1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Architecture-specific setup. 4 * 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support 8 * 9 * 2005-10-07 Keith Owens <kaos@sgi.com> 10 * Add notify_die() hooks. 11 */ 12 #include <linux/cpu.h> 13 #include <linux/pm.h> 14 #include <linux/elf.h> 15 #include <linux/errno.h> 16 #include <linux/kernel.h> 17 #include <linux/mm.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/notifier.h> 21 #include <linux/personality.h> 22 #include <linux/sched.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/hotplug.h> 25 #include <linux/sched/task.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/stddef.h> 28 #include <linux/thread_info.h> 29 #include <linux/unistd.h> 30 #include <linux/efi.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 #include <linux/kdebug.h> 34 #include <linux/utsname.h> 35 #include <linux/tracehook.h> 36 #include <linux/rcupdate.h> 37 38 #include <asm/cpu.h> 39 #include <asm/delay.h> 40 #include <asm/elf.h> 41 #include <asm/irq.h> 42 #include <asm/kexec.h> 43 #include <asm/processor.h> 44 #include <asm/sal.h> 45 #include <asm/switch_to.h> 46 #include <asm/tlbflush.h> 47 #include <linux/uaccess.h> 48 #include <asm/unwind.h> 49 #include <asm/user.h> 50 #include <asm/xtp.h> 51 52 #include "entry.h" 53 54 #include "sigframe.h" 55 56 void (*ia64_mark_idle)(int); 57 58 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; 59 EXPORT_SYMBOL(boot_option_idle_override); 60 void (*pm_power_off) (void); 61 EXPORT_SYMBOL(pm_power_off); 62 63 static void 64 ia64_do_show_stack (struct unw_frame_info *info, void *arg) 65 { 66 unsigned long ip, sp, bsp; 67 const char *loglvl = arg; 68 69 printk("%s\nCall Trace:\n", loglvl); 70 do { 71 unw_get_ip(info, &ip); 72 if (ip == 0) 73 break; 74 75 unw_get_sp(info, &sp); 76 unw_get_bsp(info, &bsp); 77 printk("%s [<%016lx>] %pS\n" 78 " sp=%016lx bsp=%016lx\n", 79 loglvl, ip, (void *)ip, sp, bsp); 80 } while (unw_unwind(info) >= 0); 81 } 82 83 void 84 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl) 85 { 86 if (!task) 87 unw_init_running(ia64_do_show_stack, (void *)loglvl); 88 else { 89 struct unw_frame_info info; 90 91 unw_init_from_blocked_task(&info, task); 92 ia64_do_show_stack(&info, (void *)loglvl); 93 } 94 } 95 96 void 97 show_regs (struct pt_regs *regs) 98 { 99 unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri; 100 101 print_modules(); 102 printk("\n"); 103 show_regs_print_info(KERN_DEFAULT); 104 printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n", 105 regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(), 106 init_utsname()->release); 107 printk("ip is at %pS\n", (void *)ip); 108 printk("unat: %016lx pfs : %016lx rsc : %016lx\n", 109 regs->ar_unat, regs->ar_pfs, regs->ar_rsc); 110 printk("rnat: %016lx bsps: %016lx pr : %016lx\n", 111 regs->ar_rnat, regs->ar_bspstore, regs->pr); 112 printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n", 113 regs->loadrs, regs->ar_ccv, regs->ar_fpsr); 114 printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd); 115 printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7); 116 printk("f6 : %05lx%016lx f7 : %05lx%016lx\n", 117 regs->f6.u.bits[1], regs->f6.u.bits[0], 118 regs->f7.u.bits[1], regs->f7.u.bits[0]); 119 printk("f8 : %05lx%016lx f9 : %05lx%016lx\n", 120 regs->f8.u.bits[1], regs->f8.u.bits[0], 121 regs->f9.u.bits[1], regs->f9.u.bits[0]); 122 printk("f10 : %05lx%016lx f11 : %05lx%016lx\n", 123 regs->f10.u.bits[1], regs->f10.u.bits[0], 124 regs->f11.u.bits[1], regs->f11.u.bits[0]); 125 126 printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3); 127 printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10); 128 printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13); 129 printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16); 130 printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19); 131 printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22); 132 printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25); 133 printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28); 134 printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31); 135 136 if (user_mode(regs)) { 137 /* print the stacked registers */ 138 unsigned long val, *bsp, ndirty; 139 int i, sof, is_nat = 0; 140 141 sof = regs->cr_ifs & 0x7f; /* size of frame */ 142 ndirty = (regs->loadrs >> 19); 143 bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty); 144 for (i = 0; i < sof; ++i) { 145 get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i)); 146 printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val, 147 ((i == sof - 1) || (i % 3) == 2) ? "\n" : " "); 148 } 149 } else 150 show_stack(NULL, NULL, KERN_DEFAULT); 151 } 152 153 /* local support for deprecated console_print */ 154 void 155 console_print(const char *s) 156 { 157 printk(KERN_EMERG "%s", s); 158 } 159 160 void 161 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall) 162 { 163 if (fsys_mode(current, &scr->pt)) { 164 /* 165 * defer signal-handling etc. until we return to 166 * privilege-level 0. 