1 /* 2 * Architecture-specific setup. 3 * 4 * Copyright (C) 1998-2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 7 * 8 * 2005-10-07 Keith Owens <kaos@sgi.com> 9 * Add notify_die() hooks. 10 */ 11 #include <linux/cpu.h> 12 #include <linux/pm.h> 13 #include <linux/elf.h> 14 #include <linux/errno.h> 15 #include <linux/kallsyms.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/notifier.h> 20 #include <linux/personality.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stddef.h> 24 #include <linux/thread_info.h> 25 #include <linux/unistd.h> 26 #include <linux/efi.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/kdebug.h> 30 #include <linux/utsname.h> 31 32 #include <asm/cpu.h> 33 #include <asm/delay.h> 34 #include <asm/elf.h> 35 #include <asm/ia32.h> 36 #include <asm/irq.h> 37 #include <asm/kexec.h> 38 #include <asm/pgalloc.h> 39 #include <asm/processor.h> 40 #include <asm/sal.h> 41 #include <asm/tlbflush.h> 42 #include <asm/uaccess.h> 43 #include <asm/unwind.h> 44 #include <asm/user.h> 45 46 #include "entry.h" 47 48 #ifdef CONFIG_PERFMON 49 # include <asm/perfmon.h> 50 #endif 51 52 #include "sigframe.h" 53 54 void (*ia64_mark_idle)(int); 55 56 unsigned long boot_option_idle_override = 0; 57 EXPORT_SYMBOL(boot_option_idle_override); 58 unsigned long idle_halt; 59 EXPORT_SYMBOL(idle_halt); 60 unsigned long idle_nomwait; 61 EXPORT_SYMBOL(idle_nomwait); 62 63 void 64 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 65 { 66 unsigned long ip, sp, bsp; 67 char buf[128]; /* don't make it so big that it overflows the stack! */ 68 69 printk("\nCall Trace:\n"); 70 do { 71 unw_get_ip(info, &ip); 72 if (ip == 0) 73 break; 74 75 unw_get_sp(info, &sp); 76 unw_get_bsp(info, &bsp); 77 snprintf(buf, sizeof(buf), 78 " [<%016lx>] %%s\n" 79 " sp=%016lx bsp=%016lx\n", 80 ip, sp, bsp); 81 print_symbol(buf, ip); 82 } while (unw_unwind(info) >= 0); 83 } 84 85 void 86 show_stack (struct task_struct *task, unsigned long *sp) 87 { 88 if (!task) 89 unw_init_running(ia64_do_show_stack, NULL); 90 else { 91 struct unw_frame_info info; 92 93 unw_init_from_blocked_task(&info, task); 94 ia64_do_show_stack(&info, NULL); 95 } 96 } 97 98 void 99 dump_stack (void) 100 { 101 show_stack(NULL, NULL); 102 } 103 104 EXPORT_SYMBOL(dump_stack); 105 106 void 107 show_regs (struct pt_regs *regs) 108 { 109 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 110 111 print_modules(); 112 printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current), 113 smp_processor_id(), current->comm); 114 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 115 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 116 init_utsname()->release); 117 print_symbol("ip is at %s\n", ip); 118 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 119 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 120 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 121 regs->ar_rnat, regs->ar_bspstore, regs->pr); 122 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 123 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 124 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 125 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 126 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 127 regs->f6.u.bits[1], regs->f6.u.bits[0], 128 regs->f7.u.bits[1], regs->f7.u.bits[0]); 129 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 130 regs->f8.u.bits[1], regs->f8.u.bits[0], 131 regs->f9.u.bits[1], regs->f9.u.bits[0]); 132 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 133 regs->f10.u.bits[1], regs->f10.u.bits[0], 134 regs->f11.u.bits[1], regs->f11.u.bits[0]); 135 136 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 137 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 138 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 139 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 140 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 141 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 142 