xref: /openbmc/linux/arch/ia64/kernel/process.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Architecture-specific setup.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  * 04/11/17 Ashok Raj	<ashok.raj@intel.com> Added CPU Hotplug Support
8  *
9  * 2005-10-07 Keith Owens <kaos@sgi.com>
10  *	      Add notify_die() hooks.
11  */
12 #include <linux/cpu.h>
13 #include <linux/pm.h>
14 #include <linux/elf.h>
15 #include <linux/errno.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/notifier.h>
21 #include <linux/personality.h>
22 #include <linux/sched.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/hotplug.h>
25 #include <linux/sched/task.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/stddef.h>
28 #include <linux/thread_info.h>
29 #include <linux/unistd.h>
30 #include <linux/efi.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35 #include <linux/tracehook.h>
36 #include <linux/rcupdate.h>
37 
38 #include <asm/cpu.h>
39 #include <asm/delay.h>
40 #include <asm/elf.h>
41 #include <asm/irq.h>
42 #include <asm/kexec.h>
43 #include <asm/pgalloc.h>
44 #include <asm/processor.h>
45 #include <asm/sal.h>
46 #include <asm/switch_to.h>
47 #include <asm/tlbflush.h>
48 #include <linux/uaccess.h>
49 #include <asm/unwind.h>
50 #include <asm/user.h>
51 
52 #include "entry.h"
53 
54 #ifdef CONFIG_PERFMON
55 # include <asm/perfmon.h>
56 #endif
57 
58 #include "sigframe.h"
59 
60 void (*ia64_mark_idle)(int);
61 
62 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
63 EXPORT_SYMBOL(boot_option_idle_override);
64 void (*pm_power_off) (void);
65 EXPORT_SYMBOL(pm_power_off);
66 
67 static void
68 ia64_do_show_stack (struct unw_frame_info *info, void *arg)
69 {
70 	unsigned long ip, sp, bsp;
71 	const char *loglvl = arg;
72 
73 	printk("%s\nCall Trace:\n", loglvl);
74 	do {
75 		unw_get_ip(info, &ip);
76 		if (ip == 0)
77 			break;
78 
79 		unw_get_sp(info, &sp);
80 		unw_get_bsp(info, &bsp);
81 		printk("%s [<%016lx>] %pS\n"
82 			 "                                sp=%016lx bsp=%016lx\n",
83 			 loglvl, ip, (void *)ip, sp, bsp);
84 	} while (unw_unwind(info) >= 0);
85 }
86 
87 void
88 show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
89 {
90 	if (!task)
91 		unw_init_running(ia64_do_show_stack, (void *)loglvl);
92 	else {
93 		struct unw_frame_info info;
94 
95 		unw_init_from_blocked_task(&info, task);
96 		ia64_do_show_stack(&info, (void *)loglvl);
97 	}
98 }
99 
100 void
101 show_regs (struct pt_regs *regs)
102 {
103 	unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
104 
105 	print_modules();
106 	printk("\n");
107 	show_regs_print_info(KERN_DEFAULT);
108 	printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
109 	       regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
110 	       init_utsname()->release);
111 	printk("ip is at %pS\n", (void *)ip);
112 	printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
113 	       regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
114 	printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
115 	       regs->ar_rnat, regs->ar_bspstore, regs->pr);
116 	printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
117 	       regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
118 	printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
119 	printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
120 	printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
121 	       regs->f6.u.bits[1], regs->f6.u.bits[0],
122 	       regs->f7.u.bits[1], regs->f7.u.bits[0]);
123 	printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
124 	       regs->f8.u.bits[1], regs->f8.u.bits[0],
125 	       regs->f9.u.bits[1], regs->f9.u.bits[0]);
126 	printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
127 	       regs->f10.u.bits[1], regs->f10.u.bits[0],
128 	       regs->f11.u.bits[1], regs->f11.u.bits[0]);
129 
130 	printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
131 	printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
132 	printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
133 	printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
134 	printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
135 	printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
136 	printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
137 	printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
138 	printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
139 
140 	if (user_mode(regs)) {
141 		/* print the stacked registers */
142 		unsigned long val, *bsp, ndirty;
143 		int i, sof, is_nat = 0;
144 
145 		sof = regs->cr_ifs & 0x7f;	/* size of frame */
146 		ndirty = (regs->loadrs >> 19);
147 		bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
148 		for (i = 0; i < sof; ++i) {
149 			get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
150 			printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
151 			       ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
152 		}
153 	} else
154 		show_stack(NULL, NULL, KERN_DEFAULT);
155 }
156 
157 /* local support for deprecated console_print */
158 void
159 console_print(const char *s)
160 {
161 	printk(KERN_EMERG "%s", s);
162 }
163 
164 void
165 do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
166 {
167 	if (fsys_mode(current, &scr->pt)) {
168 		/*
169 		 * defer signal-handling etc. until we return to
170 		 * privilege-level 0.
