1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/stddef.h> 28 #include <linux/thread_info.h> 29 #include <linux/unistd.h> 30 #include <linux/efi.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/kdebug.h> 34 #include <linux/utsname.h> 35 #include <linux/tracehook.h> 36 #include <linux/rcupdate.h> 37 38 #include <asm/cpu.h> 39 #include <asm/delay.h> 40 #include <asm/elf.h> 41 #include <asm/irq.h> 42 #include <asm/kexec.h> 43 #include <asm/pgalloc.h> 44 #include <asm/processor.h> 45 #include <asm/sal.h> 46 #include <asm/switch_to.h> 47 #include <asm/tlbflush.h> 48 #include <linux/uaccess.h> 49 #include <asm/unwind.h> 50 #include <asm/user.h> 51 52 #include "entry.h" 53 54 #ifdef CONFIG_PERFMON 55 # include <asm/perfmon.h> 56 #endif 57 58 #include "sigframe.h" 59 60 void (*ia64_mark_idle)(int); 61 62 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 63 EXPORT_SYMBOL(boot_option_idle_override); 64 void (*pm_power_off) (void); 65 EXPORT_SYMBOL(pm_power_off); 66 67 void 68 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 69 { 70 unsigned long ip, sp, bsp; 71 char buf[128]; /* don't make it so big that it overflows the stack! */ 72 73 printk("\nCall Trace:\n"); 74 do { 75 unw_get_ip(info, &ip); 76 if (ip == 0) 77 break; 78 79 unw_get_sp(info, &sp); 80 unw_get_bsp(info, &bsp); 81 snprintf(buf, sizeof(buf), 82 " [<%016lx>] %%s\n" 83 " sp=%016lx bsp=%016lx\n", 84 ip, sp, bsp); 85 print_symbol(buf, ip); 86 } while (unw_unwind(info) >= 0); 87 } 88 89 void 90 show_stack (struct task_struct *task, unsigned long *sp) 91 { 92 if (!task) 93 unw_init_running(ia64_do_show_stack, NULL); 94 else { 95 struct unw_frame_info info; 96 97 unw_init_from_blocked_task(&info, task); 98 ia64_do_show_stack(&info, NULL); 99 } 100 } 101 102 void 103 show_regs (struct pt_regs *regs) 104 { 105 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 106 107 print_modules(); 108 printk("\n"); 109 show_regs_print_info(KERN_DEFAULT); 110 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 111 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 112 init_utsname()->release); 113 print_symbol("ip is at %s\n", ip); 114 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 115 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 116 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 117 regs->ar_rnat, regs->ar_bspstore, regs->pr); 118 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 119 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 120 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 121 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 122 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 123 regs->f6.u.bits[1], regs->f6.u.bits[0], 124 regs->f7.u.bits[1], regs->f7.u.bits[0]); 125 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 126 regs->f8.u.bits[1], regs->f8.u.bits[0], 127 regs->f9.u.bits[1], regs->f9.u.bits[0]); 128 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 129 regs->f10.u.bits[1], regs->f10.u.bits[0], 130 regs->f11.u.bits[1], regs->f11.u.bits[0]); 131 132 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 133 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 134 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 135 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 136 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 137 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 138 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 139 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 140 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 141 142 if (user_mode(regs)) { 143 /* print the stacked registers */ 144 unsigned long val, *bsp, ndirty; 145 int i, sof, is_nat = 0; 146 147 sof = regs->cr_ifs & 0x7f; /* size of frame */ 148 ndirty = (regs->loadrs >> 19); 149 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 150 for (i = 0; i < sof; ++i) { 151 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 152 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 153 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 154 } 155 } else 156 show_stack(NULL, NULL); 157 } 158 159 /* local support for deprecated console_print */ 160 void 161 console_print(const char *s) 162 { 163 printk(KERN_EMERG "%s", s); 164 } 165 166 void 167 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 168 { 169 if (fsys_mode(current, &scr->pt)) { 170 /* 171 * defer signal-handling etc. until we return to 172 * privilege-level 0. 173 */ 174 if (!ia64_psr(&scr->pt)->lp) 175 ia64_psr(&scr->pt)->lp = 1; 176 return; 177 } 178 179 #ifdef CONFIG_PERFMON 180 if (current->thread.pfm_needs_checking) 181 /* 182 * Note: pfm_handle_work() allow us to call it with interrupts 183 * disabled, and may enable interrupts within the function. 