1 /* 2 * IA-64-specific support for kernel module loader. 3 * 4 * Copyright (C) 2003 Hewlett-Packard Co 5 * David Mosberger-Tang <davidm@hpl.hp.com> 6 * 7 * Loosely based on patch by Rusty Russell. 8 */ 9 10 /* relocs tested so far: 11 12 DIR64LSB 13 FPTR64LSB 14 GPREL22 15 LDXMOV 16 LDXMOV 17 LTOFF22 18 LTOFF22X 19 LTOFF22X 20 LTOFF_FPTR22 21 PCREL21B (for br.call only; br.cond is not supported out of modules!) 22 PCREL60B (for brl.cond only; brl.call is not supported for modules!) 23 PCREL64LSB 24 SECREL32LSB 25 SEGREL64LSB 26 */ 27 28 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/elf.h> 32 #include <linux/moduleloader.h> 33 #include <linux/string.h> 34 #include <linux/vmalloc.h> 35 36 #include <asm/patch.h> 37 #include <asm/unaligned.h> 38 39 #define ARCH_MODULE_DEBUG 0 40 41 #if ARCH_MODULE_DEBUG 42 # define DEBUGP printk 43 # define inline 44 #else 45 # define DEBUGP(fmt , a...) 46 #endif 47 48 #ifdef CONFIG_ITANIUM 49 # define USE_BRL 0 50 #else 51 # define USE_BRL 1 52 #endif 53 54 #define MAX_LTOFF ((uint64_t) (1 << 22)) /* max. allowable linkage-table offset */ 55 56 /* Define some relocation helper macros/types: */ 57 58 #define FORMAT_SHIFT 0 59 #define FORMAT_BITS 3 60 #define FORMAT_MASK ((1 << FORMAT_BITS) - 1) 61 #define VALUE_SHIFT 3 62 #define VALUE_BITS 5 63 #define VALUE_MASK ((1 << VALUE_BITS) - 1) 64 65 enum reloc_target_format { 66 /* direct encoded formats: */ 67 RF_NONE = 0, 68 RF_INSN14 = 1, 69 RF_INSN22 = 2, 70 RF_INSN64 = 3, 71 RF_32MSB = 4, 72 RF_32LSB = 5, 73 RF_64MSB = 6, 74 RF_64LSB = 7, 75 76 /* formats that cannot be directly decoded: */ 77 RF_INSN60, 78 RF_INSN21B, /* imm21 form 1 */ 79 RF_INSN21M, /* imm21 form 2 */ 80 RF_INSN21F /* imm21 form 3 */ 81 }; 82 83 enum reloc_value_formula { 84 RV_DIRECT = 4, /* S + A */ 85 RV_GPREL = 5, /* @gprel(S + A) */ 86 RV_LTREL = 6, /* @ltoff(S + A) */ 87 RV_PLTREL = 7, /* @pltoff(S + A) */ 88 RV_FPTR = 8, /* @fptr(S + A) */ 89 RV_PCREL = 9, /* S + A - P */ 90 RV_LTREL_FPTR = 10, /* @ltoff(@fptr(S + A)) */ 91 RV_SEGREL = 11, /* @segrel(S + A) */ 92 RV_SECREL = 12, /* @secrel(S + A) */ 93 RV_BDREL = 13, /* BD + A */ 94 RV_LTV = 14, /* S + A (like RV_DIRECT, except frozen at static link-time) */ 95 RV_PCREL2 = 15, /* S + A - P */ 96 RV_SPECIAL = 16, /* various (see below) */ 97 RV_RSVD17 = 17, 98 RV_TPREL = 18, /* @tprel(S + A) */ 99 RV_LTREL_TPREL = 19, /* @ltoff(@tprel(S + A)) */ 100 RV_DTPMOD = 20, /* @dtpmod(S + A) */ 101 RV_LTREL_DTPMOD = 21, /* @ltoff(@dtpmod(S + A)) */ 102 RV_DTPREL = 22, /* @dtprel(S + A) */ 103 RV_LTREL_DTPREL = 23, /* @ltoff(@dtprel(S + A)) */ 104 RV_RSVD24 = 24, 105 RV_RSVD25 = 25, 106 RV_RSVD26 = 26, 107 RV_RSVD27 = 27 108 /* 28-31 reserved for implementation-specific purposes. */ 109 }; 110 111 #define N(reloc) [R_IA64_##reloc] = #reloc 112 113 static const char *reloc_name[256] = { 114 N(NONE), N(IMM14), N(IMM22), N(IMM64), 115 N(DIR32MSB), N(DIR32LSB), N(DIR64MSB), N(DIR64LSB), 116 N(GPREL22), N(GPREL64I), N(GPREL32MSB), N(GPREL32LSB), 117 N(GPREL64MSB), N(GPREL64LSB), N(LTOFF22), N(LTOFF64I), 118 N(PLTOFF22), N(PLTOFF64I), N(PLTOFF64MSB), N(PLTOFF64LSB), 119 N(FPTR64I), N(FPTR32MSB), N(FPTR32LSB), N(FPTR64MSB), 120 N(FPTR64LSB), N(PCREL60B), N(PCREL21B), N(PCREL21M), 121 N(PCREL21F), N(PCREL32MSB), N(PCREL32LSB), N(PCREL64MSB), 122 N(PCREL64LSB), N(LTOFF_FPTR22), N(LTOFF_FPTR64I), N(LTOFF_FPTR32MSB), 123 N(LTOFF_FPTR32LSB), N(LTOFF_FPTR64MSB), N(LTOFF_FPTR64LSB), N(SEGREL32MSB), 124 N(SEGREL32LSB), N(SEGREL64MSB), N(SEGREL64LSB), N(SECREL32MSB), 125 