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 143 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 144 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 145 146 if (user_mode(regs)) { 147 /* print the stacked registers */ 148 unsigned long val, *bsp, ndirty; 149 int i, sof, is_nat = 0; 150 151 sof = regs->cr_ifs & 0x7f; /* size of frame */ 152 ndirty = (regs->loadrs >> 19); 153 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 154 for (i = 0; i < sof; ++i) { 155 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 156 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 157 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 158 } 159 } else 160 show_stack(NULL, NULL); 161 } 162 163 void tsk_clear_notify_resume(struct task_struct *tsk) 164 { 165 #ifdef CONFIG_PERFMON 166 if (tsk->thread.pfm_needs_checking) 167 return; 168 #endif 169 if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE)) 170 return; 171 clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME); 172 } 173 174 /* 175 * do_notify_resume_user(): 176 * Called from notify_resume_user at entry.S, with interrupts disabled. 177 */ 178 void 179 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 180 { 181 if (fsys_mode(current, &scr->pt)) { 182 /* 183 * defer signal-handling etc. until we return to 184 * privilege-level 0. 185 */ 186 if (!ia64_psr(&scr->pt)->lp) 187 ia64_psr(&scr->pt)->lp = 1; 188 return; 189 } 190 191 #ifdef CONFIG_PERFMON 192 if (current->thread.pfm_needs_checking) 193 /* 194 * Note: pfm_handle_work() allow us to call it with interrupts 195 * disabled, and may enable interrupts within the function. 196 */ 197 pfm_handle_work(); 198 #endif 199 200 /* deal with pending signal delivery */ 201 if (test_thread_flag(TIF_SIGPENDING)) { 202 local_irq_enable(); /* force interrupt enable */ 203 ia64_do_signal(scr, in_syscall); 204 } 205 206 /* copy user rbs to kernel rbs */ 207 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 208 local_irq_enable(); /* force interrupt enable */ 209 ia64_sync_krbs(); 210 } 211 212 local_irq_disable(); /* force interrupt disable */ 213 } 214 215 static int pal_halt = 1; 216 static int can_do_pal_halt = 1; 217 218 static int __init nohalt_setup(char * str) 219 { 220 pal_halt = can_do_pal_halt = 0; 221 return 1; 222 } 223 __setup("nohalt", nohalt_setup); 224 225 void 226 update_pal_halt_status(int status) 227 { 228 can_do_pal_halt = pal_halt && status; 229 } 230 231 /* 232 * We use this if we don't have any better idle routine.. 233 */ 234 void 235 default_idle (void) 236 { 237 local_irq_enable(); 238 while (!need_resched()) { 239 if (can_do_pal_halt) { 240 local_irq_disable(); 241 if (!need_resched()) { 242 safe_halt(); 243 } 244 local_irq_enable(); 245 } else 246 cpu_relax(); 247 } 248 } 249 250 #ifdef CONFIG_HOTPLUG_CPU 251 /* We don't actually take CPU down, just spin without interrupts. */ 252 static inline void play_dead(void) 253 { 254 extern void ia64_cpu_local_tick (void); 255 unsigned int this_cpu = smp_processor_id(); 256 257 /* Ack it */ 258 __get_cpu_var(cpu_state) = CPU_DEAD; 259 260 max_xtp(); 261 local_irq_disable(); 262 idle_task_exit(); 263 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 264 /* 265 * The above is a point of no-return, the processor is 266 * expected to be in SAL loop now. 267 */ 268 BUG(); 269 } 270 #else 271 static inline void play_dead(void) 272 { 273 BUG(); 274 } 275 #endif /* CONFIG_HOTPLUG_CPU */ 276 277 static void do_nothing(void *unused) 278 { 279 } 280 281 /* 282 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of 283 * pm_idle and update to new pm_idle value. Required while changing pm_idle 284 * handler on SMP systems. 285 * 286 * Caller must have changed pm_idle to the new value before the call. Old 287 * pm_idle value will not be used by any CPU after the return of this function. 