1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Architecture-specific setup. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 8 * 9 * 2005-10-07 Keith Owens <kaos@sgi.com> 10 * Add notify_die() hooks. 11 */ 12 #include <linux/cpu.h> 13 #include <linux/pm.h> 14 #include <linux/elf.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/stddef.h> 28 #include <linux/thread_info.h> 29 #include <linux/unistd.h> 30 #include <linux/efi.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/kdebug.h> 34 #include <linux/utsname.h> 35 #include <linux/tracehook.h> 36 #include <linux/rcupdate.h> 37 38 #include <asm/cpu.h> 39 #include <asm/delay.h> 40 #include <asm/elf.h> 41 #include <asm/irq.h> 42 #include <asm/kexec.h> 43 #include <asm/pgalloc.h> 44 #include <asm/processor.h> 45 #include <asm/sal.h> 46 #include <asm/switch_to.h> 47 #include <asm/tlbflush.h> 48 #include <linux/uaccess.h> 49 #include <asm/unwind.h> 50 #include <asm/user.h> 51 52 #include "entry.h" 53 54 #ifdef CONFIG_PERFMON 55 # include <asm/perfmon.h> 56 #endif 57 58 #include "sigframe.h" 59 60 void (*ia64_mark_idle)(int); 61 62 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 63 EXPORT_SYMBOL(boot_option_idle_override); 64 void (*pm_power_off) (void); 65 EXPORT_SYMBOL(pm_power_off); 66 67 void 68 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 69 { 70 unsigned long ip, sp, bsp; 71 72 printk("\nCall Trace:\n"); 73 do { 74 unw_get_ip(info, &ip); 75 if (ip == 0) 76 break; 77 78 unw_get_sp(info, &sp); 79 unw_get_bsp(info, &bsp); 80 printk(" [<%016lx>] %pS\n" 81 " sp=%016lx bsp=%016lx\n", 82 ip, (void *)ip, sp, bsp); 83 } while (unw_unwind(info) >= 0); 84 } 85 86 void 87 show_stack (struct task_struct *task, unsigned long *sp) 88 { 89 if (!task) 90 unw_init_running(ia64_do_show_stack, NULL); 91 else { 92 struct unw_frame_info info; 93 94 unw_init_from_blocked_task(&info, task); 95 ia64_do_show_stack(&info, NULL); 96 } 97 } 98 99 void 100 show_regs (struct pt_regs *regs) 101 { 102 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 103 104 print_modules(); 105 printk("\n"); 106 show_regs_print_info(KERN_DEFAULT); 107 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 108 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 109 init_utsname()->release); 110 printk("ip is at %pS\n", (void *)ip); 111 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 112 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 113 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 114 regs->ar_rnat, regs->ar_bspstore, regs->pr); 115 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 116 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 117 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 118 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 119 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 120 regs->f6.u.bits[1], regs->f6.u.bits[0], 121 regs->f7.u.bits[1], regs->f7.u.bits[0]); 122 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 123 regs->f8.u.bits[1], regs->f8.u.bits[0], 124 regs->f9.u.bits[1], regs->f9.u.bits[0]); 125 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 126 regs->f10.u.bits[1], regs->f10.u.bits[0], 127 regs->f11.u.bits[1], regs->f11.u.bits[0]); 128 129 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 130 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 131 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 132 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 133 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 134 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 135 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 136 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 137 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 138 139 if (user_mode(regs)) { 140 /* print the stacked registers */ 141 unsigned long val, *bsp, ndirty; 142 int i, sof, is_nat = 0; 143 144 sof = regs->cr_ifs & 0x7f; /* size of frame */ 145 ndirty = (regs->loadrs >> 19); 146 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 147 for (i = 0; i < sof; ++i) { 148 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 149 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 150 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 151 } 152 } else 153 show_stack(NULL, NULL); 154 } 155 156 /* local support for deprecated console_print */ 157 void 158 console_print(const char *s) 159 { 160 printk(KERN_EMERG "%s", s); 161 } 162 163 void 164 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 165 { 166 if (fsys_mode(current, &scr->pt)) { 167 /* 168 * defer signal-handling etc. until we return to 169 * privilege-level 0. 