N(SECREL32LSB), N(SECREL64MSB), N(SECREL64LSB), N(REL32MSB), 126 N(REL32LSB), N(REL64MSB), N(REL64LSB), N(LTV32MSB), 127 N(LTV32LSB), N(LTV64MSB), N(LTV64LSB), N(PCREL21BI), 128 N(PCREL22), N(PCREL64I), N(IPLTMSB), N(IPLTLSB), 129 N(COPY), N(LTOFF22X), N(LDXMOV), N(TPREL14), 130 N(TPREL22), N(TPREL64I), N(TPREL64MSB), N(TPREL64LSB), 131 N(LTOFF_TPREL22), N(DTPMOD64MSB), N(DTPMOD64LSB), N(LTOFF_DTPMOD22), 132 N(DTPREL14), N(DTPREL22), N(DTPREL64I), N(DTPREL32MSB), 133 N(DTPREL32LSB), N(DTPREL64MSB), N(DTPREL64LSB), N(LTOFF_DTPREL22) 134 }; 135 136 #undef N 137 138 struct got_entry { 139 uint64_t val; 140 }; 141 142 struct fdesc { 143 uint64_t ip; 144 uint64_t gp; 145 }; 146 147 /* Opaque struct for insns, to protect against derefs. */ 148 struct insn; 149 150 static inline uint64_t 151 bundle (const struct insn *insn) 152 { 153 return (uint64_t) insn & ~0xfUL; 154 } 155 156 static inline int 157 slot (const struct insn *insn) 158 { 159 return (uint64_t) insn & 0x3; 160 } 161 162 static int 163 apply_imm64 (struct module *mod, struct insn *insn, uint64_t val) 164 { 165 if (slot(insn) != 2) { 166 printk(KERN_ERR "%s: invalid slot number %d for IMM64\n", 167 mod->name, slot(insn)); 168 return 0; 169 } 170 ia64_patch_imm64((u64) insn, val); 171 return 1; 172 } 173 174 static int 175 apply_imm60 (struct module *mod, struct insn *insn, uint64_t val) 176 { 177 if (slot(insn) != 2) { 178 printk(KERN_ERR "%s: invalid slot number %d for IMM60\n", 179 mod->name, slot(insn)); 180 return 0; 181 } 182 if (val + ((uint64_t) 1 << 59) >= (1UL << 60)) { 183 printk(KERN_ERR "%s: value %ld out of IMM60 range\n", mod->name, (int64_t) val); 184 return 0; 185 } 186 ia64_patch_imm60((u64) insn, val); 187 return 1; 188 } 189 190 static int 191 apply_imm22 (struct module *mod, struct insn *insn, uint64_t val) 192 { 193 if (val + (1 << 21) >= (1 << 22)) { 194 printk(KERN_ERR "%s: value %li out of IMM22 range\n", mod->name, (int64_t)val); 195 return 0; 196 } 197 ia64_patch((u64) insn, 0x01fffcfe000UL, ( ((val & 0x200000UL) << 15) /* bit 21 -> 36 */ 198 | ((val & 0x1f0000UL) << 6) /* bit 16 -> 22 */ 199 | ((val & 0x00ff80UL) << 20) /* bit 7 -> 27 */ 200 | ((val & 0x00007fUL) << 13) /* bit 0 -> 13 */)); 201 return 1; 202 } 203 204 static int 205 apply_imm21b (struct module *mod, struct insn *insn, uint64_t val) 206 { 207 if (val + (1 << 20) >= (1 << 21)) { 208 printk(KERN_ERR "%s: value %li out of IMM21b range\n", mod->name, (int64_t)val); 209 return 0; 210 } 211 ia64_patch((u64) insn, 0x11ffffe000UL, ( ((val & 0x100000UL) << 16) /* bit 20 -> 36 */ 212 | ((val & 0x0fffffUL) << 13) /* bit 0 -> 13 */)); 213 return 1; 214 } 215 216 #if USE_BRL 217 218 struct plt_entry { 219 /* Three instruction bundles in PLT. */ 220 unsigned char bundle[2][16]; 221 }; 222 223 static const struct plt_entry ia64_plt_template = { 224 { 225 { 226 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 227 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */ 228 0x00, 0x00, 0x00, 0x60 229 }, 230 { 231 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 232 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.many gp=TARGET_GP */ 233 0x08, 0x00, 0x00, 0xc0 234 } 235 } 236 }; 237 238 static int 239 patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp) 240 { 241 if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_gp) 242 && apply_imm60(mod, (struct insn *) (plt->bundle[1] + 2), 243 (target_ip - (int64_t) plt->bundle[1]) / 16)) 244 return 1; 245 return 0; 246 } 247 248 unsigned long 249 plt_target (struct plt_entry *plt) 250 { 251 uint64_t b0, b1, *b = (uint64_t *) plt->bundle[1]; 252 long off; 253 254 b0 = b[0]; b1 = b[1]; 255 off = ( ((b1 & 0x00fffff000000000UL) >> 36) /* imm20b -> bit 0 */ 256 | ((b0 >> 48) << 20) | ((b1 & 0x7fffffUL) << 36) /* imm39 -> bit 20 */ 257 | ((b1 & 0x0800000000000000UL) << 0)); /* i -> bit 59 */ 258 return (long) plt->bundle[1] + 16*off; 259 } 260 261 #else /* !USE_BRL */ 262 263 struct plt_entry { 264 /* Three instruction bundles in PLT. */ 265 unsigned char bundle[3][16]; 266 }; 267 268 static const struct plt_entry ia64_plt_template = { 269 { 270 { 271 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 272 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* movl r16=TARGET_IP */ 273 0x02, 0x00, 0x00, 0x60 274 }, 275 { 276 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */ 277 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, /* movl gp=TARGET_GP */ 278 0x00, 0x00, 0x00, 0x60 279 }, 280 { 281 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */ 282 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */ 283 0x60, 0x00, 0x80, 0x00 /* br.few b6 */ 284 } 285 } 286 }; 287 288 static int 289 patch_plt (struct module *mod, struct plt_entry *plt, long target_ip, unsigned long target_gp) 290 { 291 if (apply_imm64(mod, (struct insn *) (plt->bundle[0] + 2), target_ip) 292 && apply_imm64(mod, (struct insn *) (plt->bundle[1] + 2), target_gp)) 293 return 1; 294 return 0; 295 } 296 297 unsigned long 298 plt_target (struct plt_entry *plt) 299 { 300 uint64_t b0, b1, *b = (uint64_t *) plt->bundle[0]; 301 302 b0 = b[0]; b1 = b[1]; 303 return ( ((b1 & 0x000007f000000000) >> 36) /* imm7b -> bit 0 */ 304 | ((b1 & 0x07fc000000000000) >> 43) /* imm9d -> bit 7 */ 305 | ((b1 & 0x0003e00000000000) >> 29) /* imm5c -> bit 16 */ 306 | ((b1 & 0x0000100000000000) >> 23) /* ic -> bit 21 */ 307 | ((b0 >> 46) << 22) | ((b1 & 0x7fffff) << 40) /* imm41 -> bit 22 */ 308 | ((b1 & 0x0800000000000000) << 4)); /* i -> bit 63 */ 309 } 310 311 #endif /* !USE_BRL */ 312 313 void * 314 module_alloc (unsigned long size) 315 { 316 if (!size) 317 return NULL; 318 return vmalloc(size); 319 } 320 321 void 322 module_free (struct module *mod, void *module_region) 323 { 324 if (mod && mod->arch.init_unw_table && 325 module_region == mod->module_init) { 326 unw_remove_unwind_table(mod->arch.init_unw_table); 327 mod->arch.init_unw_table = NULL; 328 } 329 vfree(module_region); 330 } 331 332 /* Have we already seen one of these relocations? */ 333 /* FIXME: we could look in other sections, too --RR */ 334 static int 335 duplicate_reloc (const Elf64_Rela *rela, unsigned int num) 336 { 337 unsigned int i; 338 339 for (i = 0; i < num; i++) { 340 if (rela[i].r_info == rela[num].r_info && rela[i].r_addend == rela[num].r_addend) 341 return 1; 342 } 343 return 0; 344 } 345 346 /* Count how many GOT entries we may need */ 347 static unsigned int 348 count_gots (const Elf64_Rela *rela, unsigned int num) 349 { 350 unsigned int i, ret = 0; 351 352 /* Sure, this is order(n^2), but it's usually short, and not 353 time critical */ 354 for (i = 0; i < num; i++) { 355 switch (ELF64_R_TYPE(rela[i].r_info)) { 356 case R_IA64_LTOFF22: 357 case R_IA64_LTOFF22X: 358 case R_IA64_LTOFF64I: 359 case R_IA64_LTOFF_FPTR22: 360 case R_IA64_LTOFF_FPTR64I: 361 case R_IA64_LTOFF_FPTR32MSB: 362 case R_IA64_LTOFF_FPTR32LSB: 363 case R_IA64_LTOFF_FPTR64MSB: 364 case R_IA64_LTOFF_FPTR64LSB: 365 if (!duplicate_reloc(rela, i)) 366 ret++; 367 break; 368 } 369 } 370 return ret; 371 } 372 373 /* Count how many