xref: /openbmc/linux/arch/ia64/kernel/patch.c (revision 4f3db074)
1 /*
2  * Instruction-patching support.
3  *
4  * Copyright (C) 2003 Hewlett-Packard Co
5  *	David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/init.h>
8 #include <linux/string.h>
9 
10 #include <asm/paravirt.h>
11 #include <asm/patch.h>
12 #include <asm/processor.h>
13 #include <asm/sections.h>
14 #include <asm/unistd.h>
15 
16 /*
17  * This was adapted from code written by Tony Luck:
18  *
19  * The 64-bit value in a "movl reg=value" is scattered between the two words of the bundle
20  * like this:
21  *
22  * 6  6         5         4         3         2         1
23  * 3210987654321098765432109876543210987654321098765432109876543210
24  * ABBBBBBBBBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCDEEEEEFFFFFFFFFGGGGGGG
25  *
26  * CCCCCCCCCCCCCCCCCCxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
27  * xxxxAFFFFFFFFFEEEEEDxGGGGGGGxxxxxxxxxxxxxBBBBBBBBBBBBBBBBBBBBBBB
28  */
29 static u64
30 get_imm64 (u64 insn_addr)
31 {
32 	u64 *p = (u64 *) (insn_addr & -16);	/* mask out slot number */
33 
34 	return ( (p[1] & 0x0800000000000000UL) << 4)  | /*A*/
35 		((p[1] & 0x00000000007fffffUL) << 40) | /*B*/
36 		((p[0] & 0xffffc00000000000UL) >> 24) | /*C*/
37 		((p[1] & 0x0000100000000000UL) >> 23) | /*D*/
38 		((p[1] & 0x0003e00000000000UL) >> 29) | /*E*/
39 		((p[1] & 0x07fc000000000000UL) >> 43) | /*F*/
40 		((p[1] & 0x000007f000000000UL) >> 36);  /*G*/
41 }
42 
43 /* Patch instruction with "val" where "mask" has 1 bits. */
44 void
45 ia64_patch (u64 insn_addr, u64 mask, u64 val)
46 {
47 	u64 m0, m1, v0, v1, b0, b1, *b = (u64 *) (insn_addr & -16);
48 #	define insn_mask ((1UL << 41) - 1)
49 	unsigned long shift;
50 
51 	b0 = b[0]; b1 = b[1];
52 	shift = 5 + 41 * (insn_addr % 16); /* 5 bits of template, then 3 x 41-bit instructions */
53 	if (shift >= 64) {
54 		m1 = mask << (shift - 64);
55 		v1 = val << (shift - 64);
56 	} else {
57 		m0 = mask << shift; m1 = mask >> (64 - shift);
58 		v0 = val  << shift; v1 = val >> (64 - shift);
59 		b[0] = (b0 & ~m0) | (v0 & m0);
60 	}
61 	b[1] = (b1 & ~m1) | (v1 & m1);
62 }
63 
64 void
65 ia64_patch_imm64 (u64 insn_addr, u64 val)
66 {
67 	/* The assembler may generate offset pointing to either slot 1
68 	   or slot 2 for a long (2-slot) instruction, occupying slots 1
69 	   and 2.  */
70   	insn_addr &= -16UL;
71 	ia64_patch(insn_addr + 2,
72 		   0x01fffefe000UL, (  ((val & 0x8000000000000000UL) >> 27) /* bit 63 -> 36 */
73 				     | ((val & 0x0000000000200000UL) <<  0) /* bit 21 -> 21 */
74 				     | ((val & 0x00000000001f0000UL) <<  6) /* bit 16 -> 22 */
75 				     | ((val & 0x000000000000ff80UL) << 20) /* bit  7 -> 27 */
76 				     | ((val & 0x000000000000007fUL) << 13) /* bit  0 -> 13 */));
77 	ia64_patch(insn_addr + 1, 0x1ffffffffffUL, val >> 22);
78 }
79 
80 void
81 ia64_patch_imm60 (u64 insn_addr, u64 val)
82 {
83 	/* The assembler may generate offset pointing to either slot 1
84 	   or slot 2 for a long (2-slot) instruction, occupying slots 1
85 	   and 2.  */
86   	insn_addr &= -16UL;
87 	ia64_patch(insn_addr + 2,
88 		   0x011ffffe000UL, (  ((val & 0x0800000000000000UL) >> 23) /* bit 59 -> 36 */
89 				     | ((val & 0x00000000000fffffUL) << 13) /* bit  0 -> 13 */));
90 	ia64_patch(insn_addr + 1, 0x1fffffffffcUL, val >> 18);
91 }
92 
93 /*
94  * We need sometimes to load the physical address of a kernel
95  * object.  Often we can convert the virtual address to physical
96  * at execution time, but sometimes (either for performance reasons
97  * or during error recovery) we cannot to this.  Patch the marked
98  * bundles to load the physical address.
99  */
100 void __init
101 ia64_patch_vtop (unsigned long start, unsigned long end)
102 {
103 	s32 *offp = (s32 *) start;
104 	u64 ip;
105 
106 	while (offp < (s32 *) end) {
107 		ip = (u64) offp + *offp;
108 
109 		/* replace virtual address with corresponding physical address: */
110 		ia64_patch_imm64(ip, ia64_tpa(get_imm64(ip)));
111 		ia64_fc((void *) ip);
112 		++offp;
113 	}
114 	ia64_sync_i();
115 	ia64_srlz_i();
116 }
117 
118 /*
119  * Disable the RSE workaround by turning the conditional branch
120  * that we tagged in each place the workaround was used into an
121  * unconditional branch.