184 */ 185 pfm_handle_work(); 186 #endif 187 188 /* deal with pending signal delivery */ 189 if (test_thread_flag(TIF_SIGPENDING)) { 190 local_irq_enable(); /* force interrupt enable */ 191 ia64_do_signal(scr, in_syscall); 192 } 193 194 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 195 local_irq_enable(); /* force interrupt enable */ 196 tracehook_notify_resume(&scr->pt); 197 } 198 199 /* copy user rbs to kernel rbs */ 200 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 201 local_irq_enable(); /* force interrupt enable */ 202 ia64_sync_krbs(); 203 } 204 205 local_irq_disable(); /* force interrupt disable */ 206 } 207 208 static int __init nohalt_setup(char * str) 209 { 210 cpu_idle_poll_ctrl(true); 211 return 1; 212 } 213 __setup("nohalt", nohalt_setup); 214 215 #ifdef CONFIG_HOTPLUG_CPU 216 /* We don't actually take CPU down, just spin without interrupts. */ 217 static inline void play_dead(void) 218 { 219 unsigned int this_cpu = smp_processor_id(); 220 221 /* Ack it */ 222 __this_cpu_write(cpu_state, CPU_DEAD); 223 224 max_xtp(); 225 local_irq_disable(); 226 idle_task_exit(); 227 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 228 /* 229 * The above is a point of no-return, the processor is 230 * expected to be in SAL loop now. 231 */ 232 BUG(); 233 } 234 #else 235 static inline void play_dead(void) 236 { 237 BUG(); 238 } 239 #endif /* CONFIG_HOTPLUG_CPU */ 240 241 void arch_cpu_idle_dead(void) 242 { 243 play_dead(); 244 } 245 246 void arch_cpu_idle(void) 247 { 248 void (*mark_idle)(int) = ia64_mark_idle; 249 250 #ifdef CONFIG_SMP 251 min_xtp(); 252 #endif 253 rmb(); 254 if (mark_idle) 255 (*mark_idle)(1); 256 257 safe_halt(); 258 259 if (mark_idle) 260 (*mark_idle)(0); 261 #ifdef CONFIG_SMP 262 normal_xtp(); 263 #endif 264 } 265 266 void 267 ia64_save_extra (struct task_struct *task) 268 { 269 #ifdef CONFIG_PERFMON 270 unsigned long info; 271 #endif 272 273 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 274 ia64_save_debug_regs(&task->thread.dbr[0]); 275 276 #ifdef CONFIG_PERFMON 277 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 278 pfm_save_regs(task); 279 280 info = __this_cpu_read(pfm_syst_info); 281 if (info & PFM_CPUINFO_SYST_WIDE) 282 pfm_syst_wide_update_task(task, info, 0); 283 #endif 284 } 285 286 void 287 ia64_load_extra (struct task_struct *task) 288 { 289 #ifdef CONFIG_PERFMON 290 unsigned long info; 291 #endif 292 293 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 294 ia64_load_debug_regs(&task->thread.dbr[0]); 295 296 #ifdef CONFIG_PERFMON 297 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 298 pfm_load_regs(task); 299 300 info = __this_cpu_read(pfm_syst_info); 301 if (info & PFM_CPUINFO_SYST_WIDE) 302 pfm_syst_wide_update_task(task, info, 1); 303 #endif 304 } 305 306 /* 307 * Copy the state of an ia-64 thread. 308 * 309 * We get here through the following call chain: 310 * 311 * from user-level: from kernel: 312 * 313 * <clone syscall> <some kernel call frames> 314 * sys_clone : 315 * do_fork do_fork 316 * copy_thread copy_thread 317 * 318 * This means that the stack layout is as follows: 319 * 320 * +---------------------+ (highest addr) 321 * | struct pt_regs | 322 * +---------------------+ 323 * | struct switch_stack | 324 * +---------------------+ 325 * | | 326 * | memory stack | 327 * | | <-- sp (lowest addr) 328 * +---------------------+ 329 * 330 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 331 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 332 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 333 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 334 * the stack is page aligned and the page size is at least 4KB, this is always the case, 335 * so there is nothing to worry about. 336 */ 337 int 338 copy_thread(unsigned long clone_flags, 339 unsigned long user_stack_base, unsigned long user_stack_size, 340 struct task_struct *p) 341 { 342 extern char ia64_ret_from_clone; 343 struct switch_stack *child_stack, *stack; 344 unsigned long rbs, child_rbs, rbs_size; 345 struct pt_regs *child_ptregs; 346 struct pt_regs *regs = current_pt_regs(); 347 int retval = 0; 348 349 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 350 child_stack = (struct switch_stack *) child_ptregs - 1; 351 352 rbs = (unsigned long) current + IA64_RBS_OFFSET; 353 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 354 355 /* copy parts of thread_struct: */ 356 p->thread.ksp = (unsigned long) child_stack - 16; 357 358 /* 359 * NOTE: The calling convention considers all floating point 360 * registers in the high partition (fph) to be scratch. Since 361 * the only way to get to this point is through a system call, 362 * we know that the values in fph are all dead. Hence, there 363 * is no need to inherit the fph state from the parent to the 364 * child and all we have to do is to make sure that 365 * IA64_THREAD_FPH_VALID is cleared in the child. 