1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Architecture-specific setup. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 8 * 9 * 2005-10-07 Keith Owens <kaos@sgi.com> 10 * Add notify_die() hooks. 11 */ 12 #include <linux/cpu.h> 13 #include <linux/pm.h> 14 #include <linux/elf.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/stddef.h> 28 #include <linux/thread_info.h> 29 #include <linux/unistd.h> 30 #include <linux/efi.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/kdebug.h> 34 #include <linux/utsname.h> 35 #include <linux/tracehook.h> 36 #include <linux/rcupdate.h> 37 38 #include <asm/cpu.h> 39 #include <asm/delay.h> 40 #include <asm/elf.h> 41 #include <asm/irq.h> 42 #include <asm/kexec.h> 43 #include <asm/processor.h> 44 #include <asm/sal.h> 45 #include <asm/switch_to.h> 46 #include <asm/tlbflush.h> 47 #include <linux/uaccess.h> 48 #include <asm/unwind.h> 49 #include <asm/user.h> 50 #include <asm/xtp.h> 51 52 #include "entry.h" 53 54 #include "sigframe.h" 55 56 void (*ia64_mark_idle)(int); 57 58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 59 EXPORT_SYMBOL(boot_option_idle_override); 60 void (*pm_power_off) (void); 61 EXPORT_SYMBOL(pm_power_off); 62 63 static void 64 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 65 { 66 unsigned long ip, sp, bsp; 67 const char *loglvl = arg; 68 69 printk("%s\nCall Trace:\n", loglvl); 70 do { 71 unw_get_ip(info, &ip); 72 if (ip == 0) 73 break; 74 75 unw_get_sp(info, &sp); 76 unw_get_bsp(info, &bsp); 77 printk("%s [<%016lx>] %pS\n" 78 " sp=%016lx bsp=%016lx\n", 79 loglvl, ip, (void *)ip, sp, bsp); 80 } while (unw_unwind(info) >= 0); 81 } 82 83 void 84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl) 85 { 86 if (!task) 87 unw_init_running(ia64_do_show_stack, (void *)loglvl); 88 else { 89 struct unw_frame_info info; 90 91 unw_init_from_blocked_task(&info, task); 92 ia64_do_show_stack(&info, (void *)loglvl); 93 } 94 } 95 96 void 97 show_regs (struct pt_regs *regs) 98 { 99 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 100 101 print_modules(); 102 printk("\n"); 103 show_regs_print_info(KERN_DEFAULT); 104 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 105 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 106 init_utsname()->release); 107 printk("ip is at %pS\n", (void *)ip); 108 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 109 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 110 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 111 regs->ar_rnat, regs->ar_bspstore, regs->pr); 112 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 113 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 114 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 115 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 116 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 117 regs->f6.u.bits[1], regs->f6.u.bits[0], 118 regs->f7.u.bits[1], regs->f7.u.bits[0]); 119 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 120 regs->f8.u.bits[1], regs->f8.u.bits[0], 121 regs->f9.u.bits[1], regs->f9.u.bits[0]); 122 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 123 regs->f10.u.bits[1], regs->f10.u.bits[0], 124 regs->f11.u.bits[1], regs->f11.u.bits[0]); 125 126 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 127 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 128 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 129 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 130 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 131 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 132 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 133 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 134 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 135 136 if (user_mode(regs)) { 137 /* print the stacked registers */ 138 unsigned long val, *bsp, ndirty; 139 int i, sof, is_nat = 0; 140 141 sof = regs->cr_ifs & 0x7f; /* size of frame */ 142 ndirty = (regs->loadrs >> 19); 143 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 144 for (i = 0; i < sof; ++i) { 145 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 146 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 147 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 148 } 149 } else 150 show_stack(NULL, NULL, KERN_DEFAULT); 151 } 152 153 /* local support for deprecated console_print */ 154 void 155 console_print(const char *s) 156 { 157 printk(KERN_EMERG "%s", s); 158 } 159 160 void 161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 162 { 163 if (fsys_mode(current, &scr->pt)) { 164 /* 165 * defer signal-handling etc. until we return to 166 * privilege-level 0. 