170 */ 171 if (!ia64_psr(&scr->pt)->lp) 172 ia64_psr(&scr->pt)->lp = 1; 173 return; 174 } 175 176 #ifdef CONFIG_PERFMON 177 if (current->thread.pfm_needs_checking) 178 /* 179 * Note: pfm_handle_work() allow us to call it with interrupts 180 * disabled, and may enable interrupts within the function. 181 */ 182 pfm_handle_work(); 183 #endif 184 185 /* deal with pending signal delivery */ 186 if (test_thread_flag(TIF_SIGPENDING)) { 187 local_irq_enable(); /* force interrupt enable */ 188 ia64_do_signal(scr, in_syscall); 189 } 190 191 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) { 192 local_irq_enable(); /* force interrupt enable */ 193 tracehook_notify_resume(&scr->pt); 194 } 195 196 /* copy user rbs to kernel rbs */ 197 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 198 local_irq_enable(); /* force interrupt enable */ 199 ia64_sync_krbs(); 200 } 201 202 local_irq_disable(); /* force interrupt disable */ 203 } 204 205 static int __init nohalt_setup(char * str) 206 { 207 cpu_idle_poll_ctrl(true); 208 return 1; 209 } 210 __setup("nohalt", nohalt_setup); 211 212 #ifdef CONFIG_HOTPLUG_CPU 213 /* We don't actually take CPU down, just spin without interrupts. */ 214 static inline void play_dead(void) 215 { 216 unsigned int this_cpu = smp_processor_id(); 217 218 /* Ack it */ 219 __this_cpu_write(cpu_state, CPU_DEAD); 220 221 max_xtp(); 222 local_irq_disable(); 223 idle_task_exit(); 224 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 225 /* 226 * The above is a point of no-return, the processor is 227 * expected to be in SAL loop now. 228 */ 229 BUG(); 230 } 231 #else 232 static inline void play_dead(void) 233 { 234 BUG(); 235 } 236 #endif /* CONFIG_HOTPLUG_CPU */ 237 238 void arch_cpu_idle_dead(void) 239 { 240 play_dead(); 241 } 242 243 void arch_cpu_idle(void) 244 { 245 void (*mark_idle)(int) = ia64_mark_idle; 246 247 #ifdef CONFIG_SMP 248 min_xtp(); 249 #endif 250 rmb(); 251 if (mark_idle) 252 (*mark_idle)(1); 253 254 safe_halt(); 255 256 if (mark_idle) 257 (*mark_idle)(0); 258 #ifdef CONFIG_SMP 259 normal_xtp(); 260 #endif 261 } 262 263 void 264 ia64_save_extra (struct task_struct *task) 265 { 266 #ifdef CONFIG_PERFMON 267 unsigned long info; 268 #endif 269 270 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 271 ia64_save_debug_regs(&task->thread.dbr[0]); 272 273 #ifdef CONFIG_PERFMON 274 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 275 pfm_save_regs(task); 276 277 info = __this_cpu_read(pfm_syst_info); 278 if (info & PFM_CPUINFO_SYST_WIDE) 279 pfm_syst_wide_update_task(task, info, 0); 280 #endif 281 } 282 283 void 284 ia64_load_extra (struct task_struct *task) 285 { 286 #ifdef CONFIG_PERFMON 287 unsigned long info; 288 #endif 289 290 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 291 ia64_load_debug_regs(&task->thread.dbr[0]); 292 293 #ifdef CONFIG_PERFMON 294 if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0) 295 pfm_load_regs(task); 296 297 info = __this_cpu_read(pfm_syst_info); 298 if (info & PFM_CPUINFO_SYST_WIDE) 299 pfm_syst_wide_update_task(task, info, 1); 300 #endif 301 } 302 303 /* 304 * Copy the state of an ia-64 thread. 305 * 306 * We get here through the following call chain: 307 * 308 * from user-level: from kernel: 309 * 310 * <clone syscall> <some kernel call frames> 311 * sys_clone : 312 * do_fork do_fork 313 * copy_thread copy_thread 314 * 315 * This means that the stack layout is as follows: 316 * 317 * +---------------------+ (highest addr) 318 * | struct pt_regs | 319 * +---------------------+ 320 * | struct switch_stack | 321 * +---------------------+ 322 * | | 323 * | memory stack | 324 * | | <-- sp (lowest addr) 325 * +---------------------+ 326 * 327 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 328 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 329 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 330 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 331 * the stack is page aligned and the page size is at least 4KB, this is always the case, 332 * so there is nothing to worry about. 333 */ 334 int 335 copy_thread(unsigned long clone_flags, 336 unsigned long user_stack_base, unsigned long user_stack_size, 337 struct task_struct *p) 338 { 339 extern char ia64_ret_from_clone; 340 struct switch_stack *child_stack, *stack; 341 unsigned long rbs, child_rbs, rbs_size; 342 struct pt_regs *child_ptregs; 343 struct pt_regs *regs = current_pt_regs(); 344 int retval = 0; 345 346 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 347 child_stack = (struct switch_stack *) child_ptregs - 1; 348 349 rbs = (unsigned long) current + IA64_RBS_OFFSET; 350 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 351 352 /* copy parts of thread_struct: */ 353 p->thread.ksp = (unsigned long) child_stack - 16; 354 355 /* 356 * NOTE: The calling convention considers all floating point 357 * registers in the high partition (fph) to be scratch. Since 358 * the only way to get to this point is through a system call, 359 * we know that the values in fph are all dead. Hence, there 360 * is no need to inherit the fph state from the parent to the 361 * child and all we have to do is to make sure that 362 * IA64_THREAD_FPH_VALID is cleared in the child. 