288 */ 289 void cpu_idle_wait(void) 290 { 291 smp_mb(); 292 /* kick all the CPUs so that they exit out of pm_idle */ 293 smp_call_function(do_nothing, NULL, 1); 294 } 295 EXPORT_SYMBOL_GPL(cpu_idle_wait); 296 297 void __attribute__((noreturn)) 298 cpu_idle (void) 299 { 300 void (*mark_idle)(int) = ia64_mark_idle; 301 int cpu = smp_processor_id(); 302 303 /* endless idle loop with no priority at all */ 304 while (1) { 305 if (can_do_pal_halt) { 306 current_thread_info()->status &= ~TS_POLLING; 307 /* 308 * TS_POLLING-cleared state must be visible before we 309 * test NEED_RESCHED: 310 */ 311 smp_mb(); 312 } else { 313 current_thread_info()->status |= TS_POLLING; 314 } 315 316 if (!need_resched()) { 317 void (*idle)(void); 318 #ifdef CONFIG_SMP 319 min_xtp(); 320 #endif 321 rmb(); 322 if (mark_idle) 323 (*mark_idle)(1); 324 325 idle = pm_idle; 326 if (!idle) 327 idle = default_idle; 328 (*idle)(); 329 if (mark_idle) 330 (*mark_idle)(0); 331 #ifdef CONFIG_SMP 332 normal_xtp(); 333 #endif 334 } 335 preempt_enable_no_resched(); 336 schedule(); 337 preempt_disable(); 338 check_pgt_cache(); 339 if (cpu_is_offline(cpu)) 340 play_dead(); 341 } 342 } 343 344 void 345 ia64_save_extra (struct task_struct *task) 346 { 347 #ifdef CONFIG_PERFMON 348 unsigned long info; 349 #endif 350 351 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 352 ia64_save_debug_regs(&task->thread.dbr[0]); 353 354 #ifdef CONFIG_PERFMON 355 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 356 pfm_save_regs(task); 357 358 info = __get_cpu_var(pfm_syst_info); 359 if (info & PFM_CPUINFO_SYST_WIDE) 360 pfm_syst_wide_update_task(task, info, 0); 361 #endif 362 363 #ifdef CONFIG_IA32_SUPPORT 364 if (IS_IA32_PROCESS(task_pt_regs(task))) 365 ia32_save_state(task); 366 #endif 367 } 368 369 void 370 ia64_load_extra (struct task_struct *task) 371 { 372 #ifdef CONFIG_PERFMON 373 unsigned long info; 374 #endif 375 376 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 377 ia64_load_debug_regs(&task->thread.dbr[0]); 378 379 #ifdef CONFIG_PERFMON 380 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 381 pfm_load_regs(task); 382 383 info = __get_cpu_var(pfm_syst_info); 384 if (info & PFM_CPUINFO_SYST_WIDE) 385 pfm_syst_wide_update_task(task, info, 1); 386 #endif 387 388 #ifdef CONFIG_IA32_SUPPORT 389 if (IS_IA32_PROCESS(task_pt_regs(task))) 390 ia32_load_state(task); 391 #endif 392 } 393 394 /* 395 * Copy the state of an ia-64 thread. 396 * 397 * We get here through the following call chain: 398 * 399 * from user-level: from kernel: 400 * 401 * <clone syscall> <some kernel call frames> 402 * sys_clone : 403 * do_fork do_fork 404 * copy_thread copy_thread 405 * 406 * This means that the stack layout is as follows: 407 * 408 * +---------------------+ (highest addr) 409 * | struct pt_regs | 410 * +---------------------+ 411 * | struct switch_stack | 412 * +---------------------+ 413 * | | 414 * | memory stack | 415 * | | <-- sp (lowest addr) 416 * +---------------------+ 417 * 418 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 419 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 420 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 421 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 422 * the stack is page aligned and the page size is at least 4KB, this is always the case, 423 * so there is nothing to worry about. 424 */ 425 int 426 copy_thread (int nr, unsigned long clone_flags, 427 unsigned long user_stack_base, unsigned long user_stack_size, 428 struct task_struct *p, struct pt_regs *regs) 429 { 430 extern char ia64_ret_from_clone, ia32_ret_from_clone; 431 struct switch_stack *child_stack, *stack; 432 unsigned long rbs, child_rbs, rbs_size; 433 struct pt_regs *child_ptregs; 434 int retval = 0; 435 436 #ifdef CONFIG_SMP 437 /* 438 * For SMP idle threads, fork_by_hand() calls do_fork with 439 * NULL regs. 440 */ 441 if (!regs) 442 return 0; 443 #endif 444 445 stack = ((struct switch_stack *) regs) - 1; 446 447 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 448 child_stack = (struct switch_stack *) child_ptregs - 