } 540 541 void 542 do_copy_regs (struct unw_frame_info *info, void *arg) 543 { 544 do_copy_task_regs(current, info, arg); 545 } 546 547 void 548 do_dump_fpu (struct unw_frame_info *info, void *arg) 549 { 550 do_dump_task_fpu(current, info, arg); 551 } 552 553 void 554 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 555 { 556 unw_init_running(do_copy_regs, dst); 557 } 558 559 int 560 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 561 { 562 unw_init_running(do_dump_fpu, dst); 563 return 1; /* f0-f31 are always valid so we always return 1 */ 564 } 565 566 /* 567 * Flush thread state. This is called when a thread does an execve(). 568 */ 569 void 570 flush_thread (void) 571 { 572 /* drop floating-point and debug-register state if it exists: */ 573 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 574 ia64_drop_fpu(current); 575 } 576 577 /* 578 * Clean up state associated with a thread. This is called when 579 * the thread calls exit(). 580 */ 581 void 582 exit_thread (struct task_struct *tsk) 583 { 584 585 ia64_drop_fpu(tsk); 586 #ifdef CONFIG_PERFMON 587 /* if needed, stop monitoring and flush state to perfmon context */ 588 if (tsk->thread.pfm_context) 589 pfm_exit_thread(tsk); 590 591 /* free debug register resources */ 592 if (tsk->thread.flags & IA64_THREAD_DBG_VALID) 593 pfm_release_debug_registers(tsk); 594 #endif 595 } 596 597 unsigned long 598 get_wchan (struct task_struct *p) 599 { 600 struct unw_frame_info info; 601 unsigned long ip; 602 int count = 0; 603 604 if (!p || p == current || p->state == TASK_RUNNING) 605 return 0; 606 607 /* 608 * Note: p may not be a blocked task (it could be current or 609 * another process running on some other CPU. Rather than 610 * trying to determine if p is really blocked, we just assume 611 * it's blocked and rely on the unwind routines to fail 612 * gracefully if the process wasn't really blocked after all. 613 * --davidm 99/12/15 614 */ 615 unw_init_from_blocked_task(&info, p); 616 do { 617 if (p->state == TASK_RUNNING) 618 return 0; 619 if (unw_unwind(&info) < 0) 620 return 0; 621 unw_get_ip(&info, &ip); 622 if (!in_sched_functions(ip)) 623 return ip; 624 } while (count++ < 16); 625 return 0; 626 } 627 628 void 629 cpu_halt (void) 630 { 631 pal_power_mgmt_info_u_t power_info[8]; 632 unsigned long min_power; 633 int i, min_power_state; 634 635 if (ia64_pal_halt_info(power_info) != 0) 636 return; 637 638 min_power_state = 0; 639 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 640 for (i = 1; i < 8; ++i) 641 if (power_info[i].pal_power_mgmt_info_s.im 642 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 643 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 644 min_power_state = i; 645 } 646 647 while (1) 648 ia64_pal_halt(min_power_state); 649 } 650 651 void machine_shutdown(void) 652 { 653 #ifdef CONFIG_HOTPLUG_CPU 654 int cpu; 655 656 for_each_online_cpu(cpu) { 657 if (cpu != smp_processor_id()) 658 cpu_down(cpu); 659 } 660 #endif 661 #ifdef CONFIG_KEXEC 662 kexec_disable_iosapic(); 663 #endif 664 } 665 666 void 667 machine_restart (char *restart_cmd) 668 { 669 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 670 efi_reboot(REBOOT_WARM, NULL); 671 } 672 673 void 674 machine_halt (void) 675 { 676 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 677 cpu_halt(); 678 } 679 680 void 681 machine_power_off (void) 682 { 683 if (pm_power_off) 684 pm_power_off(); 685 machine_halt(); 686 } 687 688