1 /* 2 * File: mca.c 3 * Purpose: Generic MCA handling layer 4 * 5 * Copyright (C) 2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 8 * Copyright (C) 2002 Dell Inc. 9 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 10 * 11 * Copyright (C) 2002 Intel 12 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 13 * 14 * Copyright (C) 2001 Intel 15 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 16 * 17 * Copyright (C) 2000 Intel 18 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 19 * 20 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 21 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 22 * 23 * Copyright (C) 2006 FUJITSU LIMITED 24 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 25 * 26 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 27 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 28 * added min save state dump, added INIT handler. 29 * 30 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 31 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 32 * errors, completed code for logging of corrected & uncorrected 33 * machine check errors, and updated for conformance with Nov. 2000 34 * revision of the SAL 3.0 spec. 35 * 36 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 37 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 38 * set SAL default return values, changed error record structure to 39 * linked list, added init call to sal_get_state_info_size(). 40 * 41 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 42 * GUID cleanups. 43 * 44 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 45 * Added INIT backtrace support. 46 * 47 * 2003-12-08 Keith Owens <kaos@sgi.com> 48 * smp_call_function() must not be called from interrupt context 49 * (can deadlock on tasklist_lock). 50 * Use keventd to call smp_call_function(). 51 * 52 * 2004-02-01 Keith Owens <kaos@sgi.com> 53 * Avoid deadlock when using printk() for MCA and INIT records. 54 * Delete all record printing code, moved to salinfo_decode in user 55 * space. Mark variables and functions static where possible. 56 * Delete dead variables and functions. Reorder to remove the need 57 * for forward declarations and to consolidate related code. 58 * 59 * 2005-08-12 Keith Owens <kaos@sgi.com> 60 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 61 * state. 62 * 63 * 2005-10-07 Keith Owens <kaos@sgi.com> 64 * Add notify_die() hooks. 65 * 66 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 67 * Add printing support for MCA/INIT. 68 * 69 * 2007-04-27 Russ Anderson <rja@sgi.com> 70 * Support multiple cpus going through OS_MCA in the same event. 71 */ 72 #include <linux/jiffies.h> 73 #include <linux/types.h> 74 #include <linux/init.h> 75 #include <linux/sched.h> 76 #include <linux/interrupt.h> 77 #include <linux/irq.h> 78 #include <linux/bootmem.h> 79 #include <linux/acpi.h> 80 #include <linux/timer.h> 81 #include <linux/module.h> 82 #include <linux/kernel.h> 83 #include <linux/smp.h> 84 #include <linux/workqueue.h> 85 #include <linux/cpumask.h> 86 #include <linux/kdebug.h> 87 #include <linux/cpu.h> 88 89 #include <asm/delay.h> 90 #include <asm/machvec.h> 91 #include <asm/meminit.h> 92 #include <asm/page.h> 93 #include <asm/ptrace.h> 94 #include <asm/system.h> 95 #include <asm/sal.h> 96 #include <asm/mca.h> 97 #include <asm/kexec.h> 98 99 #include <asm/irq.h> 100 #include <asm/hw_irq.h> 101 #include <asm/tlb.h> 102 103 #include "mca_drv.h" 104 #include "entry.h" 105 106 #if defined(IA64_MCA_DEBUG_INFO) 107 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 108 #else 109 # define IA64_MCA_DEBUG(fmt...) 110 #endif 111 112 #define NOTIFY_INIT(event, regs, arg, spin) \ 113 do { \ 114 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 115 == NOTIFY_STOP) && ((spin) == 1)) \ 116 ia64_mca_spin(__func__); \ 117 } while (0) 118 119 #define NOTIFY_MCA(event, regs, arg, spin) \ 120 do { \ 121 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 122 == NOTIFY_STOP) && ((spin) == 1)) \ 123 ia64_mca_spin(__func__); \ 124 } while (0) 125 126 /* Used by mca_asm.S */ 127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 130 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 132 133 unsigned long __per_cpu_mca[NR_CPUS]; 134 135 /* In mca_asm.S */ 136 extern void ia64_os_init_dispatch_monarch (void); 137 extern void ia64_os_init_dispatch_slave (void); 138 139 static int monarch_cpu = -1; 140 141 static ia64_mc_info_t ia64_mc_info; 142 143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 145 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 146 #define CPE_HISTORY_LENGTH 5 147 #define CMC_HISTORY_LENGTH 5 148 149 #ifdef CONFIG_ACPI 150 static struct timer_list cpe_poll_timer; 151 #endif 152 static struct timer_list cmc_poll_timer; 153 /* 154 * This variable tells whether we are currently in polling mode. 155 * Start with this in the wrong state so we won't play w/ timers 156 * before the system is ready. 157 */ 158 static int cmc_polling_enabled = 1; 159 160 /* 161 * Clearing this variable prevents CPE polling from getting activated 162 * in mca_late_init. Use it if your system doesn't provide a CPEI, 163 * but encounters problems retrieving CPE logs. This should only be 164 * necessary for debugging. 165 */ 166 static int cpe_poll_enabled = 1; 167 168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 169 170 static int mca_init __initdata; 171 172 /* 173 * limited & delayed printing support for MCA/INIT handler 174 */ 175 176 #define mprintk(fmt...) ia64_mca_printk(fmt) 177 178 #define MLOGBUF_SIZE (512+256*NR_CPUS) 179 #define MLOGBUF_MSGMAX 256 180 static char mlogbuf[MLOGBUF_SIZE]; 181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 183 static unsigned long mlogbuf_start; 184 static unsigned long mlogbuf_end; 185 static unsigned int mlogbuf_finished = 0; 186 static unsigned long mlogbuf_timestamp = 0; 187 188 static int loglevel_save = -1; 189 #define BREAK_LOGLEVEL(__console_loglevel) \ 190 oops_in_progress = 1; \ 191 if (loglevel_save < 0) \ 192 loglevel_save = __console_loglevel; \ 193 __console_loglevel = 15; 194 195 #define RESTORE_LOGLEVEL(__console_loglevel) \ 196 if (loglevel_save >= 0) { \ 197 __console_loglevel = loglevel_save; \ 198 loglevel_save = -1; \ 199 } \ 200 mlogbuf_finished = 0; \ 201 oops_in_progress = 0; 202 203 /* 204 * Push messages into buffer, print them later if not urgent. 205 */ 206 void ia64_mca_printk(const char *fmt, ...) 207 { 208 va_list args; 209 int printed_len; 210 char temp_buf[MLOGBUF_MSGMAX]; 211 char *p; 212 213 va_start(args, fmt); 214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 215 va_end(args); 216 217 /* Copy the output into mlogbuf */ 218 if (oops_in_progress) { 219 /* mlogbuf was abandoned, use printk directly instead. */ 220 printk(temp_buf); 221 } else { 222 spin_lock(&mlogbuf_wlock); 223 for (p = temp_buf; *p; p++) { 224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 225 if (next != mlogbuf_start) { 226 mlogbuf[mlogbuf_end] = *p; 227 mlogbuf_end = next; 228 } else { 229 /* buffer full */ 230 break; 231 } 232 } 233 mlogbuf[mlogbuf_end] = '\0'; 234 spin_unlock(&mlogbuf_wlock); 235 } 236 } 237 EXPORT_SYMBOL(ia64_mca_printk); 238 239 /* 240 * Print buffered messages. 241 * NOTE: call this after returning normal context. (ex. from salinfod) 242 */ 243 void ia64_mlogbuf_dump(void) 244 { 245 char temp_buf[MLOGBUF_MSGMAX]; 246 char *p; 247 unsigned long index; 248 unsigned long flags; 249 unsigned int printed_len; 250 251 /* Get output from mlogbuf */ 252 while (mlogbuf_start != mlogbuf_end) { 253 temp_buf[0] = '\0'; 254 p = temp_buf; 255 printed_len = 0; 256 257 spin_lock_irqsave(&mlogbuf_rlock, flags); 258 259 index = mlogbuf_start; 260 while (index != mlogbuf_end) { 261 *p = mlogbuf[index]; 262 index = (index + 1) % MLOGBUF_SIZE; 263 if (!*p) 264 break; 265 p++; 266 if (++printed_len >= MLOGBUF_MSGMAX - 1) 267 break; 268 } 269 *p = '\0'; 270 if (temp_buf[0]) 271 printk(temp_buf); 272 mlogbuf_start = index; 273 274 mlogbuf_timestamp = 0; 275 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 276 } 277 } 278 EXPORT_SYMBOL(ia64_mlogbuf_dump); 279 280 /* 281 * Call this if system is going to down or if immediate flushing messages to 282 * console is required. (ex. recovery was failed, crash dump is going to be 283 * invoked, long-wait rendezvous etc.) 284 * NOTE: this should be called from monarch. 