366 * 367 * XXX We could push this optimization a bit further by 368 * clearing IA64_THREAD_FPH_VALID on ANY system call. 369 * However, it's not clear this is worth doing. Also, it 370 * would be a slight deviation from the normal Linux system 371 * call behavior where scratch registers are preserved across 372 * system calls (unless used by the system call itself). 373 */ 374 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 375 | IA64_THREAD_PM_VALID) 376 # define THREAD_FLAGS_TO_SET 0 377 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 378 | THREAD_FLAGS_TO_SET); 379 380 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 381 382 if (unlikely(p->flags & PF_KTHREAD)) { 383 if (unlikely(!user_stack_base)) { 384 /* fork_idle() called us */ 385 return 0; 386 } 387 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 388 child_stack->r4 = user_stack_base; /* payload */ 389 child_stack->r5 = user_stack_size; /* argument */ 390 /* 391 * Preserve PSR bits, except for bits 32-34 and 37-45, 392 * which we can't read. 393 */ 394 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 395 /* mark as valid, empty frame */ 396 child_ptregs->cr_ifs = 1UL << 63; 397 child_stack->ar_fpsr = child_ptregs->ar_fpsr 398 = ia64_getreg(_IA64_REG_AR_FPSR); 399 child_stack->pr = (1 << PRED_KERNEL_STACK); 400 child_stack->ar_bspstore = child_rbs; 401 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 402 403 /* stop some PSR bits from being inherited. 404 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 405 * therefore we must specify them explicitly here and not include them in 406 * IA64_PSR_BITS_TO_CLEAR. 407 */ 408 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 409 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 410 411 return 0; 412 } 413 stack = ((struct switch_stack *) regs) - 1; 414 /* copy parent's switch_stack & pt_regs to child: */ 415 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 416 417 /* copy the parent's register backing store to the child: */ 418 rbs_size = stack->ar_bspstore - rbs; 419 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 420 if (clone_flags & CLONE_SETTLS) 421 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 422 if (user_stack_base) { 423 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 424 child_ptregs->ar_bspstore = user_stack_base; 425 child_ptregs->ar_rnat = 0; 426 child_ptregs->loadrs = 0; 427 } 428 child_stack->ar_bspstore = child_rbs + rbs_size; 429 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 430 431 /* stop some PSR bits from being inherited. 432 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 433 * therefore we must specify them explicitly here and not include them in 434 * IA64_PSR_BITS_TO_CLEAR. 435 */ 436 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 437 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 438 439 #ifdef CONFIG_PERFMON 440 if (current->thread.pfm_context) 441 pfm_inherit(p, child_ptregs); 442 #endif 443 return retval; 444 } 445 446 static void 447 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 448 { 449 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 450 unsigned long uninitialized_var(ip); /* GCC be quiet */ 451 elf_greg_t *dst = arg; 452 struct pt_regs *pt; 453 char nat; 454 int i; 455 456 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 457 458 if (unw_unwind_to_user(info) < 0) 459 return; 460 461 unw_get_sp(info, &sp); 462 pt = (struct pt_regs *) (sp + 16); 463 464 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 465 466 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 467 return; 468 469 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 470 &ar_rnat); 471 472 /* 473 * coredump format: 474 * r0-r31 475 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 476 * predicate registers (p0-p63) 477 * b0-b7 478 * ip cfm user-mask 479 * ar.rsc ar.bsp ar.bspstore ar.rnat 480 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 481 */ 482 483 /* r0 is zero */ 484 for (i = 1, mask = (1UL << i); i < 32; ++i) { 485 unw_get_gr(info, i, &dst[i], &nat); 486 if (nat) 487 nat_bits |= mask; 488 mask <<= 1; 489 } 490 dst[32] = nat_bits; 491 unw_get_pr(info, &dst[33]); 492 493 for (i = 0; i < 8; ++i) 494 unw_get_br(info, i, &dst[34 + i]); 495 496 unw_get_rp(info, &ip); 497 dst[42] = ip + ia64_psr(pt)->ri; 498 dst[43] = cfm; 499 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 