1; 449 450 /* copy parent's switch_stack & pt_regs to child: */ 451 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 452 453 rbs = (unsigned long) current + IA64_RBS_OFFSET; 454 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 455 rbs_size = stack->ar_bspstore - rbs; 456 457 /* copy the parent's register backing store to the child: */ 458 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 459 460 if (likely(user_mode(child_ptregs))) { 461 if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs)) 462 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 463 if (user_stack_base) { 464 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 465 child_ptregs->ar_bspstore = user_stack_base; 466 child_ptregs->ar_rnat = 0; 467 child_ptregs->loadrs = 0; 468 } 469 } else { 470 /* 471 * Note: we simply preserve the relative position of 472 * the stack pointer here. There is no need to 473 * allocate a scratch area here, since that will have 474 * been taken care of by the caller of sys_clone() 475 * already. 476 */ 477 child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */ 478 child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */ 479 } 480 child_stack->ar_bspstore = child_rbs + rbs_size; 481 if (IS_IA32_PROCESS(regs)) 482 child_stack->b0 = (unsigned long) &ia32_ret_from_clone; 483 else 484 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 485 486 /* copy parts of thread_struct: */ 487 p->thread.ksp = (unsigned long) child_stack - 16; 488 489 /* stop some PSR bits from being inherited. 490 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 491 * therefore we must specify them explicitly here and not include them in 492 * IA64_PSR_BITS_TO_CLEAR. 493 */ 494 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 495 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 496 497 /* 498 * NOTE: The calling convention considers all floating point 499 * registers in the high partition (fph) to be scratch. Since 500 * the only way to get to this point is through a system call, 501 * we know that the values in fph are all dead. Hence, there 502 * is no need to inherit the fph state from the parent to the 503 * child and all we have to do is to make sure that 504 * IA64_THREAD_FPH_VALID is cleared in the child. 505 * 506 * XXX We could push this optimization a bit further by 507 * clearing IA64_THREAD_FPH_VALID on ANY system call. 508 * However, it's not clear this is worth doing. Also, it 509 * would be a slight deviation from the normal Linux system 510 * call behavior where scratch registers are preserved across 511 * system calls (unless used by the system call itself). 512 */ 513 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 514 | IA64_THREAD_PM_VALID) 515 # define THREAD_FLAGS_TO_SET 0 516 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 517 | THREAD_FLAGS_TO_SET); 518 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 519 #ifdef CONFIG_IA32_SUPPORT 520 /* 521 * If we're cloning an IA32 task then save the IA32 extra 522 * state from the current task to the new task 523 */ 524 if (IS_IA32_PROCESS(task_pt_regs(current))) { 525 ia32_save_state(p); 526 if (clone_flags & CLONE_SETTLS) 527 retval = ia32_clone_tls(p, child_ptregs); 528 529 /* Copy partially mapped page list */ 530 if (!retval) 531 retval = ia32_copy_ia64_partial_page_list(p, 532 clone_flags); 533 } 534 #endif 535 536 #ifdef CONFIG_PERFMON 537 if (current->thread.pfm_context) 538 pfm_inherit(p, child_ptregs); 539 #endif 540 return retval; 541 } 542 543 static void 544 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 545 { 546 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 547 unsigned long uninitialized_var(ip); /* GCC be quiet */ 548 elf_greg_t *dst = arg; 549 struct pt_regs *pt; 550 char nat; 551 int i; 552 553 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 554 555 if (unw_unwind_to_user(info) < 0) 556 return; 557 558 unw_get_sp(info, &sp); 559 pt = (struct pt_regs *) (sp + 16); 560 561 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 562 563 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 564 return; 565 566 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 567 &ar_rnat); 568 569 /* 570 * coredump format: 571 * r0-r31 572 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 573 * predicate registers (p0-p63) 574 * b0-b7 575 * ip cfm user-mask 576 * ar.rsc ar.bsp ar.bspstore ar.rnat 577 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 578 */ 579 580 /* r0 is zero */ 581 for (i = 1, mask = (1UL << i); i < 32; ++i) { 582 unw_get_gr(info, i, &dst[i], &nat); 583 if (nat) 584 nat_bits |= mask; 585 mask <<= 1; 586 } 587 dst[32] = nat_bits; 588 unw_get_pr(info, &dst[33]); 589 590 for (i = 0; i < 8; ++i) 591 unw_get_br(info, i, &dst[34 + i]); 592 593 unw_get_rp(info, &ip); 594 dst[42] = ip + ia64_psr(pt)->ri; 595 dst[43] = cfm; 596 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 597 598 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 599 /* 600 * For bsp and bspstore, unw_get_ar() would return the kernel 601 * addresses, but we need the user-level addresses instead: 602 */ 603 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 604 dst[47] = pt->ar_bspstore; 605 dst[48] = ar_rnat; 606 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 607 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 608 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 609 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 610 unw_get_ar(info, UNW_AR_LC, &dst[53]); 611 unw_get_ar(info, UNW_AR_EC, &dst[54]); 612 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 613 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 614 } 615 616 void 617 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 618 { 619 elf_fpreg_t *dst = arg; 620 int i; 621 622 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 623 624 if (unw_unwind_to_user(info) < 0) 625 return; 626 627 /* f0 is 0.0, f1 is 1.0 */ 628 629 for (i = 2; i < 32; ++i) 630 unw_get_fr(info, i, dst + i); 631 632 ia64_flush_fph(task); 633 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 634 memcpy(dst + 32, task->thread.fph, 96*16); 635 } 636 637 void 638 do_copy_regs (struct unw_frame_info *info, void *arg) 639 { 640 do_copy_task_regs(current, info, arg); 641 } 642 643 void 644 do_dump_fpu (struct unw_frame_info *info, void *arg) 645 { 646 do_dump_task_fpu(current, info, arg); 647 } 648 649 void 650 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 651 { 652 unw_init_running(do_copy_regs, dst); 653 } 654 655 int 656 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 657 { 658 unw_init_running(do_dump_fpu, dst); 659 return 1; /* f0-f31 are always valid so we always return 1 */ 660 } 661 662 long 663 sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp, 664 struct pt_regs *regs) 665 { 666 char *fname; 667 int error; 668 669 fname = getname(filename); 670 error = PTR_ERR(fname); 671 if (IS_ERR(fname)) 672 goto out; 673 error = do_execve(fname, argv, envp, regs); 674 putname(fname); 675 out: 676 return error; 677 } 678 679 pid_t 680 kernel_thread (int (*fn)(void *), void *arg, unsigned long flags) 681 { 682 extern void start_kernel_thread (void); 683 unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread; 684 struct { 685 struct switch_stack sw; 686 struct pt_regs pt; 687 } regs; 688 689 memset(®s, 0, sizeof(regs)); 690 regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */ 691 regs.pt.r1 = helper_fptr[1]; /* set GP */ 692 regs.pt.r9 = (unsigned long) fn; /* 1st argument */ 693 regs.pt.r11 = (unsigned long) arg; /* 2nd argument */ 694 /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */ 695 regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 696 regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */ 697 regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR); 698 regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET; 699 regs.sw.pr = (1 << PRED_KERNEL_STACK); 700 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s.pt, 0, NULL, NULL); 701 } 702 EXPORT_SYMBOL(kernel_thread); 703 704 /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */ 705 int 706 kernel_thread_helper (int (*fn)(void *), void *arg) 707 { 708 #ifdef CONFIG_IA32_SUPPORT 709 if (IS_IA32_PROCESS(task_pt_regs(current))) { 710 /* A kernel thread is always a 64-bit process. */ 711 current->thread.map_base = DEFAULT_MAP_BASE; 712 current->thread.task_size = DEFAULT_TASK_SIZE; 713 ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob); 714 ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1); 715 } 716 #endif 717 return (*fn)(arg); 718 } 719 720 /* 721 * Flush thread state. This is called when a thread does an execve(). 722 */ 723 void 724 flush_thread (void) 725 { 726 /* drop floating-point and debug-register state if it exists: */ 727 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 728 ia64_drop_fpu(current); 729 #ifdef CONFIG_IA32_SUPPORT 730 if (IS_IA32_PROCESS(task_pt_regs(current))) { 731 ia32_drop_ia64_partial_page_list(current); 732 current->thread.task_size = IA32_PAGE_OFFSET; 733 set_fs(USER_DS); 734 memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array)); 735 } 736 #endif 737 } 738 739 /* 740 * Clean up state associated with current thread. This is called when 741 * the thread calls exit(). 742 */ 743 void 744 exit_thread (void) 745 { 746 747 ia64_drop_fpu(current); 748 #ifdef CONFIG_PERFMON 749 /* if needed, stop monitoring and flush state to perfmon context */ 750 if (current->thread.pfm_context) 751 pfm_exit_thread(current); 752 753 /* free debug register resources */ 754 if (current->thread.flags & IA64_THREAD_DBG_VALID) 755 pfm_release_debug_registers(current); 756 #endif 757 if (IS_IA32_PROCESS(task_pt_regs(current))) 758 ia32_drop_ia64_partial_page_list(current); 759 } 760 761 unsigned long 762 get_wchan (struct task_struct *p) 763 { 764 struct unw_frame_info info; 765 unsigned long ip; 766 int count = 0; 767 768 if (!p || p == current || p->state == TASK_RUNNING) 769 return 0; 770 771 /* 772 * Note: p may not be a blocked task (it could be current or 773 * another process running on some other CPU. Rather than 774 * trying to determine if p is really blocked, we just assume 775 * it's blocked and rely on the unwind routines to fail 776 * gracefully if the process wasn't really blocked after all. 777 * --davidm 99/12/15 778 */ 779 unw_init_from_blocked_task(&info, p); 780 do { 781 if (p->state == TASK_RUNNING) 782 return 0; 783 if (unw_unwind(&info) < 0) 784 return 0; 785 unw_get_ip(&info, &ip); 786 if (!in_sched_functions(ip)) 787 return ip; 788 } while (count++ < 16); 789 return 0; 790 } 791 792 void 793 cpu_halt (void) 794 { 795 pal_power_mgmt_info_u_t power_info[8]; 796 unsigned long min_power; 797 int i, min_power_state; 798 799 if (ia64_pal_halt_info(power_info) != 0) 800 return; 801 802 min_power_state = 0; 803 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 804 for (i = 1; i < 8; ++i) 805 if (power_info[i].pal_power_mgmt_info_s.im 806 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 807 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 808 min_power_state = i; 809 } 810 811 while (1) 812 ia64_pal_halt(min_power_state); 813 } 814 815 void machine_shutdown(void) 816 { 817 #ifdef CONFIG_HOTPLUG_CPU 818 int cpu; 819 820 for_each_online_cpu(cpu) { 821 if (cpu != smp_processor_id()) 822 cpu_down(cpu); 823 } 824 #endif 825 #ifdef CONFIG_KEXEC 826 kexec_disable_iosapic(); 827 #endif 828 } 829 830 void 831 machine_restart (char *restart_cmd) 832 { 833 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 834 (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL); 835 } 836 837 void 838 machine_halt (void) 839 { 840 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 841 cpu_halt(); 842 } 843 844 void 845 machine_power_off (void) 846 { 847 if (pm_power_off) 848 pm_power_off(); 849 machine_halt(); 850 } 851 852