285 */ 286 static void ia64_mlogbuf_finish(int wait) 287 { 288 BREAK_LOGLEVEL(console_loglevel); 289 290 spin_lock_init(&mlogbuf_rlock); 291 ia64_mlogbuf_dump(); 292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 293 "MCA/INIT might be dodgy or fail.\n"); 294 295 if (!wait) 296 return; 297 298 /* wait for console */ 299 printk("Delaying for 5 seconds...\n"); 300 udelay(5*1000000); 301 302 mlogbuf_finished = 1; 303 } 304 305 /* 306 * Print buffered messages from INIT context. 307 */ 308 static void ia64_mlogbuf_dump_from_init(void) 309 { 310 if (mlogbuf_finished) 311 return; 312 313 if (mlogbuf_timestamp && 314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 316 " and the system seems to be messed up.\n"); 317 ia64_mlogbuf_finish(0); 318 return; 319 } 320 321 if (!spin_trylock(&mlogbuf_rlock)) { 322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 323 "Generated messages other than stack dump will be " 324 "buffered to mlogbuf and will be printed later.\n"); 325 printk(KERN_ERR "INIT: If messages would not printed after " 326 "this INIT, wait 30sec and assert INIT again.\n"); 327 if (!mlogbuf_timestamp) 328 mlogbuf_timestamp = jiffies; 329 return; 330 } 331 spin_unlock(&mlogbuf_rlock); 332 ia64_mlogbuf_dump(); 333 } 334 335 static void inline 336 ia64_mca_spin(const char *func) 337 { 338 if (monarch_cpu == smp_processor_id()) 339 ia64_mlogbuf_finish(0); 340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 341 while (1) 342 cpu_relax(); 343 } 344 /* 345 * IA64_MCA log support 346 */ 347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 349 350 typedef struct ia64_state_log_s 351 { 352 spinlock_t isl_lock; 353 int isl_index; 354 unsigned long isl_count; 355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 356 } ia64_state_log_t; 357 358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 359 360 #define IA64_LOG_ALLOCATE(it, size) \ 361 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ 362 (ia64_err_rec_t *)alloc_bootmem(size); \ 363 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ 364 (ia64_err_rec_t *)alloc_bootmem(size);} 365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 366 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 367 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 368 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 369 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 370 #define IA64_LOG_INDEX_INC(it) \ 371 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 372 ia64_state_log[it].isl_count++;} 373 #define IA64_LOG_INDEX_DEC(it) \ 374 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 375 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 376 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 377 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 378 379 /* 380 * ia64_log_init 381 * Reset the OS ia64 log buffer 382 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 383 * Outputs : None 384 */ 385 static void __init 386 ia64_log_init(int sal_info_type) 387 { 388 u64 max_size = 0; 389 390 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 391 IA64_LOG_LOCK_INIT(sal_info_type); 392 393 // SAL will tell us the maximum size of any error record of this type 394 max_size = ia64_sal_get_state_info_size(sal_info_type); 395 if (!max_size) 396 /* alloc_bootmem() doesn't like zero-sized allocations! */ 397 return; 398 399 // set up OS data structures to hold error info 400 IA64_LOG_ALLOCATE(sal_info_type, max_size); 401 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); 402 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); 403 } 404 405 /* 406 * ia64_log_get 407 * 408 * Get the current MCA log from SAL and copy it into the OS log buffer. 409 * 410 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 411 * irq_safe whether you can use printk at this point 412 * Outputs : size (total record length) 413 * *buffer (ptr to error record) 414 * 415 */ 416 static u64 417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 418 { 419 sal_log_record_header_t *log_buffer; 420 u64 total_len = 0; 421 unsigned long s; 422 423 IA64_LOG_LOCK(sal_info_type); 424 425 /* Get the process state information */ 426 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 427 428 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 429 430 if (total_len) { 431 IA64_LOG_INDEX_INC(sal_info_type); 432 IA64_LOG_UNLOCK(sal_info_type); 433 if (irq_safe) { 434 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 435 __func__, sal_info_type, total_len); 436 } 437 *buffer = (u8 *) log_buffer; 438 return total_len; 439 } else { 440 IA64_LOG_UNLOCK(sal_info_type); 441 return 0; 442 } 443 } 444 445 /* 446 * ia64_mca_log_sal_error_record 447 * 448 * This function retrieves a specified error record type from SAL 449 * and wakes up any processes waiting for error records. 450 * 451 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 452 * FIXME: remove MCA and irq_safe. 453 */ 454 static void 455 ia64_mca_log_sal_error_record(int sal_info_type) 456 { 457 u8 *buffer; 458 sal_log_record_header_t *rh; 459 u64 size; 460 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 461 #ifdef IA64_MCA_DEBUG_INFO 462 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 463 #endif 464 465 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 466 if (!size) 467 return; 468 469 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 470 471 if (irq_safe) 472 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 473 smp_processor_id(), 474 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 475 476 /* Clear logs from corrected errors in case there's no user-level logger */ 477 rh = (sal_log_record_header_t *)buffer; 478 if (rh->severity == sal_log_severity_corrected) 479 ia64_sal_clear_state_info(sal_info_type); 480 } 481 482 /* 483 * search_mca_table 484 * See if the MCA surfaced in an instruction range 485 * that has been tagged as recoverable. 486 * 487 * Inputs 488 * first First address range to check 489 * last Last address range to check 490 * ip Instruction pointer, address we are looking for 491 * 492 * Return value: 493 * 1 on Success (in the table)/ 0 on Failure (not in the table) 494 */ 495 int 496 search_mca_table (const struct mca_table_entry *first, 497 const struct mca_table_entry *last, 498 unsigned long ip) 499 { 500 const struct mca_table_entry *curr; 501 u64 curr_start, curr_end; 502 503 curr = first; 504 while (curr <= last) { 505 curr_start = (u64) &curr->start_addr + curr->start_addr; 506 curr_end = (u64) &curr->end_addr + curr->end_addr; 507 508 if ((ip >= curr_start) && (ip <= curr_end)) { 509 return 1; 510 } 511 curr++; 512 } 513 return 0; 514 } 515 516 /* Given an address, look for it in the mca tables. */ 517 int mca_recover_range(unsigned long addr) 518 { 519 extern struct mca_table_entry __start___mca_table[]; 520 extern struct mca_table_entry __stop___mca_table[]; 521 522 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 523 } 524 EXPORT_SYMBOL_GPL(mca_recover_range); 525 526 #ifdef CONFIG_ACPI 527 528 int cpe_vector = -1; 529 int ia64_cpe_irq = -1; 530 531 static irqreturn_t 532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 533 { 534 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 535 static int index; 536 static DEFINE_SPINLOCK(cpe_history_lock); 537 538 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 539 __func__, cpe_irq, smp_processor_id()); 540 541 /* SAL spec states this should run w/ interrupts enabled */ 542 local_irq_enable(); 543 544 spin_lock(&cpe_history_lock); 545 if (!cpe_poll_enabled && cpe_vector >= 0) { 546 547 int i, count = 1; /* we know 1 happened now */ 548 unsigned long now = jiffies; 549 550 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 551 if (now - cpe_history[i] <= HZ) 552 count++; 553 } 554 555 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 556 if (count >= CPE_HISTORY_LENGTH) { 557 558 cpe_poll_enabled = 1; 559 spin_unlock(&cpe_history_lock); 560 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 561 562 /* 563 * Corrected errors will still be corrected, but 564 * make sure there's a log somewhere that indicates 565 * something is generating more than we can handle. 