xref: /openbmc/linux/arch/ia64/kernel/mca.c (revision 9ac8d3fb)
1 /*
2  * File:	mca.c
3  * Purpose:	Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  *	David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
25  *
26  * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
27  *	      Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  *	      added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
31  *	      Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  *	      errors, completed code for logging of corrected & uncorrected
33  *	      machine check errors, and updated for conformance with Nov. 2000
34  *	      revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
37  *	      Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  *	      set SAL default return values, changed error record structure to
39  *	      linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
42  *	      GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
45  *	      Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <kaos@sgi.com>
48  *	      smp_call_function() must not be called from interrupt context
49  *	      (can deadlock on tasklist_lock).
50  *	      Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <kaos@sgi.com>
53  *	      Avoid deadlock when using printk() for MCA and INIT records.
54  *	      Delete all record printing code, moved to salinfo_decode in user
55  *	      space.  Mark variables and functions static where possible.
56  *	      Delete dead variables and functions.  Reorder to remove the need
57  *	      for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <kaos@sgi.com>
60  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  *	      state.
62  *
63  * 2005-10-07 Keith Owens <kaos@sgi.com>
64  *	      Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
67  *	      Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <rja@sgi.com>
70  *	      Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88 
89 #include <asm/delay.h>
90 #include <asm/machvec.h>
91 #include <asm/meminit.h>
92 #include <asm/page.h>
93 #include <asm/ptrace.h>
94 #include <asm/system.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
98 
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101 #include <asm/tlb.h>
102 
103 #include "mca_drv.h"
104 #include "entry.h"
105 
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...)	printk(fmt)
108 #else
109 # define IA64_MCA_DEBUG(fmt...)
110 #endif
111 
112 #define NOTIFY_INIT(event, regs, arg, spin)				\
113 do {									\
114 	if ((notify_die((event), "INIT", (regs), (arg), 0, 0)		\
115 			== NOTIFY_STOP) && ((spin) == 1))		\
116 		ia64_mca_spin(__func__);				\
117 } while (0)
118 
119 #define NOTIFY_MCA(event, regs, arg, spin)				\
120 do {									\
121 	if ((notify_die((event), "MCA", (regs), (arg), 0, 0)		\
122 			== NOTIFY_STOP) && ((spin) == 1))		\
123 		ia64_mca_spin(__func__);				\
124 } while (0)
125 
126 /* Used by mca_asm.S */
127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
132 
133 unsigned long __per_cpu_mca[NR_CPUS];
134 
135 /* In mca_asm.S */
136 extern void			ia64_os_init_dispatch_monarch (void);
137 extern void			ia64_os_init_dispatch_slave (void);
138 
139 static int monarch_cpu = -1;
140 
141 static ia64_mc_info_t		ia64_mc_info;
142 
143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
145 #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
146 #define CPE_HISTORY_LENGTH    5
147 #define CMC_HISTORY_LENGTH    5
148 
149 #ifdef CONFIG_ACPI
150 static struct timer_list cpe_poll_timer;
151 #endif
152 static struct timer_list cmc_poll_timer;
153 /*
154  * This variable tells whether we are currently in polling mode.
155  * Start with this in the wrong state so we won't play w/ timers
156  * before the system is ready.
157  */
158 static int cmc_polling_enabled = 1;
159 
160 /*
161  * Clearing this variable prevents CPE polling from getting activated
162  * in mca_late_init.  Use it if your system doesn't provide a CPEI,
163  * but encounters problems retrieving CPE logs.  This should only be
164  * necessary for debugging.
165  */
166 static int cpe_poll_enabled = 1;
167 
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169 
170 static int mca_init __initdata;
171 
172 /*
173  * limited & delayed printing support for MCA/INIT handler
174  */
175 
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
177 
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock);	/* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock);	/* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
187 
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel)		\
190 	oops_in_progress = 1;				\
191 	if (loglevel_save < 0)				\
192 		loglevel_save = __console_loglevel;	\
193 	__console_loglevel = 15;
194 
195 #define RESTORE_LOGLEVEL(__console_loglevel)		\
196 	if (loglevel_save >= 0) {			\
197 		__console_loglevel = loglevel_save;	\
198 		loglevel_save = -1;			\
199 	}						\
200 	mlogbuf_finished = 0;				\
201 	oops_in_progress = 0;
202 
203 /*
204  * Push messages into buffer, print them later if not urgent.