PLT entries we may need */ 374 static unsigned int 375 count_plts (const Elf64_Rela *rela, unsigned int num) 376 { 377 unsigned int i, ret = 0; 378 379 /* Sure, this is order(n^2), but it's usually short, and not 380 time critical */ 381 for (i = 0; i < num; i++) { 382 switch (ELF64_R_TYPE(rela[i].r_info)) { 383 case R_IA64_PCREL21B: 384 case R_IA64_PLTOFF22: 385 case R_IA64_PLTOFF64I: 386 case R_IA64_PLTOFF64MSB: 387 case R_IA64_PLTOFF64LSB: 388 case R_IA64_IPLTMSB: 389 case R_IA64_IPLTLSB: 390 if (!duplicate_reloc(rela, i)) 391 ret++; 392 break; 393 } 394 } 395 return ret; 396 } 397 398 /* We need to create an function-descriptors for any internal function 399 which is referenced. */ 400 static unsigned int 401 count_fdescs (const Elf64_Rela *rela, unsigned int num) 402 { 403 unsigned int i, ret = 0; 404 405 /* Sure, this is order(n^2), but it's usually short, and not time critical. */ 406 for (i = 0; i < num; i++) { 407 switch (ELF64_R_TYPE(rela[i].r_info)) { 408 case R_IA64_FPTR64I: 409 case R_IA64_FPTR32LSB: 410 case R_IA64_FPTR32MSB: 411 case R_IA64_FPTR64LSB: 412 case R_IA64_FPTR64MSB: 413 case R_IA64_LTOFF_FPTR22: 414 case R_IA64_LTOFF_FPTR32LSB: 415 case R_IA64_LTOFF_FPTR32MSB: 416 case R_IA64_LTOFF_FPTR64I: 417 case R_IA64_LTOFF_FPTR64LSB: 418 case R_IA64_LTOFF_FPTR64MSB: 419 case R_IA64_IPLTMSB: 420 case R_IA64_IPLTLSB: 421 /* 422 * Jumps to static functions sometimes go straight to their 423 * offset. Of course, that may not be possible if the jump is 424 * from init -> core or vice. versa, so we need to generate an 425 * FDESC (and PLT etc) for that. 426 */ 427 case R_IA64_PCREL21B: 428 if (!duplicate_reloc(rela, i)) 429 ret++; 430 break; 431 } 432 } 433 return ret; 434 } 435 436 int 437 module_frob_arch_sections (Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, char *secstrings, 438 struct module *mod) 439 { 440 unsigned long core_plts = 0, init_plts = 0, gots = 0, fdescs = 0; 441 Elf64_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum; 442 443 /* 444 * To store the PLTs and function-descriptors, we expand the .text section for 445 * core module-code and the .init.text section for initialization code. 446 */ 447 for (s = sechdrs; s < sechdrs_end; ++s) 448 if (strcmp(".core.plt", secstrings + s->sh_name) == 0) 449 mod->arch.core_plt = s; 450 else if (strcmp(".init.plt", secstrings + s->sh_name) == 0) 451 mod->arch.init_plt = s; 452 else if (strcmp(".got", secstrings + s->sh_name) == 0) 453 mod->arch.got = s; 454 else if (strcmp(".opd", secstrings + s->sh_name) == 0) 455 mod->arch.opd = s; 456 else if (strcmp(".IA_64.unwind", secstrings + s->sh_name) == 0) 457 mod->arch.unwind = s; 458 459 if (!mod->arch.core_plt || !mod->arch.init_plt || !mod->arch.got || !mod->arch.opd) { 460 printk(KERN_ERR "%s: sections missing\n", mod->name); 461 return -ENOEXEC; 462 } 463 464 /* GOT and PLTs can occur in any relocated section... */ 465 for (s = sechdrs + 1; s < sechdrs_end; ++s) { 466 const Elf64_Rela *rels = (void *)ehdr + s->sh_offset; 467 unsigned long numrels = s->sh_size/sizeof(Elf64_Rela); 468 469 if (s->sh_type != SHT_RELA) 470 continue; 471 472 gots += count_gots(rels, numrels); 473 fdescs += count_fdescs(rels, numrels); 474 if (strstr(secstrings + s->sh_name, ".init")) 475 init_plts += count_plts(rels, numrels); 476 else 477 core_plts += count_plts(rels, numrels); 478 } 479 480 mod->arch.core_plt->sh_type = SHT_NOBITS; 481 mod->arch.core_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; 482 mod->arch.core_plt->sh_addralign = 16; 483 