122  */
123 void __init
124 ia64_patch_rse (unsigned long start, unsigned long end)
125 {
126 	s32 *offp = (s32 *) start;
127 	u64 ip, *b;
128 
129 	while (offp < (s32 *) end) {
130 		ip = (u64) offp + *offp;
131 
132 		b = (u64 *)(ip & -16);
133 		b[1] &= ~0xf800000L;
134 		ia64_fc((void *) ip);
135 		++offp;
136 	}
137 	ia64_sync_i();
138 	ia64_srlz_i();
139 }
140 
141 void __init
142 ia64_patch_mckinley_e9 (unsigned long start, unsigned long end)
143 {
144 	static int first_time = 1;
145 	int need_workaround;
146 	s32 *offp = (s32 *) start;
147 	u64 *wp;
148 
149 	need_workaround = (local_cpu_data->family == 0x1f && local_cpu_data->model == 0);
150 
151 	if (first_time) {
152 		first_time = 0;
153 		if (need_workaround)
154 			printk(KERN_INFO "Leaving McKinley Errata 9 workaround enabled\n");
155 	}
156 	if (need_workaround)
157 		return;
158 
159 	while (offp < (s32 *) end) {
160 		wp = (u64 *) ia64_imva((char *) offp + *offp);
161 		wp[0] = 0x0000000100000011UL; /* nop.m 0; nop.i 0; br.ret.sptk.many b6 */
162 		wp[1] = 0x0084006880000200UL;
163 		wp[2] = 0x0000000100000000UL; /* nop.m 0; nop.i 0; nop.i 0 */
164 		wp[3] = 0x0004000000000200UL;
165 		ia64_fc(wp); ia64_fc(wp + 2);
166 		++offp;
167 	}
168 	ia64_sync_i();
169 	ia64_srlz_i();
170 }
171 
172 extern unsigned long ia64_native_fsyscall_table[NR_syscalls];
173 extern char ia64_native_fsys_bubble_down[];
174 struct pv_fsys_data pv_fsys_data __initdata = {
175 	.fsyscall_table = (unsigned long *)ia64_native_fsyscall_table,
176 	.fsys_bubble_down = (void *)ia64_native_fsys_bubble_down,
177 };
178 
179 unsigned long * __init
180 paravirt_get_fsyscall_table(void)
181 {
182 	return pv_fsys_data.fsyscall_table;
183 }
184 
185 char * __init
186 paravirt_get_fsys_bubble_down(void)
187 {
188 	return pv_fsys_data.fsys_bubble_down;
189 }
190 
191 static void __init
192 patch_fsyscall_table (unsigned long start, unsigned long end)
193 {
194 	u64 fsyscall_table = (u64)paravirt_get_fsyscall_table();
195 	s32 *offp = (s32 *) start;
196 	u64 ip;
197 
198 	while (offp < (s32 *) end) {
199 		ip = (u64) ia64_imva((char *) offp + *offp);
200 		ia64_patch_imm64(ip, fsyscall_table);
201 		ia64_fc((void *) ip);
202 		++offp;
203 	}
204 	ia64_sync_i();
205 	ia64_srlz_i();
206 }
207 
208 static void __init
209 patch_brl_fsys_bubble_down (unsigned long start, unsigned long end)
210 {
211 	u64 fsys_bubble_down = (u64)paravirt_get_fsys_bubble_down();
212 	s32 *offp = (s32 *) start;
213 	u64 ip;
214 
215 	while (offp < (s32 *) end) {
216 		ip = (u64) offp + *offp;
217 		ia64_patch_imm60((u64) ia64_imva((void *) ip),
218 				 (u64) (fsys_bubble_down - (ip & -16)) / 16);
219 		ia64_fc((void *) ip);
220 		++offp;
221 	}
222 	ia64_sync_i();
223 	ia64_srlz_i();
224 }
225 
226 void __init
227 ia64_patch_gate (void)
228 {
229 #	define START(name)	paravirt_get_gate_patchlist(PV_GATE_START_##name)
230 #	define END(name)	paravirt_get_gate_patchlist(PV_GATE_END_##name)
231 
232 	patch_fsyscall_table(START(FSYSCALL), END(FSYSCALL));
233 	patch_brl_fsys_bubble_down(START(BRL_FSYS_BUBBLE_DOWN), END(BRL_FSYS_BUBBLE_DOWN));
234 	ia64_patch_vtop(START(VTOP), END(VTOP));
235 	ia64_patch_mckinley_e9(START(MCKINLEY_E9), END(MCKINLEY_E9));
236 }
237 
238 void ia64_patch_phys_stack_reg(unsigned long val)
239 {
240 	s32 * offp = (s32 *) __start___phys_stack_reg_patchlist;
241 	s32 * end = (s32 *) __end___phys_stack_reg_patchlist;
242 	u64 ip, mask, imm;
243 
244 	/* see instruction format A4: adds r1 = imm13, r3 */
245 	mask = (0x3fUL << 27) | (0x7f << 13);
246 	imm = (((val >> 7) & 0x3f) << 27) | (val & 0x7f) << 13;
247 
248 	while (offp < end) {
249 		ip = (u64) offp + *offp;
250 		ia64_patch(ip, mask, imm);
251 		ia64_fc((void *)ip);
252 		++offp;
253 	}
254 	ia64_sync_i();
255 	ia64_srlz_i();
256 }
257