205  */
206 void ia64_mca_printk(const char *fmt, ...)
207 {
208 	va_list args;
209 	int printed_len;
210 	char temp_buf[MLOGBUF_MSGMAX];
211 	char *p;
212 
213 	va_start(args, fmt);
214 	printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215 	va_end(args);
216 
217 	/* Copy the output into mlogbuf */
218 	if (oops_in_progress) {
219 		/* mlogbuf was abandoned, use printk directly instead. */
220 		printk(temp_buf);
221 	} else {
222 		spin_lock(&mlogbuf_wlock);
223 		for (p = temp_buf; *p; p++) {
224 			unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225 			if (next != mlogbuf_start) {
226 				mlogbuf[mlogbuf_end] = *p;
227 				mlogbuf_end = next;
228 			} else {
229 				/* buffer full */
230 				break;
231 			}
232 		}
233 		mlogbuf[mlogbuf_end] = '\0';
234 		spin_unlock(&mlogbuf_wlock);
235 	}
236 }
237 EXPORT_SYMBOL(ia64_mca_printk);
238 
239 /*
240  * Print buffered messages.
241  *  NOTE: call this after returning normal context. (ex. from salinfod)
242  */
243 void ia64_mlogbuf_dump(void)
244 {
245 	char temp_buf[MLOGBUF_MSGMAX];
246 	char *p;
247 	unsigned long index;
248 	unsigned long flags;
249 	unsigned int printed_len;
250 
251 	/* Get output from mlogbuf */
252 	while (mlogbuf_start != mlogbuf_end) {
253 		temp_buf[0] = '\0';
254 		p = temp_buf;
255 		printed_len = 0;
256 
257 		spin_lock_irqsave(&mlogbuf_rlock, flags);
258 
259 		index = mlogbuf_start;
260 		while (index != mlogbuf_end) {
261 			*p = mlogbuf[index];
262 			index = (index + 1) % MLOGBUF_SIZE;
263 			if (!*p)
264 				break;
265 			p++;
266 			if (++printed_len >= MLOGBUF_MSGMAX - 1)
267 				break;
268 		}
269 		*p = '\0';
270 		if (temp_buf[0])
271 			printk(temp_buf);
272 		mlogbuf_start = index;
273 
274 		mlogbuf_timestamp = 0;
275 		spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276 	}
277 }
278 EXPORT_SYMBOL(ia64_mlogbuf_dump);
279 
280 /*
281  * Call this if system is going to down or if immediate flushing messages to
282  * console is required. (ex. recovery was failed, crash dump is going to be
283  * invoked, long-wait rendezvous etc.)
284  *  NOTE: this should be called from monarch.
285  */
286 static void ia64_mlogbuf_finish(int wait)
287 {
288 	BREAK_LOGLEVEL(console_loglevel);
289 
290 	spin_lock_init(&mlogbuf_rlock);
291 	ia64_mlogbuf_dump();
292 	printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293 		"MCA/INIT might be dodgy or fail.\n");
294 
295 	if (!wait)
296 		return;
297 
298 	/* wait for console */
299 	printk("Delaying for 5 seconds...\n");
300 	udelay(5*1000000);
301 
302 	mlogbuf_finished = 1;
303 }
304 
305 /*
306  * Print buffered messages from INIT context.