167 */ 168 if (!ia64_psr(&scr->pt)->lp) 169 ia64_psr(&scr->pt)->lp = 1; 170 return; 171 } 172 173 /* deal with pending signal delivery */ 174 if (test_thread_flag(TIF_SIGPENDING)) { 175 local_irq_enable(); /* force interrupt enable */ 176 ia64_do_signal(scr, in_syscall); 177 } 178 179 if (test_thread_flag(TIF_NOTIFY_RESUME)) { 180 local_irq_enable(); /* force interrupt enable */ 181 tracehook_notify_resume(&scr->pt); 182 } 183 184 /* copy user rbs to kernel rbs */ 185 if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) { 186 local_irq_enable(); /* force interrupt enable */ 187 ia64_sync_krbs(); 188 } 189 190 local_irq_disable(); /* force interrupt disable */ 191 } 192 193 static int __init nohalt_setup(char * str) 194 { 195 cpu_idle_poll_ctrl(true); 196 return 1; 197 } 198 __setup("nohalt", nohalt_setup); 199 200 #ifdef CONFIG_HOTPLUG_CPU 201 /* We don't actually take CPU down, just spin without interrupts. */ 202 static inline void play_dead(void) 203 { 204 unsigned int this_cpu = smp_processor_id(); 205 206 /* Ack it */ 207 __this_cpu_write(cpu_state, CPU_DEAD); 208 209 max_xtp(); 210 local_irq_disable(); 211 idle_task_exit(); 212 ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]); 213 /* 214 * The above is a point of no-return, the processor is 215 * expected to be in SAL loop now. 216 */ 217 BUG(); 218 } 219 #else 220 static inline void play_dead(void) 221 { 222 BUG(); 223 } 224 #endif /* CONFIG_HOTPLUG_CPU */ 225 226 void arch_cpu_idle_dead(void) 227 { 228 play_dead(); 229 } 230 231 void arch_cpu_idle(void) 232 { 233 void (*mark_idle)(int) = ia64_mark_idle; 234 235 #ifdef CONFIG_SMP 236 min_xtp(); 237 #endif 238 rmb(); 239 if (mark_idle) 240 (*mark_idle)(1); 241 242 safe_halt(); 243 244 if (mark_idle) 245 (*mark_idle)(0); 246 #ifdef CONFIG_SMP 247 normal_xtp(); 248 #endif 249 } 250 251 void 252 ia64_save_extra (struct task_struct *task) 253 { 254 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 255 ia64_save_debug_regs(&task->thread.dbr[0]); 256 } 257 258 void 259 ia64_load_extra (struct task_struct *task) 260 { 261 if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0) 262 ia64_load_debug_regs(&task->thread.dbr[0]); 263 } 264 265 /* 266 * Copy the state of an ia-64 thread. 267 * 268 * We get here through the following call chain: 269 * 270 * from user-level: from kernel: 271 * 272 * <clone syscall> <some kernel call frames> 273 * sys_clone : 274 * kernel_clone kernel_clone 275 * copy_thread copy_thread 276 * 277 * This means that the stack layout is as follows: 278 * 279 * +---------------------+ (highest addr) 280 * | struct pt_regs | 281 * +---------------------+ 282 * | struct switch_stack | 283 * +---------------------+ 284 * | | 285 * | memory stack | 286 * | | <-- sp (lowest addr) 287 * +---------------------+ 288 * 289 * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an 290 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register, 291 * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the 292 * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since 293 * the stack is page aligned and the page size is at least 4KB, this is always the case, 294 * so there is nothing to worry about. 295 */ 296 int 297 copy_thread(unsigned long clone_flags, unsigned long user_stack_base, 298 unsigned long user_stack_size, struct task_struct *p, unsigned long tls) 299 { 300 extern char ia64_ret_from_clone; 301 struct switch_stack *child_stack, *stack; 302 unsigned long rbs, child_rbs, rbs_size; 303 struct pt_regs *child_ptregs; 304 struct pt_regs *regs = current_pt_regs(); 305 int retval = 0; 306 307 child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1; 308 child_stack = (struct switch_stack *) child_ptregs - 1; 309 310 rbs = (unsigned long) current + IA64_RBS_OFFSET; 311 child_rbs = (unsigned long) p + IA64_RBS_OFFSET; 312 313 /* copy parts of thread_struct: */ 314 p->thread.ksp = (unsigned long) child_stack - 16; 315 316 /* 317 * NOTE: The calling convention considers all floating point 318 * registers in the high partition (fph) to be scratch. Since 319 * the only way to get to this point is through a system call, 320 * we know that the values in fph are all dead. Hence, there 321 * is no need to inherit the fph state from the parent to the 322 * child and all we have to do is to make sure that 323 * IA64_THREAD_FPH_VALID is cleared in the child. 