mod->arch.core_plt->sh_size = core_plts * sizeof(struct plt_entry); 484 mod->arch.init_plt->sh_type = SHT_NOBITS; 485 mod->arch.init_plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; 486 mod->arch.init_plt->sh_addralign = 16; 487 mod->arch.init_plt->sh_size = init_plts * sizeof(struct plt_entry); 488 mod->arch.got->sh_type = SHT_NOBITS; 489 mod->arch.got->sh_flags = ARCH_SHF_SMALL | SHF_ALLOC; 490 mod->arch.got->sh_addralign = 8; 491 mod->arch.got->sh_size = gots * sizeof(struct got_entry); 492 mod->arch.opd->sh_type = SHT_NOBITS; 493 mod->arch.opd->sh_flags = SHF_ALLOC; 494 mod->arch.opd->sh_addralign = 8; 495 mod->arch.opd->sh_size = fdescs * sizeof(struct fdesc); 496 DEBUGP("%s: core.plt=%lx, init.plt=%lx, got=%lx, fdesc=%lx\n", 497 __func__, mod->arch.core_plt->sh_size, mod->arch.init_plt->sh_size, 498 mod->arch.got->sh_size, mod->arch.opd->sh_size); 499 return 0; 500 } 501 502 static inline int 503 in_init (const struct module *mod, uint64_t addr) 504 { 505 return addr - (uint64_t) mod->module_init < mod->init_size; 506 } 507 508 static inline int 509 in_core (const struct module *mod, uint64_t addr) 510 { 511 return addr - (uint64_t) mod->module_core < mod->core_size; 512 } 513 514 static inline int 515 is_internal (const struct module *mod, uint64_t value) 516 { 517 return in_init(mod, value) || in_core(mod, value); 518 } 519 520 /* 521 * Get gp-relative offset for the linkage-table entry of VALUE. 522 */ 523 static uint64_t 524 get_ltoff (struct module *mod, uint64_t value, int *okp) 525 { 526 struct got_entry *got, *e; 527 528 if (!*okp) 529 return 0; 530 531 got = (void *) mod->arch.got->sh_addr; 532 for (e = got; e < got + mod->arch.next_got_entry; ++e) 533 if (e->val == value) 534 goto found; 535 536 /* Not enough GOT entries? */ 537 if (e >= (struct got_entry *) (mod->arch.got->sh_addr + mod->arch.got->sh_size)) 538 BUG(); 539 540 e->val = value; 541 ++mod->arch.next_got_entry; 542 found: 543 return (uint64_t) e - mod->arch.gp; 544 } 545 546 static inline int 547 gp_addressable (struct module *mod, uint64_t value) 548 { 549 return value - mod->arch.gp + MAX_LTOFF/2 < MAX_LTOFF; 550 } 551 552 /* Get PC-relative PLT entry for this value. Returns 0 on failure. */ 553 static uint64_t 554 get_plt (struct module *mod, const struct insn *insn, uint64_t value, int *okp) 555 { 556 struct plt_entry *plt, *plt_end; 557 uint64_t target_ip, target_gp; 558 559 if (!*okp) 560 return 0; 561 562 if (in_init(mod, (uint64_t) insn)) { 563 plt = (void *) mod->arch.init_plt->sh_addr; 564 plt_end = (void *) plt + mod->arch.init_plt->sh_size; 565 } else { 566 plt = (void *) mod->arch.core_plt->sh_addr; 567 plt_end = (void *) plt + mod->arch.core_plt->sh_size; 568 } 569 570 /* "value" is a pointer to a function-descriptor; fetch the target ip/gp from it: */ 571 target_ip = ((uint64_t *) value)[0]; 572 target_gp = ((uint64_t *) value)[1]; 573 574 /* Look for existing PLT entry. */ 575 while (plt->bundle[0][0]) { 576 if (plt_target(plt) == target_ip) 577 goto found; 578 if (++plt >= plt_end) 579 BUG(); 580 } 581 *plt = ia64_plt_template; 582 if (!patch_plt(mod, plt, target_ip, target_gp)) { 583 *okp = 0; 584 return 0; 585 } 586 #if ARCH_MODULE_DEBUG 587 if (plt_target(plt) != target_ip) { 588 printk("%s: mistargeted PLT: wanted %lx, got %lx\n", 589 __func__, target_ip, plt_target(plt)); 590 *okp = 0; 591 return 0; 592 } 593 #endif 594 found: 595 return (uint64_t) plt; 596 } 597 598 /* Get function descriptor for VALUE. */ 599 static uint64_t 600 get_fdesc (struct module *mod, uint64_t value, int *okp) 601 { 602 struct fdesc *fdesc = (void *) mod->arch.opd->sh_addr; 603 604 if (!