566 */ 567 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 568 569 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 570 571 /* lock already released, get out now */ 572 goto out; 573 } else { 574 cpe_history[index++] = now; 575 if (index == CPE_HISTORY_LENGTH) 576 index = 0; 577 } 578 } 579 spin_unlock(&cpe_history_lock); 580 out: 581 /* Get the CPE error record and log it */ 582 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 583 584 return IRQ_HANDLED; 585 } 586 587 #endif /* CONFIG_ACPI */ 588 589 #ifdef CONFIG_ACPI 590 /* 591 * ia64_mca_register_cpev 592 * 593 * Register the corrected platform error vector with SAL. 594 * 595 * Inputs 596 * cpev Corrected Platform Error Vector number 597 * 598 * Outputs 599 * None 600 */ 601 void 602 ia64_mca_register_cpev (int cpev) 603 { 604 /* Register the CPE interrupt vector with SAL */ 605 struct ia64_sal_retval isrv; 606 607 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 608 if (isrv.status) { 609 printk(KERN_ERR "Failed to register Corrected Platform " 610 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 611 return; 612 } 613 614 IA64_MCA_DEBUG("%s: corrected platform error " 615 "vector %#x registered\n", __func__, cpev); 616 } 617 #endif /* CONFIG_ACPI */ 618 619 /* 620 * ia64_mca_cmc_vector_setup 621 * 622 * Setup the corrected machine check vector register in the processor. 623 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 624 * This function is invoked on a per-processor basis. 625 * 626 * Inputs 627 * None 628 * 629 * Outputs 630 * None 631 */ 632 void __cpuinit 633 ia64_mca_cmc_vector_setup (void) 634 { 635 cmcv_reg_t cmcv; 636 637 cmcv.cmcv_regval = 0; 638 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 639 cmcv.cmcv_vector = IA64_CMC_VECTOR; 640 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 641 642 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 643 __func__, smp_processor_id(), IA64_CMC_VECTOR); 644 645 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 646 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 647 } 648 649 /* 650 * ia64_mca_cmc_vector_disable 651 * 652 * Mask the corrected machine check vector register in the processor. 653 * This function is invoked on a per-processor basis. 654 * 655 * Inputs 656 * dummy(unused) 657 * 658 * Outputs 659 * None 660 */ 661 static void 662 ia64_mca_cmc_vector_disable (void *dummy) 663 { 664 cmcv_reg_t cmcv; 665 666 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 667 668 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 669 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 670 671 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 672 __func__, smp_processor_id(), cmcv.cmcv_vector); 673 } 674 675 /* 676 * ia64_mca_cmc_vector_enable 677 * 678 * Unmask the corrected machine check vector register in the processor. 679 * This function is invoked on a per-processor basis. 680 * 681 * Inputs 682 * dummy(unused) 683 * 684 * Outputs 685 * None 686 */ 687 static void 688 ia64_mca_cmc_vector_enable (void *dummy) 689 { 690 cmcv_reg_t cmcv; 691 692 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 693 694 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 695 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 696 697 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 698 __func__, smp_processor_id(), cmcv.cmcv_vector); 699 } 700 701 /* 702 * ia64_mca_cmc_vector_disable_keventd 703 * 704 * Called via keventd (smp_call_function() is not safe in interrupt context) to 705 * disable the cmc interrupt vector. 706 */ 707 static void 708 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 709 { 710 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 711 } 712 713 /* 714 * ia64_mca_cmc_vector_enable_keventd 715 * 716 * Called via keventd (smp_call_function() is not safe in interrupt context) to 717 * enable the cmc interrupt vector. 718 */ 719 static void 720 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 721 { 722 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 723 } 724 725 /* 726 * ia64_mca_wakeup 727 * 728 * Send an inter-cpu interrupt to wake-up a particular cpu. 729 * 730 * Inputs : cpuid 731 * Outputs : None 732 */ 733 static void 734 ia64_mca_wakeup(int cpu) 735 { 736 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 737 } 738 739 /* 740 * ia64_mca_wakeup_all 741 * 742 * Wakeup all the slave cpus which have rendez'ed previously. 743 * 744 * Inputs : None 745 * Outputs : None 746 */ 747 static void 748 ia64_mca_wakeup_all(void) 749 { 750 int cpu; 751 752 /* Clear the Rendez checkin flag for all cpus */ 753 for_each_online_cpu(cpu) { 754 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 755 ia64_mca_wakeup(cpu); 756 } 757 758 } 759 760 /* 761 * ia64_mca_rendez_interrupt_handler 762 * 763 * This is handler used to put slave processors into spinloop 764 * while the monarch processor does the mca handling and later 765 * wake each slave up once the monarch is done. The state 766 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 767 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 768 * the cpu has come out of OS rendezvous. 769 * 770 * Inputs : None 771 * Outputs : None 772 */ 773 static irqreturn_t 774 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 775 { 776 unsigned long flags; 777 int cpu = smp_processor_id(); 778 struct ia64_mca_notify_die nd = 779 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 780 781 /* Mask all interrupts */ 782 local_irq_save(flags); 783 784 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 785 786 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 787 /* Register with the SAL monarch that the slave has 788 * reached SAL 789 */ 790 ia64_sal_mc_rendez(); 791 792 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 793 794 /* Wait for the monarch cpu to exit. */ 795 while (monarch_cpu != -1) 796 cpu_relax(); /* spin until monarch leaves */ 797 798 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 799 800 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 801 /* Enable all interrupts */ 802 local_irq_restore(flags); 803 return IRQ_HANDLED; 804 } 805 806 /* 807 * ia64_mca_wakeup_int_handler 808 * 809 * The interrupt handler for processing the inter-cpu interrupt to the 810 * slave cpu which was spinning in the rendez loop. 811 * Since this spinning is done by turning off the interrupts and 812 * polling on the wakeup-interrupt bit in the IRR, there is 813 * nothing useful to be done in the handler. 814 * 815 * Inputs : wakeup_irq (Wakeup-interrupt bit) 816 * arg (Interrupt handler specific argument) 817 * Outputs : None 818 * 819 */ 820 static irqreturn_t 821 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 822 { 823 return IRQ_HANDLED; 824 } 825 826 /* Function pointer for extra MCA recovery */ 827 int (*ia64_mca_ucmc_extension) 828 (void*,struct ia64_sal_os_state*) 829 = NULL; 830 831 int 832 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 833 { 834 if (ia64_mca_ucmc_extension) 835 return 1; 836 837 ia64_mca_ucmc_extension = fn; 838 return 0; 839 } 840 841 void 842 ia64_unreg_MCA_extension(void) 843 { 844 if (ia64_mca_ucmc_extension) 845 ia64_mca_ucmc_extension = NULL; 846 } 847 848 EXPORT_SYMBOL(ia64_reg_MCA_extension); 849 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 850 851 852 static inline void 853 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 854 { 855 u64 fslot, tslot, nat; 856 *tr = *fr; 857 fslot = ((unsigned long)fr >> 3) & 63; 858 tslot = ((unsigned long)tr >> 3) & 63; 859 *tnat &= ~(1UL << tslot); 860 nat = (fnat >> fslot) & 1; 861 *tnat |= (nat << tslot); 862 } 863 864 /* Change the comm field on the MCA/INT task to include the pid that 865 * was interrupted, it makes for easier debugging. If that pid was 0 866 * (swapper or nested MCA/INIT) then use the start of the previous comm 867 * field suffixed with its cpu. 868 */ 869 870 static void 871 ia64_mca_modify_comm(const