171 		 */
172 		if (!ia64_psr(&scr->pt)->lp)
173 			ia64_psr(&scr->pt)->lp = 1;
174 		return;
175 	}
176 
177 #ifdef CONFIG_PERFMON
178 	if (current->thread.pfm_needs_checking)
179 		/*
180 		 * Note: pfm_handle_work() allow us to call it with interrupts
181 		 * disabled, and may enable interrupts within the function.
182 		 */
183 		pfm_handle_work();
184 #endif
185 
186 	/* deal with pending signal delivery */
187 	if (test_thread_flag(TIF_SIGPENDING)) {
188 		local_irq_enable();	/* force interrupt enable */
189 		ia64_do_signal(scr, in_syscall);
190 	}
191 
192 	if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME)) {
193 		local_irq_enable();	/* force interrupt enable */
194 		tracehook_notify_resume(&scr->pt);
195 	}
196 
197 	/* copy user rbs to kernel rbs */
198 	if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
199 		local_irq_enable();	/* force interrupt enable */
200 		ia64_sync_krbs();
201 	}
202 
203 	local_irq_disable();	/* force interrupt disable */
204 }
205 
206 static int __init nohalt_setup(char * str)
207 {
208 	cpu_idle_poll_ctrl(true);
209 	return 1;
210 }
211 __setup("nohalt", nohalt_setup);
212 
213 #ifdef CONFIG_HOTPLUG_CPU
214 /* We don't actually take CPU down, just spin without interrupts. */
215 static inline void play_dead(void)
216 {
217 	unsigned int this_cpu = smp_processor_id();
218 
219 	/* Ack it */
220 	__this_cpu_write(cpu_state, CPU_DEAD);
221 
222 	max_xtp();
223 	local_irq_disable();
224 	idle_task_exit();
225 	ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
226 	/*
227 	 * The above is a point of no-return, the processor is
228 	 * expected to be in SAL loop now.
229 	 */
230 	BUG();
231 }
232 #else
233 static inline void play_dead(void)
234 {
235 	BUG();
236 }
237 #endif /* CONFIG_HOTPLUG_CPU */
238 
239 void arch_cpu_idle_dead(void)
240 {
241 	play_dead();
242 }
243 
244 void arch_cpu_idle(void)
245 {
246 	void (*mark_idle)(int) = ia64_mark_idle;
247 
248 #ifdef CONFIG_SMP
249 	min_xtp();
250 #endif
251 	rmb();
252 	if (mark_idle)
253 		(*mark_idle)(1);
254 
255 	safe_halt();
256 
257 	if (mark_idle)
258 		(*mark_idle)(0);
259 #ifdef CONFIG_SMP
260 	normal_xtp();
261 #endif
262 }
263 
264 void
265 ia64_save_extra (struct task_struct *task)
266 {
267 #ifdef CONFIG_PERFMON
268 	unsigned long info;
269 #endif
270 
271 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
272 		ia64_save_debug_regs(&task->thread.dbr[0]);
273 
274 #ifdef CONFIG_PERFMON
275 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
276 		pfm_save_regs(task);
277 
278 	info = __this_cpu_read(pfm_syst_info);
279 	if (info & PFM_CPUINFO_SYST_WIDE)
280 		pfm_syst_wide_update_task(task, info, 0);
281 #endif
282 }
283 
284 void
285 ia64_load_extra (struct task_struct *task)
286 {
287 #ifdef CONFIG_PERFMON
288 	unsigned long info;
289 #endif
290 
291 	if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
292 		ia64_load_debug_regs(&task->thread.dbr[0]);
293 
294 #ifdef CONFIG_PERFMON
295 	if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
296 		pfm_load_regs(task);
297 
298 	info = __this_cpu_read(pfm_syst_info);
299 	if (info & PFM_CPUINFO_SYST_WIDE)
300 		pfm_syst_wide_update_task(task, info, 1);
301 #endif
302 }
303 
304 /*
305  * Copy the state of an ia-64 thread.