167 */ 168 if (!ia64_psr(&scr->pt)->lp) 169 ia64_psr(&scr->pt)->lp = 1; 170 return; 171 } 172 173 /* deal with pending signal delivery */ 174 if (test_thread_flag(TIF_SIGPENDING) || 175 test_thread_flag(TIF_NOTIFY_SIGNAL)) { 176 local_irq_enable(); /* force interrupt enable */ 177 ia64_do_signal(scr, in_syscall); 178 } 179 180 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 181 local_irq_enable(); /* force interrupt enable */ 182 tracehook_notify_resume(&scr->pt); 183 } 184 185 /* copy user rbs to kernel rbs */ 186 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 187 local_irq_enable(); /* force interrupt enable */ 188 ia64_sync_krbs(); 189 } 190 191 local_irq_disable(); /* force interrupt disable */ 192 } 193 194 static int __init nohalt_setup(char * str) 195 { 196 cpu_idle_poll_ctrl(true); 197 return 1; 198 } 199 __setup("nohalt", nohalt_setup); 200 201 #ifdef CONFIG_HOTPLUG_CPU 202 /* We don't actually take CPU down, just spin without interrupts. */ 203 static inline void play_dead(void) 204 { 205 unsigned int this_cpu = smp_processor_id(); 206 207 /* Ack it */ 208 __this_cpu_write(cpu_state, CPU_DEAD); 209 210 max_xtp(); 211 local_irq_disable(); 212 idle_task_exit(); 213 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 214 /* 215 * The above is a point of no-return, the processor is 216 * expected to be in SAL loop now. 217 */ 218 BUG(); 219 } 220 #else 221 static inline void play_dead(void) 222 { 223 BUG(); 224 } 225 #endif /* CONFIG_HOTPLUG_CPU */ 226 227 void arch_cpu_idle_dead(void) 228 { 229 play_dead(); 230 } 231 232 void arch_cpu_idle(void) 233 { 234 void (*mark_idle)(int) = ia64_mark_idle; 235 236 #ifdef CONFIG_SMP 237 min_xtp(); 238 #endif 239 rmb(); 240 if (mark_idle) 241 (*mark_idle)(1); 242 243 raw_safe_halt(); 244 245 if (mark_idle) 246 (*mark_idle)(0); 247 #ifdef CONFIG_SMP 248 normal_xtp(); 249 #endif 250 } 251 252 void 253 ia64_save_extra (struct task_struct *task) 254 { 255 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 256 ia64_save_debug_regs(&task->thread.dbr[0]); 257 } 258 259 void 260 ia64_load_extra (struct task_struct *task) 261 { 262 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 263 ia64_load_debug_regs(&task->thread.dbr[0]); 264 } 265 266 /* 267 * Copy the state of an ia-64 thread. 268 * 269 * We get here through the following call chain: 270 * 271 * from user-level: from kernel: 272 * 273 * <clone syscall> <some kernel call frames> 274 * sys_clone : 275 * kernel_clone kernel_clone 276 * copy_thread copy_thread 277 * 278 * This means that the stack layout is as follows: 279 * 280 * +---------------------+ (highest addr) 281 * | struct pt_regs | 282 * +---------------------+ 283 * | struct switch_stack | 284 * +---------------------+ 285 * | | 286 * | memory stack | 287 * | | <-- sp (lowest addr) 288 * +---------------------+ 289 * 290 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 291 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 292 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 293 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 294 * the stack is page aligned and the page size is at least 4KB, this is always the case, 295 * so there is nothing to worry about. 296 */ 297 int 298 copy_thread(unsigned long clone_flags, unsigned long user_stack_base, 299 unsigned long user_stack_size, struct task_struct *p, unsigned long tls) 300 { 301 extern char ia64_ret_from_clone; 302 struct switch_stack *child_stack, *stack; 303 unsigned long rbs, child_rbs, rbs_size; 304 struct pt_regs *child_ptregs; 305 struct pt_regs *regs = current_pt_regs(); 306 int retval = 0; 307 308 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 309 child_stack = (struct switch_stack *) child_ptregs - 1; 310 311 rbs = (unsigned long) current + IA64_RBS_OFFSET; 312 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 313 314 /* copy parts of thread_struct: */ 315 p->thread.ksp = (unsigned long) child_stack - 16; 316 317 /* 318 * NOTE: The calling convention considers all floating point 319 * registers in the high partition (fph) to be scratch. Since 320 * the only way to get to this point is through a system call, 321 * we know that the values in fph are all dead. Hence, there 322 * is no need to inherit the fph state from the parent to the 323 * child and all we have to do is to make sure that 324 * IA64_THREAD_FPH_VALID is cleared in the child. 