307  */
308 static void ia64_mlogbuf_dump_from_init(void)
309 {
310 	if (mlogbuf_finished)
311 		return;
312 
313 	if (mlogbuf_timestamp &&
314 			time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316 			" and the system seems to be messed up.\n");
317 		ia64_mlogbuf_finish(0);
318 		return;
319 	}
320 
321 	if (!spin_trylock(&mlogbuf_rlock)) {
322 		printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323 			"Generated messages other than stack dump will be "
324 			"buffered to mlogbuf and will be printed later.\n");
325 		printk(KERN_ERR "INIT: If messages would not printed after "
326 			"this INIT, wait 30sec and assert INIT again.\n");
327 		if (!mlogbuf_timestamp)
328 			mlogbuf_timestamp = jiffies;
329 		return;
330 	}
331 	spin_unlock(&mlogbuf_rlock);
332 	ia64_mlogbuf_dump();
333 }
334 
335 static void inline
336 ia64_mca_spin(const char *func)
337 {
338 	if (monarch_cpu == smp_processor_id())
339 		ia64_mlogbuf_finish(0);
340 	mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341 	while (1)
342 		cpu_relax();
343 }
344 /*
345  * IA64_MCA log support
346  */
347 #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
349 
350 typedef struct ia64_state_log_s
351 {
352 	spinlock_t	isl_lock;
353 	int		isl_index;
354 	unsigned long	isl_count;
355 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
356 } ia64_state_log_t;
357 
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359 
360 #define IA64_LOG_ALLOCATE(it, size) \
361 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362 		(ia64_err_rec_t *)alloc_bootmem(size); \
363 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364 		(ia64_err_rec_t *)alloc_bootmem(size);}
365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366 #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367 #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368 #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
369 #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_INDEX_INC(it) \
371     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372     ia64_state_log[it].isl_count++;}
373 #define IA64_LOG_INDEX_DEC(it) \
374     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375 #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376 #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377 #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
378 
379 /*
380  * ia64_log_init
381  *	Reset the OS ia64 log buffer
382  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383  * Outputs	:	None
384  */
385 static void __init
386 ia64_log_init(int sal_info_type)
387 {
388 	u64	max_size = 0;
389 
390 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391 	IA64_LOG_LOCK_INIT(sal_info_type);
392 
393 	// SAL will tell us the maximum size of any error record of this type
394 	max_size = ia64_sal_get_state_info_size(sal_info_type);
395 	if (!max_size)
396 		/* alloc_bootmem() doesn't like zero-sized allocations! */
397 		return;
398 
399 	// set up OS data structures to hold error info
400 	IA64_LOG_ALLOCATE(sal_info_type, max_size);
401 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403 }
404 
405 /*
406  * ia64_log_get
407  *
408  *	Get the current MCA log from SAL and copy it into the OS log buffer.
409  *
410  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411  *              irq_safe    whether you can use printk at this point
412  *  Outputs :   size        (total record length)
413  *              *buffer     (ptr to error record)
414  *
415  */
416 static u64
417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418 {
419 	sal_log_record_header_t     *log_buffer;
420 	u64                         total_len = 0;
421 	unsigned long               s;
422 
423 	IA64_LOG_LOCK(sal_info_type);
424 
425 	/* Get the process state information */
426 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427 
428 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429 
430 	if (total_len) {
431 		IA64_LOG_INDEX_INC(sal_info_type);
432 		IA64_LOG_UNLOCK(sal_info_type);
433 		if (irq_safe) {
434 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435 				       __func__, sal_info_type, total_len);
436 		}
437 		*buffer = (u8 *) log_buffer;
438 		return total_len;
439 	} else {
440 		IA64_LOG_UNLOCK(sal_info_type);
441 		return 0;
442 	}
443 }
444 
445 /*
446  *  ia64_mca_log_sal_error_record
447  *
448  *  This function retrieves a specified error record type from SAL
449  *  and wakes up any processes waiting for error records.
450  *
451  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
452  *              FIXME: remove MCA and irq_safe.
453  */
454 static void
455 ia64_mca_log_sal_error_record(int sal_info_type)
456 {
457 	u8 *buffer;
458 	sal_log_record_header_t *rh;
459 	u64 size;
460 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461 #ifdef IA64_MCA_DEBUG_INFO
462 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463 #endif
464 
465 	size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466 	if (!size)
467 		return;
468 
469 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470 
471 	if (irq_safe)
472 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
473 			smp_processor_id(),
474 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475 
476 	/* Clear logs from corrected errors in case there's no user-level logger */
477 	rh = (sal_log_record_header_t *)buffer;
478 	if (rh->severity == sal_log_severity_corrected)
479 		ia64_sal_clear_state_info(sal_info_type);
480 }
481 
482 /*
483  * search_mca_table
484  *  See if the MCA surfaced in an instruction range
485  *  that has been tagged as recoverable.