324 * 325 * XXX We could push this optimization a bit further by 326 * clearing IA64_THREAD_FPH_VALID on ANY system call. 327 * However, it's not clear this is worth doing. Also, it 328 * would be a slight deviation from the normal Linux system 329 * call behavior where scratch registers are preserved across 330 * system calls (unless used by the system call itself). 331 */ 332 # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \ 333 | IA64_THREAD_PM_VALID) 334 # define THREAD_FLAGS_TO_SET 0 335 p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR) 336 | THREAD_FLAGS_TO_SET); 337 338 ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */ 339 340 if (unlikely(p->flags & PF_KTHREAD)) { 341 if (unlikely(!user_stack_base)) { 342 /* fork_idle() called us */ 343 return 0; 344 } 345 memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack)); 346 child_stack->r4 = user_stack_base; /* payload */ 347 child_stack->r5 = user_stack_size; /* argument */ 348 /* 349 * Preserve PSR bits, except for bits 32-34 and 37-45, 350 * which we can't read. 351 */ 352 child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN; 353 /* mark as valid, empty frame */ 354 child_ptregs->cr_ifs = 1UL << 63; 355 child_stack->ar_fpsr = child_ptregs->ar_fpsr 356 = ia64_getreg(_IA64_REG_AR_FPSR); 357 child_stack->pr = (1 << PRED_KERNEL_STACK); 358 child_stack->ar_bspstore = child_rbs; 359 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 360 361 /* stop some PSR bits from being inherited. 362 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 363 * therefore we must specify them explicitly here and not include them in 364 * IA64_PSR_BITS_TO_CLEAR. 365 */ 366 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 367 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 368 369 return 0; 370 } 371 stack = ((struct switch_stack *) regs) - 1; 372 /* copy parent's switch_stack & pt_regs to child: */ 373 memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack)); 374 375 /* copy the parent's register backing store to the child: */ 376 rbs_size = stack->ar_bspstore - rbs; 377 memcpy((void *) child_rbs, (void *) rbs, rbs_size); 378 if (clone_flags & CLONE_SETTLS) 379 child_ptregs->r13 = tls; 380 if (user_stack_base) { 381 child_ptregs->r12 = user_stack_base + user_stack_size - 16; 382 child_ptregs->ar_bspstore = user_stack_base; 383 child_ptregs->ar_rnat = 0; 384 child_ptregs->loadrs = 0; 385 } 386 child_stack->ar_bspstore = child_rbs + rbs_size; 387 child_stack->b0 = (unsigned long) &ia64_ret_from_clone; 388 389 /* stop some PSR bits from being inherited. 390 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve() 391 * therefore we must specify them explicitly here and not include them in 392 * IA64_PSR_BITS_TO_CLEAR. 393 */ 394 child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET) 395 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP)); 396 return retval; 397 } 398 399 asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start, 400 unsigned long stack_size, unsigned long parent_tidptr, 401 unsigned long child_tidptr, unsigned long tls) 402 { 403 struct kernel_clone_args args = { 404 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 405 .pidfd = (int __user *)parent_tidptr, 406 .child_tid = (int __user *)child_tidptr, 407 .parent_tid = (int __user *)parent_tidptr, 408 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 409 .stack = stack_start, 410 .stack_size = stack_size, 411 .tls = tls, 412 }; 413 414 return kernel_clone(&args); 415 } 416 417 static void 418 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg) 419 { 420 unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm; 421 unsigned long ip; 422 elf_greg_t *dst = arg; 423 struct pt_regs *pt; 424 char nat; 425 int i; 426 427 memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */ 428 429 if (unw_unwind_to_user(info) < 0) 430 return; 431 432 unw_get_sp(info, &sp); 433 pt = (struct pt_regs *) (sp + 16); 434 435 urbs_end = ia64_get_user_rbs_end(task, pt, &cfm); 436 437 if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0) 438 return; 439 440 ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end), 441 &ar_rnat); 442 443 /* 444 * coredump format: 445 * r0-r31 446 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT) 447 * predicate registers (p0-p63) 448 * b0-b7 449 * ip cfm user-mask 450 * ar.rsc ar.bsp ar.bspstore ar.rnat 451 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec 452 */ 453 454 /* r0 is zero */ 455 for (i = 1, mask = (1UL << i); i < 32; ++i) { 456 unw_get_gr(info, i, &dst[i], &nat); 457 if (nat) 458 nat_bits |= mask; 459 mask <<= 1; 460 } 461 dst[32] = nat_bits; 462 unw_get_pr(info, &dst[33]); 463 464 for (i = 0; i < 8; ++i) 465 unw_get_br(info, i, &dst[34 + i]); 466 467 unw_get_rp(info, &ip); 468 dst[42] = ip + ia64_psr(pt)->ri; 469 dst[43] = cfm; 470 dst[44] = pt->cr_ipsr & IA64_PSR_UM; 471 472 unw_get_ar(info, UNW_AR_RSC, &dst[45]); 473 /* 474 * For bsp and bspstore, unw_get_ar() would return the kernel 475 * addresses, but we need the user-level addresses instead: 476 */ 477 dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */ 478 dst[47] = pt->ar_bspstore; 479 dst[48] = ar_rnat; 480 unw_get_ar(info, UNW_AR_CCV, &dst[49]); 481 unw_get_ar(info, UNW_AR_UNAT, &dst[50]); 482 unw_get_ar(info, UNW_AR_FPSR, &dst[51]); 483 dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */ 484 unw_get_ar(info, UNW_AR_LC, &dst[53]); 485 unw_get_ar(info, UNW_AR_EC, &dst[54]); 486 unw_get_ar(info, UNW_AR_CSD, &dst[55]); 487 unw_get_ar(info, UNW_AR_SSD, &dst[56]); 488 } 489 490 void 491 do_copy_regs (struct unw_frame_info *info, void *arg) 492 { 493 do_copy_task_regs(current, info, arg); 494 } 495 496 void 497 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst) 498 { 499 unw_init_running(do_copy_regs, dst); 500 } 501 502 /* 503 * Flush thread state. This is called when a thread does an execve(). 504 */ 505 void 506 flush_thread (void) 507 { 508 /* drop floating-point and debug-register state if it exists: */ 509 current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID); 510 ia64_drop_fpu(current); 511 } 512 513 /* 514 * Clean up state associated with a thread. This is called when 515 * the thread calls exit(). 516 */ 517 void 518 exit_thread (struct task_struct *tsk) 519 { 520 521 ia64_drop_fpu(tsk); 522 } 523 524 unsigned long 525 get_wchan (struct task_struct *p) 526 { 527 struct unw_frame_info info; 528 unsigned long ip; 529 int count = 0; 530 531 if (!p || p == current || p->state == TASK_RUNNING) 532 return 0; 533 534 /* 535 * Note: p may not be a blocked task (it could be current or 536 * another process running on some other CPU. Rather than 537 * trying to determine if p is really blocked, we just assume 538 * it's blocked and rely on the unwind routines to fail 539 * gracefully if the process wasn't really blocked after all. 540 * --davidm 99/12/15 541 */ 542 unw_init_from_blocked_task(&info, p); 543 do { 544 if (p->state == TASK_RUNNING) 545 return 0; 546 if (unw_unwind(&info) < 0) 547 return 0; 548 unw_get_ip(&info, &ip); 549 if (!in_sched_functions(ip)) 550 return ip; 551 } while (count++ < 16); 552 return 0; 553 } 554 555 void 556 cpu_halt (void) 557 { 558 pal_power_mgmt_info_u_t power_info[8]; 559 unsigned long min_power; 560 int i, min_power_state; 561 562 if (ia64_pal_halt_info(power_info) != 0) 563 return; 564 565 min_power_state = 0; 566 min_power = power_info[0].pal_power_mgmt_info_s.power_consumption; 567 for (i = 1; i < 8; ++i) 568 if (power_info[i].pal_power_mgmt_info_s.im 569 && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) { 570 min_power = power_info[i].pal_power_mgmt_info_s.power_consumption; 571 min_power_state = i; 572 } 573 574 while (1) 575 ia64_pal_halt(min_power_state); 576 } 577 578 void machine_shutdown(void) 579 { 580 smp_shutdown_nonboot_cpus(reboot_cpu); 581 582 #ifdef CONFIG_KEXEC 583 kexec_disable_iosapic(); 584 #endif 585 } 586 587 void 588 machine_restart (char *restart_cmd) 589 { 590 (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0); 591 efi_reboot(REBOOT_WARM, NULL); 592 } 593 594 void 595 machine_halt (void) 596 { 597 (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0); 598 cpu_halt(); 599 } 600 601 void 602 machine_power_off (void) 603 { 604 if (pm_power_off) 605 pm_power_off(); 606 machine_halt(); 607 } 608 609 EXPORT_SYMBOL(ia64_delay_loop); 610