struct task_struct *previous_current) 872 { 873 char *p, comm[sizeof(current->comm)]; 874 if (previous_current->pid) 875 snprintf(comm, sizeof(comm), "%s %d", 876 current->comm, previous_current->pid); 877 else { 878 int l; 879 if ((p = strchr(previous_current->comm, ' '))) 880 l = p - previous_current->comm; 881 else 882 l = strlen(previous_current->comm); 883 snprintf(comm, sizeof(comm), "%s %*s %d", 884 current->comm, l, previous_current->comm, 885 task_thread_info(previous_current)->cpu); 886 } 887 memcpy(current->comm, comm, sizeof(current->comm)); 888 } 889 890 static void 891 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 892 unsigned long *nat) 893 { 894 const pal_min_state_area_t *ms = sos->pal_min_state; 895 const u64 *bank; 896 897 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 898 * pmsa_{xip,xpsr,xfs} 899 */ 900 if (ia64_psr(regs)->ic) { 901 regs->cr_iip = ms->pmsa_iip; 902 regs->cr_ipsr = ms->pmsa_ipsr; 903 regs->cr_ifs = ms->pmsa_ifs; 904 } else { 905 regs->cr_iip = ms->pmsa_xip; 906 regs->cr_ipsr = ms->pmsa_xpsr; 907 regs->cr_ifs = ms->pmsa_xfs; 908 909 sos->iip = ms->pmsa_iip; 910 sos->ipsr = ms->pmsa_ipsr; 911 sos->ifs = ms->pmsa_ifs; 912 } 913 regs->pr = ms->pmsa_pr; 914 regs->b0 = ms->pmsa_br0; 915 regs->ar_rsc = ms->pmsa_rsc; 916 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 917 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 918 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 919 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 920 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 921 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 922 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 923 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 924 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 925 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 926 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 927 if (ia64_psr(regs)->bn) 928 bank = ms->pmsa_bank1_gr; 929 else 930 bank = ms->pmsa_bank0_gr; 931 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 932 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 933 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 934 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 935 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 936 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 937 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 938 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 939 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 940 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 941 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 942 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 943 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 944 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 945 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 946 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 947 } 948 949 /* On entry to this routine, we are running on the per cpu stack, see 950 * mca_asm.h. The original stack has not been touched by this event. Some of 951 * the original stack's registers will be in the RBS on this stack. This stack 952 * also contains a partial pt_regs and switch_stack, the rest of the data is in 953 * PAL minstate. 954 * 955 * The first thing to do is modify the original stack to look like a blocked 956 * task so we can run backtrace on the original task. Also mark the per cpu 957 * stack as current to ensure that we use the correct task state, it also means 958 * that we can do backtrace on the MCA/INIT handler code itself. 959 */ 960 961 static struct task_struct * 962 ia64_mca_modify_original_stack(struct pt_regs *regs, 963 const struct switch_stack *sw, 964 struct ia64_sal_os_state *sos, 965 const char *type) 966 { 967 char *p; 968 ia64_va va; 969 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 970 const pal_min_state_area_t *ms = sos->pal_min_state; 971 struct task_struct *previous_current; 972 struct pt_regs *old_regs; 973 struct switch_stack *old_sw; 974 unsigned size = sizeof(struct pt_regs) + 975 sizeof(struct switch_stack) + 16; 976 unsigned long *old_bspstore, *old_bsp; 977 unsigned long *new_bspstore, *new_bsp; 978 unsigned long old_unat, old_rnat, new_rnat, nat; 979 u64 slots, loadrs = regs->loadrs; 980 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 981 u64 ar_bspstore = regs->ar_bspstore; 982 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 983 const char *msg; 984 int cpu = smp_processor_id(); 985 986 previous_current = curr_task(cpu); 987 set_curr_task(cpu, current); 988 if ((p = strchr(current->comm, ' '))) 989 *p = '\0'; 990 991 /* Best effort attempt to cope with MCA/INIT delivered while in 992 * physical mode. 993 */ 994 regs->cr_ipsr = ms->pmsa_ipsr; 995 if (ia64_psr(regs)->dt == 0) { 996 va.l = r12; 997 if (va.f.reg == 0) { 998 va.f.reg = 7; 999 r12 = va.l; 1000 } 1001 va.l = r13; 1002 if (va.f.reg == 0) { 1003 va.f.reg = 7; 1004 r13 = va.l; 1005 } 1006 } 1007 if (ia64_psr(regs)->rt == 0) { 1008 va.l = ar_bspstore; 1009 if (va.f.reg == 0) { 1010 va.f.reg = 7; 1011 ar_bspstore = va.l; 1012 } 1013 va.l = ar_bsp; 1014 if (va.f.reg == 0) { 1015 va.f.reg = 7; 1016 ar_bsp = va.l; 1017 } 1018 } 1019 1020 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1021 * have been copied to the old stack, the old stack may fail the 1022 * validation tests below. So ia64_old_stack() must restore the dirty 1023 * registers from the new stack. The old and new bspstore probably 1024 * have different alignments, so loadrs calculated on the old bsp 1025 * cannot be used to restore from the new bsp. Calculate a suitable 1026 * loadrs for the new stack and save it in the new pt_regs, where 1027 * ia64_old_stack() can get it. 1028 */ 1029 old_bspstore = (unsigned long *)ar_bspstore; 1030 old_bsp = (unsigned long *)ar_bsp; 1031 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1032 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1033 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1034 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1035 1036 /* Verify the previous stack state before we change it */ 1037 if (user_mode(regs)) { 1038 msg = "occurred in user space"; 1039 /* previous_current is guaranteed to be valid when the task was 1040 * in user space, so ... 1041 */ 1042 ia64_mca_modify_comm(previous_current); 1043 goto no_mod; 1044 } 1045 1046 if (r13 != sos->prev_IA64_KR_CURRENT) { 1047 msg = "inconsistent previous current and r13"; 1048 goto no_mod; 1049 } 1050 1051 if (!mca_recover_range(ms->pmsa_iip)) { 1052 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1053 msg = "inconsistent r12 and r13"; 1054 goto no_mod; 1055 } 1056 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1057 msg = "inconsistent ar.bspstore and r13"; 1058 goto no_mod; 1059 } 1060 va.p = old_bspstore; 1061 if (va.f.reg < 5) { 1062 msg = "old_bspstore is in the wrong region"; 1063 goto no_mod; 1064 } 1065 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1066 msg = "inconsistent ar.bsp and r13"; 1067 goto no_mod; 1068 } 1069 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1070 if (ar_bspstore + size > r12) { 1071 msg = "no room for blocked state"; 1072 goto no_mod; 1073 } 1074 } 1075 1076 ia64_mca_modify_comm(previous_current); 1077 1078 /* Make the original task look blocked. First stack a struct pt_regs, 1079 * describing the state at the time of interrupt. mca_asm.S built a 1080 * partial pt_regs, copy it and fill in the blanks using minstate. 1081 */ 1082 p = (char *)r12 - sizeof(*regs); 1083 old_regs = (struct pt_regs *)p; 1084 memcpy(old_regs, regs, sizeof(*regs)); 1085 old_regs->loadrs = loadrs; 1086 old_unat = old_regs->ar_unat; 1087 finish_pt_regs(old_regs, sos, &old_unat); 1088 1089 /* Next stack a struct switch_stack. mca_asm.S built a partial 1090 * switch_stack, copy it and fill in the blanks using pt_regs and 1091 * minstate. 1092 * 1093 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1094 * ar.pfs is set to 0. 1095 * 1096 * unwind.c::unw_unwind() does special processing for interrupt frames. 