306  *
307  * We get here through the following  call chain:
308  *
309  *	from user-level:	from kernel:
310  *
311  *	<clone syscall>	        <some kernel call frames>
312  *	sys_clone		   :
313  *	do_fork			do_fork
314  *	copy_thread		copy_thread
315  *
316  * This means that the stack layout is as follows:
317  *
318  *	+---------------------+ (highest addr)
319  *	|   struct pt_regs    |
320  *	+---------------------+
321  *	| struct switch_stack |
322  *	+---------------------+
323  *	|                     |
324  *	|    memory stack     |
325  *	|                     | <-- sp (lowest addr)
326  *	+---------------------+
327  *
328  * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
329  * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
330  * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
331  * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
332  * the stack is page aligned and the page size is at least 4KB, this is always the case,
333  * so there is nothing to worry about.
334  */
335 int
336 copy_thread(unsigned long clone_flags,
337 	     unsigned long user_stack_base, unsigned long user_stack_size,
338 	     struct task_struct *p)
339 {
340 	extern char ia64_ret_from_clone;
341 	struct switch_stack *child_stack, *stack;
342 	unsigned long rbs, child_rbs, rbs_size;
343 	struct pt_regs *child_ptregs;
344 	struct pt_regs *regs = current_pt_regs();
345 	int retval = 0;
346 
347 	child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
348 	child_stack = (struct switch_stack *) child_ptregs - 1;
349 
350 	rbs = (unsigned long) current + IA64_RBS_OFFSET;
351 	child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
352 
353 	/* copy parts of thread_struct: */
354 	p->thread.ksp = (unsigned long) child_stack - 16;
355 
356 	/*
357 	 * NOTE: The calling convention considers all floating point
358 	 * registers in the high partition (fph) to be scratch.  Since
359 	 * the only way to get to this point is through a system call,
360 	 * we know that the values in fph are all dead.  Hence, there
361 	 * is no need to inherit the fph state from the parent to the
362 	 * child and all we have to do is to make sure that
363 	 * IA64_THREAD_FPH_VALID is cleared in the child.
364 	 *
365 	 * XXX We could push this optimization a bit further by
366 	 * clearing IA64_THREAD_FPH_VALID on ANY system call.
367 	 * However, it's not clear this is worth doing.  Also, it
368 	 * would be a slight deviation from the normal Linux system
369 	 * call behavior where scratch registers are preserved across
370 	 * system calls (unless used by the system call itself).
371 	 */
372 #	define THREAD_FLAGS_TO_CLEAR	(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
373 					 | IA64_THREAD_PM_VALID)
374 #	define THREAD_FLAGS_TO_SET	0
375 	p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
376 			   | THREAD_FLAGS_TO_SET);
377 
378 	ia64_drop_fpu(p);	/* don't pick up stale state from a CPU's fph */
379 
380 	if (unlikely(p->flags & PF_KTHREAD)) {
381 		if (unlikely(!user_stack_base)) {
382 			/* fork_idle() called us */
383 			return 0;
384 		}
385 		memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
386 		child_stack->r4 = user_stack_base;	/* payload */
387 		child_stack->r5 = user_stack_size;	/* argument */
388 		/*
389 		 * Preserve PSR bits, except for bits 32-34 and 37-45,
390 		 * which we can't read.
391 		 */
392 		child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
393 		/* mark as valid, empty frame */
394 		child_ptregs->cr_ifs = 1UL << 63;
395 		child_stack->ar_fpsr = child_ptregs->ar_fpsr
396 			= ia64_getreg(_IA64_REG_AR_FPSR);
397 		child_stack->pr = (1 << PRED_KERNEL_STACK);
398 		child_stack->ar_bspstore = child_rbs;
399 		child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
400 
401 		/* stop some PSR bits from being inherited.
402 		 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
403 		 * therefore we must specify them explicitly here and not include them in
404 		 * IA64_PSR_BITS_TO_CLEAR.