325 * 326 * XXX We could push this optimization a bit further by 327 * clearing IA64_THREAD_FPH_VALID on ANY system call. 328 * However, it's not clear this is worth doing. Also, it 329 * would be a slight deviation from the normal Linux system 330 * call behavior where scratch registers are preserved across 331 * system calls (unless used by the system call itself). 332 */ 333 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 334 | IA64_THREAD_PM_VALID) 335 # define THREAD_FLAGS_TO_SET 0 336 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 337 | THREAD_FLAGS_TO_SET); 338 339 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 340 341 if (unlikely(p->flags & PF_KTHREAD)) { 342 if (unlikely(!user_stack_base)) { 343 /* fork_idle() called us */ 344 return 0; 345 } 346 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 347 child_stack->r4 = user_stack_base; /* payload */ 348 child_stack->r5 = user_stack_size; /* argument */ 349 /* 350 * Preserve PSR bits, except for bits 32-34 and 37-45, 351 * which we can't read. 352 */ 353 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 354 /* mark as valid, empty frame */ 355 child_ptregs->cr_ifs = 1UL << 63; 356 child_stack->ar_fpsr = child_ptregs->ar_fpsr 357 = ia64_getreg(_IA64_REG_AR_FPSR); 358 child_stack->pr = (1 << PRED_KERNEL_STACK); 359 child_stack->ar_bspstore = child_rbs; 360 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 361 362 /* stop some PSR bits from being inherited. 363 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 364 * therefore we must specify them explicitly here and not include them in 365 * IA64_PSR_BITS_TO_CLEAR. 366 */ 367 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 368 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 369 370 return 0; 371 } 372 stack = ((struct switch_stack *) regs) - 1; 373 /* copy parent's switch_stack & pt_regs to child: */ 374 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 375 376 /* copy the parent's register backing store to the child: */ 377 rbs_size = stack->ar_bspstore - rbs; 378 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 379 if (clone_flags & CLONE_SETTLS) 380 child_ptregs->r13 = tls; 381 if (user_stack_base) { 382 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 383 child_ptregs->ar_bspstore = user_stack_base; 384 child_ptregs->ar_rnat = 0; 385 child_ptregs->loadrs = 0; 386 } 387 child_stack->ar_bspstore = child_rbs + rbs_size; 388 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 389 390 /* stop some PSR bits from being inherited. 391 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 392 * therefore we must specify them explicitly here and not include them in 393 * IA64_PSR_BITS_TO_CLEAR. 394 */ 395 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 396 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 397 return retval; 398 } 399 400 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start, 401 unsigned long stack_size, unsigned long parent_tidptr, 402 unsigned long child_tidptr, unsigned long tls) 403 { 404 struct kernel_clone_args args = { 405 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 406 .pidfd = (int __user *)parent_tidptr, 407 .child_tid = (int __user *)child_tidptr, 408 .parent_tid = (int __user *)parent_tidptr, 409 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 410 .stack = stack_start, 411 .stack_size = stack_size, 412 .tls = tls, 413 }; 414 415 return kernel_clone(&args); 416 } 417 418 static void 419 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 420 { 421 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 422 unsigned long ip; 423 elf_greg_t *dst = arg; 424 struct pt_regs *pt; 425 char nat; 426 int i; 427 428 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 429 430 if (unw_unwind_to_user(info) < 0) 431 return; 432 433 unw_get_sp(info, &sp); 434 pt = (struct pt_regs *) (sp + 16); 435 436 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 437 438 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 