1097 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1098 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1099 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1100 * switch_stack on the original stack so it will unwind correctly when 1101 * unwind.c reads pt_regs. 1102 * 1103 * thread.ksp is updated to point to the synthesized switch_stack. 1104 */ 1105 p -= sizeof(struct switch_stack); 1106 old_sw = (struct switch_stack *)p; 1107 memcpy(old_sw, sw, sizeof(*sw)); 1108 old_sw->caller_unat = old_unat; 1109 old_sw->ar_fpsr = old_regs->ar_fpsr; 1110 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1111 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1112 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1113 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1114 old_sw->b0 = (u64)ia64_leave_kernel; 1115 old_sw->b1 = ms->pmsa_br1; 1116 old_sw->ar_pfs = 0; 1117 old_sw->ar_unat = old_unat; 1118 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1119 previous_current->thread.ksp = (u64)p - 16; 1120 1121 /* Finally copy the original stack's registers back to its RBS. 1122 * Registers from ar.bspstore through ar.bsp at the time of the event 1123 * are in the current RBS, copy them back to the original stack. The 1124 * copy must be done register by register because the original bspstore 1125 * and the current one have different alignments, so the saved RNAT 1126 * data occurs at different places. 1127 * 1128 * mca_asm does cover, so the old_bsp already includes all registers at 1129 * the time of MCA/INIT. It also does flushrs, so all registers before 1130 * this function have been written to backing store on the MCA/INIT 1131 * stack. 1132 */ 1133 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1134 old_rnat = regs->ar_rnat; 1135 while (slots--) { 1136 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1137 new_rnat = ia64_get_rnat(new_bspstore++); 1138 } 1139 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1140 *old_bspstore++ = old_rnat; 1141 old_rnat = 0; 1142 } 1143 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1144 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1145 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1146 *old_bspstore++ = *new_bspstore++; 1147 } 1148 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1149 old_sw->ar_rnat = old_rnat; 1150 1151 sos->prev_task = previous_current; 1152 return previous_current; 1153 1154 no_mod: 1155 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1156 smp_processor_id(), type, msg); 1157 old_unat = regs->ar_unat; 1158 finish_pt_regs(regs, sos, &old_unat); 1159 return previous_current; 1160 } 1161 1162 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1163 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1164 * not entered rendezvous yet then wait a bit. The assumption is that any 1165 * slave that has not rendezvoused after a reasonable time is never going to do 1166 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1167 * interrupt, as well as cpus that receive the INIT slave event. 1168 */ 1169 1170 static void 1171 ia64_wait_for_slaves(int monarch, const char *type) 1172 { 1173 int c, i , wait; 1174 1175 /* 1176 * wait 5 seconds total for slaves (arbitrary) 1177 */ 1178 for (i = 0; i < 5000; i++) { 1179 wait = 0; 1180 for_each_online_cpu(c) { 1181 if (c == monarch) 1182 continue; 1183 if (ia64_mc_info.imi_rendez_checkin[c] 1184 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1185 udelay(1000); /* short wait */ 1186 wait = 1; 1187 break; 1188 } 1189 } 1190 if (!wait) 1191 goto all_in; 1192 } 1193 1194 /* 1195 * Maybe slave(s) dead. Print buffered messages immediately. 1196 */ 1197 ia64_mlogbuf_finish(0); 1198 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1199 for_each_online_cpu(c) { 1200 if (c == monarch) 1201 continue; 1202 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1203 mprintk(" %d", c); 1204 } 1205 mprintk("\n"); 1206 return; 1207 1208 all_in: 1209 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1210 return; 1211 } 1212 1213 /* mca_insert_tr 1214 * 1215 * Switch rid when TR reload and needed! 1216 * iord: 1: itr, 2: itr; 1217 * 1218 */ 1219 static void mca_insert_tr(u64 iord) 1220 { 1221 1222 int i; 1223 u64 old_rr; 1224 struct ia64_tr_entry *p; 1225 unsigned long psr; 1226 int cpu = smp_processor_id(); 1227 1228 if (!ia64_idtrs[cpu]) 1229 return; 1230 1231 psr = ia64_clear_ic(); 1232 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1233 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1234 if (p->pte & 0x1) { 1235 old_rr = ia64_get_rr(p->ifa); 1236 if (old_rr != p->rr) { 1237 ia64_set_rr(p->ifa, p->rr); 1238 ia64_srlz_d(); 1239 } 1240 ia64_ptr(iord, p->ifa, p->itir >> 2); 1241 ia64_srlz_i(); 1242 if (iord & 0x1) { 1243 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1244 ia64_srlz_i(); 1245 } 1246 if (iord & 0x2) { 1247 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1248 ia64_srlz_i(); 1249 } 1250 if (old_rr != p->rr) { 1251 ia64_set_rr(p->ifa, old_rr); 1252 ia64_srlz_d(); 1253 } 1254 } 1255 } 1256 ia64_set_psr(psr); 1257 } 1258 1259 /* 1260 * ia64_mca_handler 1261 * 1262 * This is uncorrectable machine check handler called from OS_MCA 1263 * dispatch code which is in turn called from SAL_CHECK(). 1264 * This is the place where the core of OS MCA handling is done. 1265 * Right now the logs are extracted and displayed in a well-defined 1266 * format. This handler code is supposed to be run only on the 1267 * monarch processor. Once the monarch is done with MCA handling 1268 * further MCA logging is enabled by clearing logs. 1269 * Monarch also has the duty of sending wakeup-IPIs to pull the 1270 * slave processors out of rendezvous spinloop. 1271 * 1272 * If multiple processors call into OS_MCA, the first will become 1273 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1274 * bitmask. After the first monarch has processed its MCA, it 1275 * will wake up the next cpu in the mca_cpu bitmask and then go 1276 * into the rendezvous loop. When all processors have serviced 1277 * their MCA, the last monarch frees up the rest of the processors. 1278 */ 1279 void 1280 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1281 struct ia64_sal_os_state *sos) 1282 { 1283 int recover, cpu = smp_processor_id(); 1284 struct task_struct *previous_current; 1285 struct ia64_mca_notify_die nd = 1286 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1287 static atomic_t mca_count; 1288 static cpumask_t mca_cpu; 1289 1290 if (atomic_add_return(1, &mca_count) == 1) { 1291 monarch_cpu = cpu; 1292 sos->monarch = 1; 1293 } else { 1294 cpu_set(cpu, mca_cpu); 1295 sos->monarch = 0; 1296 } 1297 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1298 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1299 1300 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1301 1302 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1303 1304 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1305 if (sos->monarch) { 1306 ia64_wait_for_slaves(cpu, "MCA"); 1307 1308 /* Wakeup all the processors which are spinning in the 1309 * rendezvous loop. They will leave SAL, then spin in the OS 1310 * with interrupts disabled until this monarch cpu leaves the 1311 * MCA handler. That gets control back to the OS so we can 1312 * backtrace the other cpus, backtrace when spinning in SAL 1313 * does not work. 1314 */ 1315 ia64_mca_wakeup_all(); 1316 } else { 1317 while (cpu_isset(cpu, mca_cpu)) 1318 cpu_relax(); /* spin until monarch wakes us */ 1319 } 1320 1321 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1322 1323 /* Get the MCA error record and log it */ 1324 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1325 1326 /* MCA error recovery */ 1327 recover = (ia64_mca_ucmc_extension 1328 && ia64_mca_ucmc_extension( 1329 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1330 sos)); 1331 1332 if (recover) { 1333 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1334 rh->severity = sal_log_severity_corrected; 1335 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1336 sos->os_status = IA64_MCA_CORRECTED; 1337 } else { 1338 /* Dump buffered message to console */ 1339 ia64_mlogbuf_finish(1); 1340 } 1341 1342 if (__get_cpu_var(ia64_mca_tr_reload)) { 1343 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1344 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1345 } 1346 1347 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1348 1349 if (atomic_dec_return(&mca_count) > 0) { 1350 int i; 1351 1352 /* wake up the next monarch cpu, 1353 * and put this cpu in the rendez loop. 1354 */ 1355 for_each_online_cpu(i) { 1356 if (cpu_isset(i, mca_cpu)) { 1357 monarch_cpu = i; 1358 cpu_clear(i, mca_cpu); /* wake next cpu */ 1359 while (monarch_cpu != -1) 1360 cpu_relax(); /* spin until last cpu leaves */ 1361 set_curr_task(cpu, previous_current); 1362 ia64_mc_info.imi_rendez_checkin[cpu] 1363 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1364 return; 1365 } 1366 } 1367 } 1368 set_curr_task(cpu, previous_current); 1369 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1370 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1371 } 1372 1373 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1374 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1375 1376 /* 1377 * ia64_mca_cmc_int_handler 1378 * 1379 * This is corrected machine check interrupt handler. 