*okp) 605 return 0; 606 607 if (!value) { 608 printk(KERN_ERR "%s: fdesc for zero requested!\n", mod->name); 609 return 0; 610 } 611 612 if (!is_internal(mod, value)) 613 /* 614 * If it's not a module-local entry-point, "value" already points to a 615 * function-descriptor. 616 */ 617 return value; 618 619 /* Look for existing function descriptor. */ 620 while (fdesc->ip) { 621 if (fdesc->ip == value) 622 return (uint64_t)fdesc; 623 if ((uint64_t) ++fdesc >= mod->arch.opd->sh_addr + mod->arch.opd->sh_size) 624 BUG(); 625 } 626 627 /* Create new one */ 628 fdesc->ip = value; 629 fdesc->gp = mod->arch.gp; 630 return (uint64_t) fdesc; 631 } 632 633 static inline int 634 do_reloc (struct module *mod, uint8_t r_type, Elf64_Sym *sym, uint64_t addend, 635 Elf64_Shdr *sec, void *location) 636 { 637 enum reloc_target_format format = (r_type >> FORMAT_SHIFT) & FORMAT_MASK; 638 enum reloc_value_formula formula = (r_type >> VALUE_SHIFT) & VALUE_MASK; 639 uint64_t val; 640 int ok = 1; 641 642 val = sym->st_value + addend; 643 644 switch (formula) { 645 case RV_SEGREL: /* segment base is arbitrarily chosen to be 0 for kernel modules */ 646 case RV_DIRECT: 647 break; 648 649 case RV_GPREL: val -= mod->arch.gp; break; 650 case RV_LTREL: val = get_ltoff(mod, val, &ok); break; 651 case RV_PLTREL: val = get_plt(mod, location, val, &ok); break; 652 case RV_FPTR: val = get_fdesc(mod, val, &ok); break; 653 case RV_SECREL: val -= sec->sh_addr; break; 654 case RV_LTREL_FPTR: val = get_ltoff(mod, get_fdesc(mod, val, &ok), &ok); break; 655 656 case RV_PCREL: 657 switch (r_type) { 658 case R_IA64_PCREL21B: 659 if ((in_init(mod, val) && in_core(mod, (uint64_t)location)) || 660 (in_core(mod, val) && in_init(mod, (uint64_t)location))) { 661 /* 662 * Init section may have been allocated far away from core, 663 * if the branch won't reach, then allocate a plt for it. 664 */ 665 uint64_t delta = ((int64_t)val - (int64_t)location) / 16; 666 if (delta + (1 << 20) >= (1 << 21)) { 667 val = get_fdesc(mod, val, &ok); 668 val = get_plt(mod, location, val, &ok); 669 } 670 } else if (!is_internal(mod, val)) 671 val = get_plt(mod, location, val, &ok); 672 /* FALL THROUGH */ 673 default: 674 val -= bundle(location); 675 break; 676 677 case R_IA64_PCREL32MSB: 678 case R_IA64_PCREL32LSB: 679 case R_IA64_PCREL64MSB: 680 case R_IA64_PCREL64LSB: 681 val -= (uint64_t) location; 682 break; 683 684 } 685 switch (r_type) { 686 case R_IA64_PCREL60B: format = RF_INSN60; break; 687 case R_IA64_PCREL21B: format = RF_INSN21B; break; 688 case R_IA64_PCREL21M: format = RF_INSN21M; break; 689 case R_IA64_PCREL21F: format = RF_INSN21F; break; 690 default: break; 691 } 692 break; 693 694 case RV_BDREL: 695 val -= (uint64_t) (in_init(mod, val) ? mod->module_init : mod->module_core); 696 break; 697 698 case RV_LTV: 699 /* can link-time value relocs happen here? */ 700 BUG(); 701 break; 702 703 case RV_PCREL2: 704 if (r_type == R_IA64_PCREL21BI) { 705 if (!is_internal(mod, val)) { 706 printk(KERN_ERR "%s: %s reloc against non-local symbol (%lx)\n", 707 __func__, reloc_name[r_type], val); 708 return -ENOEXEC; 709 } 710 format = RF_INSN21B; 711 } 712 val -= bundle(location); 713 break; 714 715 case RV_SPECIAL: 716 switch (r_type) { 717 case R_IA64_IPLTMSB: 718 case R_IA64_IPLTLSB: 719 val = get_fdesc(mod, get_plt(mod, location, val, &ok), &ok); 720 format = RF_64LSB; 721 if (r_type == R_IA64_IPLTMSB) 722 format = RF_64MSB; 