405 		 */
406 		child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
407 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
408 
409 		return 0;
410 	}
411 	stack = ((struct switch_stack *) regs) - 1;
412 	/* copy parent's switch_stack & pt_regs to child: */
413 	memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
414 
415 	/* copy the parent's register backing store to the child: */
416 	rbs_size = stack->ar_bspstore - rbs;
417 	memcpy((void *) child_rbs, (void *) rbs, rbs_size);
418 	if (clone_flags & CLONE_SETTLS)
419 		child_ptregs->r13 = regs->r16;	/* see sys_clone2() in entry.S */
420 	if (user_stack_base) {
421 		child_ptregs->r12 = user_stack_base + user_stack_size - 16;
422 		child_ptregs->ar_bspstore = user_stack_base;
423 		child_ptregs->ar_rnat = 0;
424 		child_ptregs->loadrs = 0;
425 	}
426 	child_stack->ar_bspstore = child_rbs + rbs_size;
427 	child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
428 
429 	/* stop some PSR bits from being inherited.
430 	 * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
431 	 * therefore we must specify them explicitly here and not include them in
432 	 * IA64_PSR_BITS_TO_CLEAR.
433 	 */
434 	child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
435 				 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
436 
437 #ifdef CONFIG_PERFMON
438 	if (current->thread.pfm_context)
439 		pfm_inherit(p, child_ptregs);
440 #endif
441 	return retval;
442 }
443 
444 static void
445 do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
446 {
447 	unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
448 	unsigned long uninitialized_var(ip);	/* GCC be quiet */
449 	elf_greg_t *dst = arg;
450 	struct pt_regs *pt;
451 	char nat;
452 	int i;
453 
454 	memset(dst, 0, sizeof(elf_gregset_t));	/* don't leak any kernel bits to user-level */
455 
456 	if (unw_unwind_to_user(info) < 0)
457 		return;
458 
459 	unw_get_sp(info, &sp);
460 	pt = (struct pt_regs *) (sp + 16);
461 
462 	urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
463 
464 	if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
465 		return;
466 
467 	ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
468 		  &ar_rnat);
469 
470 	/*
471 	 * coredump format:
472 	 *	r0-r31
473 	 *	NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
474 	 *	predicate registers (p0-p63)
475 	 *	b0-b7
476 	 *	ip cfm user-mask
477 	 *	ar.rsc ar.bsp ar.bspstore ar.rnat
478 	 *	ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
479 	 */
480 
481 	/* r0 is zero */
482 	for (i = 1, mask = (1UL << i); i < 32; ++i) {
483 		unw_get_gr(info, i, &dst[i], &nat);
484 		if (nat)
485 			nat_bits |= mask;
486 		mask <<= 1;
487 	}
488 	dst[32] = nat_bits;
489 	unw_get_pr(info, &dst[33]);
490 
491 	for (i = 0; i < 8; ++i)
492 		unw_get_br(info, i, &dst[34 + i]);
493 
494 	unw_get_rp(info, &ip);
495 	dst[42] = ip + ia64_psr(pt)->ri;
496 	dst[43] = cfm;
497 	dst[44] = pt->cr_ipsr & IA64_PSR_UM;
498 
499 	unw_get_ar(info, UNW_AR_RSC, &dst[45]);
500 	/*
501 	 * For bsp and bspstore, unw_get_ar() would return the kernel
502 	 * addresses, but we need the user-level addresses instead:
503 	 */
504 	dst[46] = urbs_end;	/* note: by convention PT_AR_BSP points to the end of the urbs! */
505 	dst[47] = pt->ar_bspstore;
506 	dst[48] = ar_rnat;
507 	unw_get_ar(info, UNW_AR_CCV, &dst[49]);
508 	unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
509 	unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
510 	dst[52] = pt->ar_pfs;	/* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
511 	unw_get_ar(info, UNW_AR_LC, &dst[53]);
512 	unw_get_ar(info, UNW_AR_EC, &dst[54]);
513 	unw_get_ar(info, UNW_AR_CSD, &dst[55]);
514 	unw_get_ar(info, UNW_AR_SSD, &dst[56]);
515 }
516 
517 void
518 do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
519 {
520 	elf_fpreg_t *dst = arg;
521 	int i;
522 
523 	memset(dst, 0, sizeof(elf_fpregset_t));	/* don't leak any "random" bits */
524 
525 	if (unw_unwind_to_user(info) < 0)
526 		return;
527 
528 	/* f0 is 0.0, f1 is 1.0 */
529 
530 	for (i = 2; i < 32; ++i)
531 		unw_get_fr(info, i, dst + i);
532 
533 	ia64_flush_fph(task);
534 	if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
535 		memcpy(dst + 32, task->thread.fph, 96*16);
536 }
537 
538 void
539 do_copy_regs (struct unw_frame_info *info, void *arg)
540 {
541 	do_copy_task_regs(current, info, arg);
542 }
543 
544 void
545 do_dump_fpu (struct unw_frame_info *info, void *arg)
546 {
547 	do_dump_task_fpu(current, info, arg);
548 }
549 
550 void
551 ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
552 {
553 	unw_init_running(do_copy_regs, dst);
554 }
555 
556 int
557 dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
558 {
559 	unw_init_running(do_dump_fpu, dst);
560 	return 1;	/* f0-f31 are always valid so we always return 1 */
561 }
562 
563 /*
564  * Flush thread state.  This is called when a thread does an execve().