1380 * Right now the logs are extracted and displayed in a well-defined 1381 * format. 1382 * 1383 * Inputs 1384 * interrupt number 1385 * client data arg ptr 1386 * 1387 * Outputs 1388 * None 1389 */ 1390 static irqreturn_t 1391 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1392 { 1393 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1394 static int index; 1395 static DEFINE_SPINLOCK(cmc_history_lock); 1396 1397 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1398 __func__, cmc_irq, smp_processor_id()); 1399 1400 /* SAL spec states this should run w/ interrupts enabled */ 1401 local_irq_enable(); 1402 1403 spin_lock(&cmc_history_lock); 1404 if (!cmc_polling_enabled) { 1405 int i, count = 1; /* we know 1 happened now */ 1406 unsigned long now = jiffies; 1407 1408 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1409 if (now - cmc_history[i] <= HZ) 1410 count++; 1411 } 1412 1413 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1414 if (count >= CMC_HISTORY_LENGTH) { 1415 1416 cmc_polling_enabled = 1; 1417 spin_unlock(&cmc_history_lock); 1418 /* If we're being hit with CMC interrupts, we won't 1419 * ever execute the schedule_work() below. Need to 1420 * disable CMC interrupts on this processor now. 1421 */ 1422 ia64_mca_cmc_vector_disable(NULL); 1423 schedule_work(&cmc_disable_work); 1424 1425 /* 1426 * Corrected errors will still be corrected, but 1427 * make sure there's a log somewhere that indicates 1428 * something is generating more than we can handle. 1429 */ 1430 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1431 1432 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1433 1434 /* lock already released, get out now */ 1435 goto out; 1436 } else { 1437 cmc_history[index++] = now; 1438 if (index == CMC_HISTORY_LENGTH) 1439 index = 0; 1440 } 1441 } 1442 spin_unlock(&cmc_history_lock); 1443 out: 1444 /* Get the CMC error record and log it */ 1445 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1446 1447 return IRQ_HANDLED; 1448 } 1449 1450 /* 1451 * ia64_mca_cmc_int_caller 1452 * 1453 * Triggered by sw interrupt from CMC polling routine. Calls 1454 * real interrupt handler and either triggers a sw interrupt 1455 * on the next cpu or does cleanup at the end. 1456 * 1457 * Inputs 1458 * interrupt number 1459 * client data arg ptr 1460 * Outputs 1461 * handled 1462 */ 1463 static irqreturn_t 1464 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1465 { 1466 static int start_count = -1; 1467 unsigned int cpuid; 1468 1469 cpuid = smp_processor_id(); 1470 1471 /* If first cpu, update count */ 1472 if (start_count == -1) 1473 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1474 1475 ia64_mca_cmc_int_handler(cmc_irq, arg); 1476 1477 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1478 1479 if (cpuid < nr_cpu_ids) { 1480 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1481 } else { 1482 /* If no log record, switch out of polling mode */ 1483 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1484 1485 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1486 schedule_work(&cmc_enable_work); 1487 cmc_polling_enabled = 0; 1488 1489 } else { 1490 1491 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1492 } 1493 1494 start_count = -1; 1495 } 1496 1497 return IRQ_HANDLED; 1498 } 1499 1500 /* 1501 * ia64_mca_cmc_poll 1502 * 1503 * Poll for Corrected Machine Checks (CMCs) 1504 * 1505 * Inputs : dummy(unused) 1506 * Outputs : None 1507 * 1508 */ 1509 static void 1510 ia64_mca_cmc_poll (unsigned long dummy) 1511 { 1512 /* Trigger a CMC interrupt cascade */ 1513 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1514 } 1515 1516 /* 1517 * ia64_mca_cpe_int_caller 1518 * 1519 * Triggered by sw interrupt from CPE polling routine. Calls 1520 * real interrupt handler and either triggers a sw interrupt 1521 * on the next cpu or does cleanup at the end. 1522 * 1523 * Inputs 1524 * interrupt number 1525 * client data arg ptr 1526 * Outputs 1527 * handled 1528 */ 1529 #ifdef CONFIG_ACPI 1530 1531 static irqreturn_t 1532 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1533 { 1534 static int start_count = -1; 1535 static int poll_time = MIN_CPE_POLL_INTERVAL; 1536 unsigned int cpuid; 1537 1538 cpuid = smp_processor_id(); 1539 1540 /* If first cpu, update count */ 1541 if (start_count == -1) 1542 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1543 1544 ia64_mca_cpe_int_handler(cpe_irq, arg); 1545 1546 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1547 1548 if (cpuid < NR_CPUS) { 1549 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1550 } else { 1551 /* 1552 * If a log was recorded, increase our polling frequency, 1553 * otherwise, backoff or return to interrupt mode. 1554 */ 1555 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1556 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1557 } else if (cpe_vector < 0) { 1558 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1559 } else { 1560 poll_time = MIN_CPE_POLL_INTERVAL; 1561 1562 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1563 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1564 cpe_poll_enabled = 0; 1565 } 1566 1567 if (cpe_poll_enabled) 1568 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1569 start_count = -1; 1570 } 1571 1572 return IRQ_HANDLED; 1573 } 1574 1575 /* 1576 * ia64_mca_cpe_poll 1577 * 1578 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1579 * on first cpu, from there it will trickle through all the cpus. 1580 * 1581 * Inputs : dummy(unused) 1582 * Outputs : None 1583 * 1584 */ 1585 static void 1586 ia64_mca_cpe_poll (unsigned long dummy) 1587 { 1588 /* Trigger a CPE interrupt cascade */ 1589 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1590 } 1591 1592 #endif /* CONFIG_ACPI */ 1593 1594 static int 1595 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1596 { 1597 int c; 1598 struct task_struct *g, *t; 1599 if (val != DIE_INIT_MONARCH_PROCESS) 1600 return NOTIFY_DONE; 1601 #ifdef CONFIG_KEXEC 1602 if (atomic_read(&kdump_in_progress)) 1603 return NOTIFY_DONE; 1604 #endif 1605 1606 /* 1607 * FIXME: mlogbuf will brim over with INIT stack dumps. 1608 * To enable show_stack from INIT, we use oops_in_progress which should 1609 * be used in real oops. This would cause something wrong after INIT. 1610 */ 1611 BREAK_LOGLEVEL(console_loglevel); 1612 ia64_mlogbuf_dump_from_init(); 1613 1614 printk(KERN_ERR "Processes interrupted by INIT -"); 1615 for_each_online_cpu(c) { 1616 struct ia64_sal_os_state *s; 1617 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1618 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1619 g = s->prev_task; 1620 if (g) { 1621 if (g->pid) 1622 printk(" %d", g->pid); 1623 else 1624 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1625 } 1626 } 1627 printk("\n\n"); 1628 if (read_trylock(&tasklist_lock)) { 1629 do_each_thread (g, t) { 1630 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1631 show_stack(t, NULL); 1632 } while_each_thread (g, t); 1633 read_unlock(&tasklist_lock); 1634 } 1635 /* FIXME: This will not restore zapped printk locks. */ 1636 RESTORE_LOGLEVEL(console_loglevel); 1637 return NOTIFY_DONE; 1638 } 1639 1640 /* 1641 * C portion of the OS INIT handler 1642 * 1643 * Called from ia64_os_init_dispatch 1644 * 1645 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1646 * this event. This code is used for both monarch and slave INIT events, see 1647 * sos->monarch. 