723 break; 724 725 case R_IA64_SUB: 726 val = addend - sym->st_value; 727 format = RF_INSN64; 728 break; 729 730 case R_IA64_LTOFF22X: 731 if (gp_addressable(mod, val)) 732 val -= mod->arch.gp; 733 else 734 val = get_ltoff(mod, val, &ok); 735 format = RF_INSN22; 736 break; 737 738 case R_IA64_LDXMOV: 739 if (gp_addressable(mod, val)) { 740 /* turn "ld8" into "mov": */ 741 DEBUGP("%s: patching ld8 at %p to mov\n", __func__, location); 742 ia64_patch((u64) location, 0x1fff80fe000UL, 0x10000000000UL); 743 } 744 return 0; 745 746 default: 747 if (reloc_name[r_type]) 748 printk(KERN_ERR "%s: special reloc %s not supported", 749 mod->name, reloc_name[r_type]); 750 else 751 printk(KERN_ERR "%s: unknown special reloc %x\n", 752 mod->name, r_type); 753 return -ENOEXEC; 754 } 755 break; 756 757 case RV_TPREL: 758 case RV_LTREL_TPREL: 759 case RV_DTPMOD: 760 case RV_LTREL_DTPMOD: 761 case RV_DTPREL: 762 case RV_LTREL_DTPREL: 763 printk(KERN_ERR "%s: %s reloc not supported\n", 764 mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?"); 765 return -ENOEXEC; 766 767 default: 768 printk(KERN_ERR "%s: unknown reloc %x\n", mod->name, r_type); 769 return -ENOEXEC; 770 } 771 772 if (!ok) 773 return -ENOEXEC; 774 775 DEBUGP("%s: [%p]<-%016lx = %s(%lx)\n", __func__, location, val, 776 reloc_name[r_type] ? reloc_name[r_type] : "?", sym->st_value + addend); 777 778 switch (format) { 779 case RF_INSN21B: ok = apply_imm21b(mod, location, (int64_t) val / 16); break; 780 case RF_INSN22: ok = apply_imm22(mod, location, val); break; 781 case RF_INSN64: ok = apply_imm64(mod, location, val); break; 782 case RF_INSN60: ok = apply_imm60(mod, location, (int64_t) val / 16); break; 783 case RF_32LSB: put_unaligned(val, (uint32_t *) location); break; 784 case RF_64LSB: put_unaligned(val, (uint64_t *) location); break; 785 case RF_32MSB: /* ia64 Linux is little-endian... */ 786 case RF_64MSB: /* ia64 Linux is little-endian... */ 787 case RF_INSN14: /* must be within-module, i.e., resolved by "ld -r" */ 788 case RF_INSN21M: /* must be within-module, i.e., resolved by "ld -r" */ 789 case RF_INSN21F: /* must be within-module, i.e., resolved by "ld -r" */ 790 printk(KERN_ERR "%s: format %u needed by %s reloc is not supported\n", 791 mod->name, format, reloc_name[r_type] ? reloc_name[r_type] : "?"); 792 return -ENOEXEC; 793 794 default: 795 printk(KERN_ERR "%s: relocation %s resulted in unknown format %u\n", 796 mod->name, reloc_name[r_type] ? reloc_name[r_type] : "?", format); 797 return -ENOEXEC; 798 } 799 return ok ? 0 : -ENOEXEC; 800 } 801 802 int 803 apply_relocate_add (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex, 804 unsigned int relsec, struct module *mod) 805 { 806 unsigned int i, n = sechdrs[relsec].sh_size / sizeof(Elf64_Rela); 807 Elf64_Rela *rela = (void *) sechdrs[relsec].sh_addr; 808 Elf64_Shdr *target_sec; 809 int ret; 810 811 DEBUGP("%s: applying section %u (%u relocs) to %u\n", __func__, 812 relsec, n, sechdrs[relsec].sh_info); 813 814 target_sec = sechdrs + sechdrs[relsec].sh_info; 815 816 if (target_sec->sh_entsize == ~0UL) 817 /* 818 * If target section wasn't allocated, we don't need to relocate it. 819 * Happens, e.g., for debug sections. 820 */ 821 return 0; 822 823 if (!mod->arch.gp) { 824 /* 825 * XXX Should have an arch-hook for running this after final section 826 * addresses have been selected... 827 */ 828 uint64_t gp; 829 if (mod->core_size > MAX_LTOFF) 830 /* 831 * This takes advantage of fact that SHF_ARCH_SMALL gets allocated 832 * at the end of the module. 