500 501 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 502 /* 503 * For bsp and bspstore, unw_get_ar() would return the kernel 504 * addresses, but we need the user-level addresses instead: 505 */ 506 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 507 dst[47] = pt->ar_bspstore; 508 dst[48] = ar_rnat; 509 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 510 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 511 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 512 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 513 unw_get_ar(info, UNW_AR_LC, &dst[53]); 514 unw_get_ar(info, UNW_AR_EC, &dst[54]); 515 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 516 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 517 } 518 519 void 520 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 521 { 522 elf_fpreg_t *dst = arg; 523 int i; 524 525 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 526 527 if (unw_unwind_to_user(info) < 0) 528 return; 529 530 /* f0 is 0.0, f1 is 1.0 */ 531 532 for (i = 2; i < 32; ++i) 533 unw_get_fr(info, i, dst + i); 534 535 ia64_flush_fph(task); 536 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 537 memcpy(dst + 32, task->thread.fph, 96*16); 538 } 539 540 void 541 do_copy_regs (struct unw_frame_info *info, void *arg) 542 { 543 do_copy_task_regs(current, info, arg); 544 } 545 546 void 547 do_dump_fpu (struct unw_frame_info *info, void *arg) 548 { 549 do_dump_task_fpu(current, info, arg); 550 } 551 552 void 553 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 554 { 555 unw_init_running(do_copy_regs, dst); 556 } 557 558 int 559 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 560 { 561 unw_init_running(do_dump_fpu, dst); 562 return 1; /* f0-f31 are always valid so we always return 1 */ 563 } 564 565 /* 566 * Flush thread state. This is called when a thread does an execve(). 567 */ 568 void 569 flush_thread (void) 570 { 571 /* drop floating-point and debug-register state if it exists: */ 572 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 573 ia64_drop_fpu(current); 574 } 575 576 /* 577 * Clean up state associated with a thread. This is called when 578 * the thread calls exit(). 579 */ 580 void 581 exit_thread (struct task_struct *tsk) 582 { 583 584 ia64_drop_fpu(tsk); 585 #ifdef CONFIG_PERFMON 586 /* if needed, stop monitoring and flush state to perfmon context */ 587 if (tsk->thread.pfm_context) 588 pfm_exit_thread(tsk); 589 590 /* free debug register resources */ 591 if (tsk->thread.flags & IA64_THREAD_DBG_VALID) 592 pfm_release_debug_registers(tsk); 593 #endif 594 } 595 596 unsigned long 597 get_wchan (struct task_struct *p) 598 { 599 struct unw_frame_info info; 600 unsigned long ip; 601 int count = 0; 602 603 if (!p || p == current || p->state == TASK_RUNNING) 604 return 0; 605 606 /* 607 * Note: p may not be a blocked task (it could be current or 608 * another process running on some other CPU. Rather than 609 * trying to determine if p is really blocked, we just assume 610 * it's blocked and rely on the unwind routines to fail 611 * gracefully if the process wasn't really blocked after all. 612 * --davidm 99/12/15 613 */ 614 unw_init_from_blocked_task(&info, p); 615 do { 616 if (p->state == TASK_RUNNING) 617 return 0; 618 if (unw_unwind(&info) < 0) 619 return 0; 620 unw_get_ip(&info, &ip); 621 if (!in_sched_functions(ip)) 622 return ip; 623 } while (count++ < 16); 624 return 0; 625 } 626 627 void 628 cpu_halt (void) 629 { 630 pal_power_mgmt_info_u_t power_info[8]; 631 unsigned long min_power; 632 int i, min_power_state; 633 634 if (ia64_pal_halt_info(power_info) != 0) 635 return; 636 637 min_power_state = 0; 638 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 639 for (i = 1; i < 8; ++i) 640 if (power_info[i].pal_power_mgmt_info_s.im 641 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 642 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 643 min_power_state = i; 644 } 645 646 while (1) 647 ia64_pal_halt(min_power_state); 648 } 649 650 void machine_shutdown(void) 651 { 652 #ifdef CONFIG_HOTPLUG_CPU 653 int cpu; 654 655 for_each_online_cpu(cpu) { 656 if (cpu != smp_processor_id()) 657 cpu_down(cpu); 658 } 659 #endif 660 #ifdef CONFIG_KEXEC 661 kexec_disable_iosapic(); 662 #endif 663 } 664 665 void 666 machine_restart (char *restart_cmd) 667 { 668 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 669 efi_reboot(REBOOT_WARM, NULL); 670 } 671 672 void 673 machine_halt (void) 674 { 675 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 676 cpu_halt(); 677 } 678 679 void 680 machine_power_off (void) 681 { 682 if (pm_power_off) 683 pm_power_off(); 684 machine_halt(); 685 } 686 687