1648 * 1649 * All INIT events switch to the INIT stack and change the previous process to 1650 * blocked status. If one of the INIT events is the monarch then we are 1651 * probably processing the nmi button/command. Use the monarch cpu to dump all 1652 * the processes. The slave INIT events all spin until the monarch cpu 1653 * returns. We can also get INIT slave events for MCA, in which case the MCA 1654 * process is the monarch. 1655 */ 1656 1657 void 1658 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1659 struct ia64_sal_os_state *sos) 1660 { 1661 static atomic_t slaves; 1662 static atomic_t monarchs; 1663 struct task_struct *previous_current; 1664 int cpu = smp_processor_id(); 1665 struct ia64_mca_notify_die nd = 1666 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1667 1668 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1669 1670 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1671 sos->proc_state_param, cpu, sos->monarch); 1672 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1673 1674 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1675 sos->os_status = IA64_INIT_RESUME; 1676 1677 /* FIXME: Workaround for broken proms that drive all INIT events as 1678 * slaves. The last slave that enters is promoted to be a monarch. 1679 * Remove this code in September 2006, that gives platforms a year to 1680 * fix their proms and get their customers updated. 1681 */ 1682 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1683 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1684 __func__, cpu); 1685 atomic_dec(&slaves); 1686 sos->monarch = 1; 1687 } 1688 1689 /* FIXME: Workaround for broken proms that drive all INIT events as 1690 * monarchs. Second and subsequent monarchs are demoted to slaves. 1691 * Remove this code in September 2006, that gives platforms a year to 1692 * fix their proms and get their customers updated. 1693 */ 1694 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1695 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1696 __func__, cpu); 1697 atomic_dec(&monarchs); 1698 sos->monarch = 0; 1699 } 1700 1701 if (!sos->monarch) { 1702 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1703 1704 #ifdef CONFIG_KEXEC 1705 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1706 udelay(1000); 1707 #else 1708 while (monarch_cpu == -1) 1709 cpu_relax(); /* spin until monarch enters */ 1710 #endif 1711 1712 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1713 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1714 1715 #ifdef CONFIG_KEXEC 1716 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1717 udelay(1000); 1718 #else 1719 while (monarch_cpu != -1) 1720 cpu_relax(); /* spin until monarch leaves */ 1721 #endif 1722 1723 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1724 1725 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1726 set_curr_task(cpu, previous_current); 1727 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1728 atomic_dec(&slaves); 1729 return; 1730 } 1731 1732 monarch_cpu = cpu; 1733 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1734 1735 /* 1736 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1737 * generated via the BMC's command-line interface, but since the console is on the 1738 * same serial line, the user will need some time to switch out of the BMC before 1739 * the dump begins. 1740 */ 1741 mprintk("Delaying for 5 seconds...\n"); 1742 udelay(5*1000000); 1743 ia64_wait_for_slaves(cpu, "INIT"); 1744 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1745 * to default_monarch_init_process() above and just print all the 1746 * tasks. 1747 */ 1748 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1749 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1750 1751 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1752 atomic_dec(&monarchs); 1753 set_curr_task(cpu, previous_current); 1754 monarch_cpu = -1; 1755 return; 1756 } 1757 1758 static int __init 1759 ia64_mca_disable_cpe_polling(char *str) 1760 { 1761 cpe_poll_enabled = 0; 1762 return 1; 1763 } 1764 1765 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1766 1767 static struct irqaction cmci_irqaction = { 1768 .handler = ia64_mca_cmc_int_handler, 1769 .flags = IRQF_DISABLED, 1770 .name = "cmc_hndlr" 1771 }; 1772 1773 static struct irqaction cmcp_irqaction = { 1774 .handler = ia64_mca_cmc_int_caller, 1775 .flags = IRQF_DISABLED, 1776 .name = "cmc_poll" 1777 }; 1778 1779 static struct irqaction mca_rdzv_irqaction = { 1780 .handler = ia64_mca_rendez_int_handler, 1781 .flags = IRQF_DISABLED, 1782 .name = "mca_rdzv" 1783 }; 1784 1785 static struct irqaction mca_wkup_irqaction = { 1786 .handler = ia64_mca_wakeup_int_handler, 1787 .flags = IRQF_DISABLED, 1788 .name = "mca_wkup" 1789 }; 1790 1791 #ifdef CONFIG_ACPI 1792 static struct irqaction mca_cpe_irqaction = { 1793 .handler = ia64_mca_cpe_int_handler, 1794 .flags = IRQF_DISABLED, 1795 .name = "cpe_hndlr" 1796 }; 1797 1798 static struct irqaction mca_cpep_irqaction = { 1799 .handler = ia64_mca_cpe_int_caller, 1800 .flags = IRQF_DISABLED, 1801 .name = "cpe_poll" 1802 }; 1803 #endif /* CONFIG_ACPI */ 1804 1805 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1806 * these stacks can never sleep, they cannot return from the kernel to user 1807 * space, they do not appear in a normal ps listing. So there is no need to 1808 * format most of the fields. 1809 */ 1810 1811 static void __cpuinit 1812 format_mca_init_stack(void *mca_data, unsigned long offset, 1813 const char *type, int cpu) 1814 { 1815 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1816 struct thread_info *ti; 1817 memset(p, 0, KERNEL_STACK_SIZE); 1818 ti = task_thread_info(p); 1819 ti->flags = _TIF_MCA_INIT; 1820 ti->preempt_count = 1; 1821 ti->task = p; 1822 ti->cpu = cpu; 1823 p->stack = ti; 1824 p->state = TASK_UNINTERRUPTIBLE; 1825 cpu_set(cpu, p->cpus_allowed); 1826 INIT_LIST_HEAD(&p->tasks); 1827 p->parent = p->real_parent = p->group_leader = p; 1828 INIT_LIST_HEAD(&p->children); 1829 INIT_LIST_HEAD(&p->sibling); 1830 strncpy(p->comm, type, sizeof(p->comm)-1); 1831 } 1832 1833 /* Caller prevents this from being called after init */ 1834 static void * __init_refok mca_bootmem(void) 1835 { 1836 return __alloc_bootmem(sizeof(struct ia64_mca_cpu), 1837 KERNEL_STACK_SIZE, 0); 1838 } 1839 1840 /* Do per-CPU MCA-related initialization. */ 1841 void __cpuinit 1842 ia64_mca_cpu_init(void *cpu_data) 1843 { 1844 void *pal_vaddr; 1845 void *data; 1846 long sz = sizeof(struct ia64_mca_cpu); 1847 int cpu = smp_processor_id(); 1848 static int first_time = 1; 1849 1850 /* 1851 * Structure will already be allocated if cpu has been online, 1852 * then offlined. 1853 */ 1854 if (__per_cpu_mca[cpu]) { 1855 data = __va(__per_cpu_mca[cpu]); 1856 } else { 1857 if (first_time) { 1858 data = mca_bootmem(); 1859 first_time = 0; 1860 } else 1861 data = __get_free_pages(GFP_KERNEL, get_order(sz)); 1862 if (!data) 1863 panic("Could not allocate MCA memory for cpu %d\n", 1864 cpu); 1865 } 1866 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1867 "MCA", cpu); 1868 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1869 "INIT", cpu); 1870 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data); 1871 1872 /* 1873 * Stash away a copy of the PTE needed to map the per-CPU page. 1874 * We may need it during MCA recovery. 