439 return; 440 441 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 442 &ar_rnat); 443 444 /* 445 * coredump format: 446 * r0-r31 447 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 448 * predicate registers (p0-p63) 449 * b0-b7 450 * ip cfm user-mask 451 * ar.rsc ar.bsp ar.bspstore ar.rnat 452 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 453 */ 454 455 /* r0 is zero */ 456 for (i = 1, mask = (1UL << i); i < 32; ++i) { 457 unw_get_gr(info, i, &dst[i], &nat); 458 if (nat) 459 nat_bits |= mask; 460 mask <<= 1; 461 } 462 dst[32] = nat_bits; 463 unw_get_pr(info, &dst[33]); 464 465 for (i = 0; i < 8; ++i) 466 unw_get_br(info, i, &dst[34 + i]); 467 468 unw_get_rp(info, &ip); 469 dst[42] = ip + ia64_psr(pt)->ri; 470 dst[43] = cfm; 471 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 472 473 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 474 /* 475 * For bsp and bspstore, unw_get_ar() would return the kernel 476 * addresses, but we need the user-level addresses instead: 477 */ 478 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 479 dst[47] = pt->ar_bspstore; 480 dst[48] = ar_rnat; 481 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 482 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 483 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 484 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 485 unw_get_ar(info, UNW_AR_LC, &dst[53]); 486 unw_get_ar(info, UNW_AR_EC, &dst[54]); 487 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 488 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 489 } 490 491 static void 492 do_copy_regs (struct unw_frame_info *info, void *arg) 493 { 494 do_copy_task_regs(current, info, arg); 495 } 496 497 void 498 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 499 { 500 unw_init_running(do_copy_regs, dst); 501 } 502 503 /* 504 * Flush thread state. This is called when a thread does an execve(). 505 */ 506 void 507 flush_thread (void) 508 { 509 /* drop floating-point and debug-register state if it exists: */ 510 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 511 ia64_drop_fpu(current); 512 } 513 514 /* 515 * Clean up state associated with a thread. This is called when 516 * the thread calls exit(). 517 */ 518 void 519 exit_thread (struct task_struct *tsk) 520 { 521 522 ia64_drop_fpu(tsk); 523 } 524 525 unsigned long 526 get_wchan (struct task_struct *p) 527 { 528 struct unw_frame_info info; 529 unsigned long ip; 530 int count = 0; 531 532 if (!p || p == current || p->state == TASK_RUNNING) 533 return 0; 534 535 /* 536 * Note: p may not be a blocked task (it could be current or 537 * another process running on some other CPU. Rather than 538 * trying to determine if p is really blocked, we just assume 539 * it's blocked and rely on the unwind routines to fail 540 * gracefully if the process wasn't really blocked after all. 541 * --davidm 99/12/15 542 */ 543 unw_init_from_blocked_task(&info, p); 544 do { 545 if (p->state == TASK_RUNNING) 546 return 0; 547 if (unw_unwind(&info) < 0) 548 return 0; 549 unw_get_ip(&info, &ip); 550 if (!in_sched_functions(ip)) 551 return ip; 552 } while (count++ < 16); 553 return 0; 554 } 555 556 void 557 cpu_halt (void) 558 { 559 pal_power_mgmt_info_u_t power_info[8]; 560 unsigned long min_power; 561 int i, min_power_state; 562 563 if (ia64_pal_halt_info(power_info) != 0) 564 return; 565 566 min_power_state = 0; 567 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 568 for (i = 1; i < 8; ++i) 569 if (power_info[i].pal_power_mgmt_info_s.im 570 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 571 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 572 min_power_state = i; 573 } 574 575 while (1) 576 ia64_pal_halt(min_power_state); 577 } 578 579 void machine_shutdown(void) 580 { 581 smp_shutdown_nonboot_cpus(reboot_cpu); 582 583 #ifdef CONFIG_KEXEC 584 kexec_disable_iosapic(); 585 #endif 586 } 587 588 void 589 machine_restart (char *restart_cmd) 590 { 591 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 592 efi_reboot(REBOOT_WARM, NULL); 593 } 594 595 void 596 machine_halt (void) 597 { 598 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 599 cpu_halt(); 600 } 601 602 void 603 machine_power_off (void) 604 { 605 if (pm_power_off) 606 pm_power_off(); 607 machine_halt(); 608 } 609 610 EXPORT_SYMBOL(ia64_delay_loop); 611