363 * 364 * XXX We could push this optimization a bit further by 365 * clearing IA64_THREAD_FPH_VALID on ANY system call. 366 * However, it's not clear this is worth doing. Also, it 367 * would be a slight deviation from the normal Linux system 368 * call behavior where scratch registers are preserved across 369 * system calls (unless used by the system call itself). 370 */ 371 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 372 | IA64_THREAD_PM_VALID) 373 # define THREAD_FLAGS_TO_SET 0 374 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 375 | THREAD_FLAGS_TO_SET); 376 377 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 378 379 if (unlikely(p->flags & PF_KTHREAD)) { 380 if (unlikely(!user_stack_base)) { 381 /* fork_idle() called us */ 382 return 0; 383 } 384 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 385 child_stack->r4 = user_stack_base; /* payload */ 386 child_stack->r5 = user_stack_size; /* argument */ 387 /* 388 * Preserve PSR bits, except for bits 32-34 and 37-45, 389 * which we can't read. 390 */ 391 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 392 /* mark as valid, empty frame */ 393 child_ptregs->cr_ifs = 1UL << 63; 394 child_stack->ar_fpsr = child_ptregs->ar_fpsr 395 = ia64_getreg(_IA64_REG_AR_FPSR); 396 child_stack->pr = (1 << PRED_KERNEL_STACK); 397 child_stack->ar_bspstore = child_rbs; 398 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 399 400 /* stop some PSR bits from being inherited. 401 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 402 * therefore we must specify them explicitly here and not include them in 403 * IA64_PSR_BITS_TO_CLEAR. 404 */ 405 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 406 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 407 408 return 0; 409 } 410 stack = ((struct switch_stack *) regs) - 1; 411 /* copy parent's switch_stack & pt_regs to child: */ 412 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 413 414 /* copy the parent's register backing store to the child: */ 415 rbs_size = stack->ar_bspstore - rbs; 416 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 417 if (clone_flags & CLONE_SETTLS) 418 child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */ 419 if (user_stack_base) { 420 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 421 child_ptregs->ar_bspstore = user_stack_base; 422 child_ptregs->ar_rnat = 0; 423 child_ptregs->loadrs = 0; 424 } 425 child_stack->ar_bspstore = child_rbs + rbs_size; 426 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 427 428 /* stop some PSR bits from being inherited. 429 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 430 * therefore we must specify them explicitly here and not include them in 431 * IA64_PSR_BITS_TO_CLEAR. 432 */ 433 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 434 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 435 436 #ifdef CONFIG_PERFMON 437 if (current->thread.pfm_context) 438 pfm_inherit(p, child_ptregs); 439 #endif 440 return retval; 441 } 442 443 static void 444 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 445 { 446 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 447 unsigned long uninitialized_var(ip); /* GCC be quiet */ 448 elf_greg_t *dst = arg; 449 struct pt_regs *pt; 450 char nat; 451 int i; 452 453 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 454 455 if (unw_unwind_to_user(info) < 0) 456 return; 457 458 unw_get_sp(info, &sp); 459 pt = (struct pt_regs *) (sp + 16); 460 461 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 462 463 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 464 return; 465 466 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 467 &ar_rnat); 468 469 /* 470 * coredump format: 471 * r0-r31 472 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 473 * predicate registers (p0-p63) 474 * b0-b7 475 * ip cfm user-mask 476 * ar.rsc ar.bsp ar.bspstore ar.rnat 477 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 478 */ 479 480 /* r0 is zero */ 481 for (i = 1, mask = (1UL << i); i < 32; ++i) { 482 unw_get_gr(info, i, &dst[i], &nat); 483 if (nat) 484 nat_bits |= mask; 485 mask <<= 1; 486 } 487 dst[32] = nat_bits; 488 unw_get_pr(info, &dst[33]); 489 490 for (i = 0; i < 8; ++i) 491 unw_get_br(info, i, &dst[34 + i]); 492 493 unw_get_rp(info, &ip); 494 dst[42] = ip + ia64_psr(pt)->ri; 495 dst[43] = cfm; 496 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 497 498 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 499 /* 500 * For bsp and bspstore, unw_get_ar() would return the kernel 501 * addresses, but we need the user-level addresses instead: 502 */ 503 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 504 dst[47] = pt->ar_bspstore; 505 dst[48] = ar_rnat; 506 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 507 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 508 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 509 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 510 unw_get_ar(info, UNW_AR_LC, &dst[53]); 511 unw_get_ar(info, UNW_AR_EC, &dst[54]); 512 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 513 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 514 } 515 516 void 517 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg) 518 { 519 elf_fpreg_t *dst = arg; 520 int i; 521 522 memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */ 523 524 if (unw_unwind_to_user(info) < 0) 525 return; 526 527 /* f0 is 0.0, f1 is 1.0 */ 528 529 for (i = 2; i < 32; ++i) 530 unw_get_fr(info, i, dst + i); 531 532 ia64_flush_fph(task); 533 if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0) 534 memcpy(dst + 32, task->thread.fph, 96*16); 535 } 536 537 void 538 do_copy_regs (struct unw_frame_info *info, void *arg) 539 { 540 do_copy_task_regs(current, info, arg); 541 } 542 543 void 544 do_dump_fpu (struct unw_frame_info *info, void *arg) 545 { 546 do_dump_task_fpu(current, info, arg); 547 } 548 549 void 550 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 551 { 552 unw_init_running(do_copy_regs, dst); 553 } 554 555 int 556 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst) 557 { 558 unw_init_running(do_dump_fpu, dst); 559 return 1; /* f0-f31 are always valid so we always return 1 */ 560 } 561 562 /* 563 * Flush thread state. This is called when a thread does an execve(). 564 */ 565 void 566 flush_thread (void) 567 { 568 /* drop floating-point and debug-register state if it exists: */ 569 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 570 ia64_drop_fpu(current); 571 } 572 573 /* 574 * Clean up state associated with a thread. This is called when 575 * the thread calls exit(). 576 */ 577 void 578 exit_thread (struct task_struct *tsk) 579 { 580 581 ia64_drop_fpu(tsk); 582 #ifdef CONFIG_PERFMON 583 /* if needed, stop monitoring and flush state to perfmon context */ 584 if (tsk->thread.pfm_context) 585 pfm_exit_thread(tsk); 586 587 /* free debug register resources */ 588 if (tsk->thread.flags & IA64_THREAD_DBG_VALID) 589 pfm_release_debug_registers(tsk); 590 #endif 591 } 592 593 unsigned long 594 get_wchan (struct task_struct *p) 595 { 596 struct unw_frame_info info; 597 unsigned long ip; 598 int count = 0; 599 600 if (!p || p == current || p->state == TASK_RUNNING) 601 return 0; 602 603 /* 604 * Note: p may not be a blocked task (it could be current or 605 * another process running on some other CPU. Rather than 606 * trying to determine if p is really blocked, we just assume 607 * it's blocked and rely on the unwind routines to fail 608 * gracefully if the process wasn't really blocked after all. 609 * --davidm 99/12/15 610 */ 611 unw_init_from_blocked_task(&info, p); 612 do { 613 if (p->state == TASK_RUNNING) 614 return 0; 615 if (unw_unwind(&info) < 0) 616 return 0; 617 unw_get_ip(&info, &ip); 618 if (!in_sched_functions(ip)) 619 return ip; 620 } while (count++ < 16); 621 return 0; 622 } 623 624 void 625 cpu_halt (void) 626 { 627 pal_power_mgmt_info_u_t power_info[8]; 628 unsigned long min_power; 629 int i, min_power_state; 630 631 if (ia64_pal_halt_info(power_info) != 0) 632 return; 633 634 min_power_state = 0; 635 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 636 for (i = 1; i < 8; ++i) 637 if (power_info[i].pal_power_mgmt_info_s.im 638 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 639 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 640 min_power_state = i; 641 } 642 643 while (1) 644 ia64_pal_halt(min_power_state); 645 } 646 647 void machine_shutdown(void) 648 { 649 smp_shutdown_nonboot_cpus(reboot_cpu); 650 651 #ifdef CONFIG_KEXEC 652 kexec_disable_iosapic(); 653 #endif 654 } 655 656 void 657 machine_restart (char *restart_cmd) 658 { 659 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 660 efi_reboot(REBOOT_WARM, NULL); 661 } 662 663 void 664 machine_halt (void) 665 { 666 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 667 cpu_halt(); 668 } 669 670 void 671 machine_power_off (void) 672 { 673 if (pm_power_off) 674 pm_power_off(); 675 machine_halt(); 676 } 677 678 EXPORT_SYMBOL(ia64_delay_loop); 679