833 */ 834 gp = mod->core_size - MAX_LTOFF / 2; 835 else 836 gp = mod->core_size / 2; 837 gp = (uint64_t) mod->module_core + ((gp + 7) & -8); 838 mod->arch.gp = gp; 839 DEBUGP("%s: placing gp at 0x%lx\n", __func__, gp); 840 } 841 842 for (i = 0; i < n; i++) { 843 ret = do_reloc(mod, ELF64_R_TYPE(rela[i].r_info), 844 ((Elf64_Sym *) sechdrs[symindex].sh_addr 845 + ELF64_R_SYM(rela[i].r_info)), 846 rela[i].r_addend, target_sec, 847 (void *) target_sec->sh_addr + rela[i].r_offset); 848 if (ret < 0) 849 return ret; 850 } 851 return 0; 852 } 853 854 int 855 apply_relocate (Elf64_Shdr *sechdrs, const char *strtab, unsigned int symindex, 856 unsigned int relsec, struct module *mod) 857 { 858 printk(KERN_ERR "module %s: REL relocs in section %u unsupported\n", mod->name, relsec); 859 return -ENOEXEC; 860 } 861 862 /* 863 * Modules contain a single unwind table which covers both the core and the init text 864 * sections but since the two are not contiguous, we need to split this table up such that 865 * we can register (and unregister) each "segment" separately. Fortunately, this sounds 866 * more complicated than it really is. 867 */ 868 static void 869 register_unwind_table (struct module *mod) 870 { 871 struct unw_table_entry *start = (void *) mod->arch.unwind->sh_addr; 872 struct unw_table_entry *end = start + mod->arch.unwind->sh_size / sizeof (*start); 873 struct unw_table_entry tmp, *e1, *e2, *core, *init; 874 unsigned long num_init = 0, num_core = 0; 875 876 /* First, count how many init and core unwind-table entries there are. */ 877 for (e1 = start; e1 < end; ++e1) 878 if (in_init(mod, e1->start_offset)) 879 ++num_init; 880 else 881 ++num_core; 882 /* 883 * Second, sort the table such that all unwind-table entries for the init and core 884 * text sections are nicely separated. We do this with a stupid bubble sort 885 * (unwind tables don't get ridiculously huge). 886 */ 887 for (e1 = start; e1 < end; ++e1) { 888 for (e2 = e1 + 1; e2 < end; ++e2) { 889 if (e2->start_offset < e1->start_offset) { 890 tmp = *e1; 891 *e1 = *e2; 892 *e2 = tmp; 893 } 894 } 895 } 896 /* 897 * Third, locate the init and core segments in the unwind table: 898 */ 899 if (in_init(mod, start->start_offset)) { 900 init = start; 901 core = start + num_init; 902 } else { 903 core = start; 904 init = start + num_core; 905 } 906 907 DEBUGP("%s: name=%s, gp=%lx, num_init=%lu, num_core=%lu\n", __func__, 908 mod->name, mod->arch.gp, num_init, num_core); 909 910 /* 911 * Fourth, register both tables (if not empty). 912 */ 913 if (num_core > 0) { 914 mod->arch.core_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp, 915 core, core + num_core); 916 DEBUGP("%s: core: handle=%p [%p-%p)\n", __func__, 917 mod->arch.core_unw_table, core, core + num_core); 918 } 919 if (num_init > 0) { 920 mod->arch.init_unw_table = unw_add_unwind_table(mod->name, 0, mod->arch.gp, 921 init, init + num_init); 922 DEBUGP("%s: init: handle=%p [%p-%p)\n", __func__, 923 mod->arch.init_unw_table, init, init + num_init); 924 } 925 } 926 927 int 928 module_finalize (const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs, struct module *mod) 929 { 930 DEBUGP("%s: init: entry=%p\n", __func__, mod->init); 931 if (mod->arch.unwind) 932 register_unwind_table(mod); 933 return 0; 934 } 935 936 void 937 module_arch_cleanup (struct module *mod) 938 { 939 if (mod->arch.init_unw_table) 940 unw_remove_unwind_table(mod->arch.init_unw_table); 941 if (mod->arch.core_unw_table) 942 unw_remove_unwind_table(mod->arch.core_unw_table); 943 } 944