1875 */ 1876 __get_cpu_var(ia64_mca_per_cpu_pte) = 1877 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); 1878 1879 /* 1880 * Also, stash away a copy of the PAL address and the PTE 1881 * needed to map it. 1882 */ 1883 pal_vaddr = efi_get_pal_addr(); 1884 if (!pal_vaddr) 1885 return; 1886 __get_cpu_var(ia64_mca_pal_base) = 1887 GRANULEROUNDDOWN((unsigned long) pal_vaddr); 1888 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), 1889 PAGE_KERNEL)); 1890 } 1891 1892 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy) 1893 { 1894 unsigned long flags; 1895 1896 local_irq_save(flags); 1897 if (!cmc_polling_enabled) 1898 ia64_mca_cmc_vector_enable(NULL); 1899 local_irq_restore(flags); 1900 } 1901 1902 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb, 1903 unsigned long action, 1904 void *hcpu) 1905 { 1906 int hotcpu = (unsigned long) hcpu; 1907 1908 switch (action) { 1909 case CPU_ONLINE: 1910 case CPU_ONLINE_FROZEN: 1911 smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust, 1912 NULL, 0); 1913 break; 1914 } 1915 return NOTIFY_OK; 1916 } 1917 1918 static struct notifier_block mca_cpu_notifier __cpuinitdata = { 1919 .notifier_call = mca_cpu_callback 1920 }; 1921 1922 /* 1923 * ia64_mca_init 1924 * 1925 * Do all the system level mca specific initialization. 1926 * 1927 * 1. Register spinloop and wakeup request interrupt vectors 1928 * 1929 * 2. Register OS_MCA handler entry point 1930 * 1931 * 3. Register OS_INIT handler entry point 1932 * 1933 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1934 * 1935 * Note that this initialization is done very early before some kernel 1936 * services are available. 1937 * 1938 * Inputs : None 1939 * 1940 * Outputs : None 1941 */ 1942 void __init 1943 ia64_mca_init(void) 1944 { 1945 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1946 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1947 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1948 int i; 1949 long rc; 1950 struct ia64_sal_retval isrv; 1951 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1952 static struct notifier_block default_init_monarch_nb = { 1953 .notifier_call = default_monarch_init_process, 1954 .priority = 0/* we need to notified last */ 1955 }; 1956 1957 IA64_MCA_DEBUG("%s: begin\n", __func__); 1958 1959 /* Clear the Rendez checkin flag for all cpus */ 1960 for(i = 0 ; i < NR_CPUS; i++) 1961 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1962 1963 /* 1964 * Register the rendezvous spinloop and wakeup mechanism with SAL 1965 */ 1966 1967 /* Register the rendezvous interrupt vector with SAL */ 1968 while (1) { 1969 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1970 SAL_MC_PARAM_MECHANISM_INT, 1971 IA64_MCA_RENDEZ_VECTOR, 1972 timeout, 1973 SAL_MC_PARAM_RZ_ALWAYS); 1974 rc = isrv.status; 1975 if (rc == 0) 1976 break; 1977 if (rc == -2) { 1978 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1979 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1980 timeout = isrv.v0; 1981 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1982 continue; 1983 } 1984 printk(KERN_ERR "Failed to register rendezvous interrupt " 1985 "with SAL (status %ld)\n", rc); 1986 return; 1987 } 1988 1989 /* Register the wakeup interrupt vector with SAL */ 1990 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1991 SAL_MC_PARAM_MECHANISM_INT, 1992 IA64_MCA_WAKEUP_VECTOR, 1993 0, 0); 1994 rc = isrv.status; 1995 if (rc) { 1996 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1997 "(status %ld)\n", rc); 1998 return; 1999 } 2000 2001 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 2002 2003 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 2004 /* 2005 * XXX - disable SAL checksum by setting size to 0; should be 2006 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 2007 */ 2008 ia64_mc_info.imi_mca_handler_size = 0; 2009 2010 /* Register the os mca handler with SAL */ 2011 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 2012 ia64_mc_info.imi_mca_handler, 2013 ia64_tpa(mca_hldlr_ptr->gp), 2014 ia64_mc_info.imi_mca_handler_size, 2015 0, 0, 0))) 2016 { 2017 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 2018 "(status %ld)\n", rc); 2019 return; 2020 } 2021 2022 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 2023 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 2024 2025 /* 2026 * XXX - disable SAL checksum by setting size to 0, should be 2027 * size of the actual init handler in mca_asm.S. 2028 */ 2029 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 2030 ia64_mc_info.imi_monarch_init_handler_size = 0; 2031 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 2032 ia64_mc_info.imi_slave_init_handler_size = 0; 2033 2034 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 2035 ia64_mc_info.imi_monarch_init_handler); 2036 2037 /* Register the os init handler with SAL */ 2038 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 2039 ia64_mc_info.imi_monarch_init_handler, 2040 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2041 ia64_mc_info.imi_monarch_init_handler_size, 2042 ia64_mc_info.imi_slave_init_handler, 2043 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2044 ia64_mc_info.imi_slave_init_handler_size))) 2045 { 2046 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 2047 "(status %ld)\n", rc); 2048 return; 2049 } 2050 if (register_die_notifier(&default_init_monarch_nb)) { 2051 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 2052 return; 2053 } 2054 2055 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2056 2057 /* 2058 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2059 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2060 */ 2061 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 2062 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 2063 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2064 2065 /* Setup the MCA rendezvous interrupt vector */ 2066 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 2067 2068 /* Setup the MCA wakeup interrupt vector */ 2069 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 2070 2071 #ifdef CONFIG_ACPI 2072 /* Setup the CPEI/P handler */ 2073 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 2074 #endif 2075 2076 /* Initialize the areas set aside by the OS to buffer the 2077 * platform/processor error states for MCA/INIT/CMC 2078 * handling. 2079 */ 2080 ia64_log_init(SAL_INFO_TYPE_MCA); 2081 ia64_log_init(SAL_INFO_TYPE_INIT); 2082 ia64_log_init(SAL_INFO_TYPE_CMC); 2083 ia64_log_init(SAL_INFO_TYPE_CPE); 2084 2085 mca_init = 1; 2086 printk(KERN_INFO "MCA related initialization done\n"); 2087 } 2088 2089 /* 2090 * ia64_mca_late_init 2091 * 2092 * Opportunity to setup things that require initialization later 2093 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2094 * platform doesn't support an interrupt driven mechanism. 2095 * 2096 * Inputs : None 2097 * Outputs : Status 2098 */ 2099 static int __init 2100 ia64_mca_late_init(void) 2101 { 2102 if (!mca_init) 2103 return 0; 2104 2105 register_hotcpu_notifier(&mca_cpu_notifier); 2106 2107 /* Setup the CMCI/P vector and handler */ 2108 init_timer(&cmc_poll_timer); 2109 cmc_poll_timer.function = ia64_mca_cmc_poll; 2110 2111 /* Unmask/enable the vector */ 2112 cmc_polling_enabled = 0; 2113 schedule_work(&cmc_enable_work); 2114 2115 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2116 2117 #ifdef CONFIG_ACPI 2118 /* Setup the CPEI/P vector and handler */ 2119 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2120 init_timer(&cpe_poll_timer); 2121 cpe_poll_timer.function = ia64_mca_cpe_poll; 2122 2123 { 2124 struct irq_desc *desc; 2125 unsigned int irq; 2126 2127 if (cpe_vector >= 0) { 2128 /* If platform supports CPEI, enable the irq. */ 2129 irq = local_vector_to_irq(cpe_vector); 2130 if (irq > 0) { 2131 cpe_poll_enabled = 0; 2132 desc = irq_desc + irq; 2133 desc->status |= IRQ_PER_CPU; 2134 setup_irq(irq, &mca_cpe_irqaction); 2135 ia64_cpe_irq = irq; 2136 ia64_mca_register_cpev(cpe_vector); 2137 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2138 __func__); 2139 return 0; 2140 } 2141 printk(KERN_ERR "%s: Failed to find irq for CPE " 2142 "interrupt handler, vector %d\n", 2143 __func__, cpe_vector); 2144 } 2145 /* If platform doesn't support CPEI, get the timer going. */ 2146 if (cpe_poll_enabled) { 2147 ia64_mca_cpe_poll(0UL); 2148 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2149 } 2150 } 2151 #endif 2152 2153 return 0; 2154 } 2155 2156 device_initcall(ia64_mca_late_init); 2157