565  */
566 void
567 flush_thread (void)
568 {
569 	/* drop floating-point and debug-register state if it exists: */
570 	current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
571 	ia64_drop_fpu(current);
572 }
573 
574 /*
575  * Clean up state associated with a thread.  This is called when
576  * the thread calls exit().
577  */
578 void
579 exit_thread (struct task_struct *tsk)
580 {
581 
582 	ia64_drop_fpu(tsk);
583 #ifdef CONFIG_PERFMON
584        /* if needed, stop monitoring and flush state to perfmon context */
585 	if (tsk->thread.pfm_context)
586 		pfm_exit_thread(tsk);
587 
588 	/* free debug register resources */
589 	if (tsk->thread.flags & IA64_THREAD_DBG_VALID)
590 		pfm_release_debug_registers(tsk);
591 #endif
592 }
593 
594 unsigned long
595 get_wchan (struct task_struct *p)
596 {
597 	struct unw_frame_info info;
598 	unsigned long ip;
599 	int count = 0;
600 
601 	if (!p || p == current || p->state == TASK_RUNNING)
602 		return 0;
603 
604 	/*
605 	 * Note: p may not be a blocked task (it could be current or
606 	 * another process running on some other CPU.  Rather than
607 	 * trying to determine if p is really blocked, we just assume
608 	 * it's blocked and rely on the unwind routines to fail
609 	 * gracefully if the process wasn't really blocked after all.
610 	 * --davidm 99/12/15
611 	 */
612 	unw_init_from_blocked_task(&info, p);
613 	do {
614 		if (p->state == TASK_RUNNING)
615 			return 0;
616 		if (unw_unwind(&info) < 0)
617 			return 0;
618 		unw_get_ip(&info, &ip);
619 		if (!in_sched_functions(ip))
620 			return ip;
621 	} while (count++ < 16);
622 	return 0;
623 }
624 
625 void
626 cpu_halt (void)
627 {
628 	pal_power_mgmt_info_u_t power_info[8];
629 	unsigned long min_power;
630 	int i, min_power_state;
631 
632 	if (ia64_pal_halt_info(power_info) != 0)
633 		return;
634 
635 	min_power_state = 0;
636 	min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
637 	for (i = 1; i < 8; ++i)
638 		if (power_info[i].pal_power_mgmt_info_s.im
639 		    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
640 			min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
641 			min_power_state = i;
642 		}
643 
644 	while (1)
645 		ia64_pal_halt(min_power_state);
646 }
647 
648 void machine_shutdown(void)
649 {
650 	smp_shutdown_nonboot_cpus(reboot_cpu);
651 
652 #ifdef CONFIG_KEXEC
653 	kexec_disable_iosapic();
654 #endif
655 }
656 
657 void
658 machine_restart (char *restart_cmd)
659 {
660 	(void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
661 	efi_reboot(REBOOT_WARM, NULL);
662 }
663 
664 void
665 machine_halt (void)
666 {
667 	(void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
668 	cpu_halt();
669 }
670 
671 void
672 machine_power_off (void)
673 {
674 	if (pm_power_off)
675 		pm_power_off();
676 	machine_halt();
677 }
678 
679 EXPORT_SYMBOL(ia64_delay_loop);
680