486  *
487  *  Inputs
488  *	first	First address range to check
489  *	last	Last address range to check
490  *	ip	Instruction pointer, address we are looking for
491  *
492  * Return value:
493  *      1 on Success (in the table)/ 0 on Failure (not in the  table)
494  */
495 int
496 search_mca_table (const struct mca_table_entry *first,
497                 const struct mca_table_entry *last,
498                 unsigned long ip)
499 {
500         const struct mca_table_entry *curr;
501         u64 curr_start, curr_end;
502 
503         curr = first;
504         while (curr <= last) {
505                 curr_start = (u64) &curr->start_addr + curr->start_addr;
506                 curr_end = (u64) &curr->end_addr + curr->end_addr;
507 
508                 if ((ip >= curr_start) && (ip <= curr_end)) {
509                         return 1;
510                 }
511                 curr++;
512         }
513         return 0;
514 }
515 
516 /* Given an address, look for it in the mca tables. */
517 int mca_recover_range(unsigned long addr)
518 {
519 	extern struct mca_table_entry __start___mca_table[];
520 	extern struct mca_table_entry __stop___mca_table[];
521 
522 	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523 }
524 EXPORT_SYMBOL_GPL(mca_recover_range);
525 
526 #ifdef CONFIG_ACPI
527 
528 int cpe_vector = -1;
529 int ia64_cpe_irq = -1;
530 
531 static irqreturn_t
532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
533 {
534 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH];
535 	static int		index;
536 	static DEFINE_SPINLOCK(cpe_history_lock);
537 
538 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539 		       __func__, cpe_irq, smp_processor_id());
540 
541 	/* SAL spec states this should run w/ interrupts enabled */
542 	local_irq_enable();
543 
544 	spin_lock(&cpe_history_lock);
545 	if (!cpe_poll_enabled && cpe_vector >= 0) {
546 
547 		int i, count = 1; /* we know 1 happened now */
548 		unsigned long now = jiffies;
549 
550 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551 			if (now - cpe_history[i] <= HZ)
552 				count++;
553 		}
554 
555 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556 		if (count >= CPE_HISTORY_LENGTH) {
557 
558 			cpe_poll_enabled = 1;
559 			spin_unlock(&cpe_history_lock);
560 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561 
562 			/*
563 			 * Corrected errors will still be corrected, but
564 			 * make sure there's a log somewhere that indicates
565 			 * something is generating more than we can handle.
566 			 */
567 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568 
569 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570 
571 			/* lock already released, get out now */
572 			goto out;
573 		} else {
574 			cpe_history[index++] = now;
575 			if (index == CPE_HISTORY_LENGTH)
576 				index = 0;
577 		}
578 	}
579 	spin_unlock(&cpe_history_lock);
580 out:
581 	/* Get the CPE error record and log it */
582 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583 
584 	return IRQ_HANDLED;
585 }
586 
587 #endif /* CONFIG_ACPI */
588 
589 #ifdef CONFIG_ACPI
590 /*
591  * ia64_mca_register_cpev
592  *
593  *  Register the corrected platform error vector with SAL.
594  *
595  *  Inputs
596  *      cpev        Corrected Platform Error Vector number
597  *
598  *  Outputs
599  *      None
600  */
601 void
602 ia64_mca_register_cpev (int cpev)
603 {
604 	/* Register the CPE interrupt vector with SAL */
605 	struct ia64_sal_retval isrv;
606 
607 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
608 	if (isrv.status) {
609 		printk(KERN_ERR "Failed to register Corrected Platform "
610 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
611 		return;
612 	}
613 
614 	IA64_MCA_DEBUG("%s: corrected platform error "
615 		       "vector %#x registered\n", __func__, cpev);
616 }
617 #endif /* CONFIG_ACPI */
618 
619 /*
620  * ia64_mca_cmc_vector_setup
621  *
622  *  Setup the corrected machine check vector register in the processor.
623  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
624  *  This function is invoked on a per-processor basis.
625  *
626  * Inputs
627  *      None
628  *
629  * Outputs
630  *	None
631  */
632 void __cpuinit
633 ia64_mca_cmc_vector_setup (void)
634 {
635 	cmcv_reg_t	cmcv;
636 
637 	cmcv.cmcv_regval	= 0;
638 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */
639 	cmcv.cmcv_vector	= IA64_CMC_VECTOR;
640 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
641 
642 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
643 		       __func__, smp_processor_id(), IA64_CMC_VECTOR);
644 
645 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
646 		       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
647 }
648 
649 /*
650  * ia64_mca_cmc_vector_disable
651  *
652  *  Mask the corrected machine check vector register in the processor.
653  *  This function is invoked on a per-processor basis.
654  *
655  * Inputs
656  *      dummy(unused)
657  *
658  * Outputs
659  *	None
660  */
661 static void
662 ia64_mca_cmc_vector_disable (void *dummy)
663 {
664 	cmcv_reg_t	cmcv;
665 
666 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
667 
668 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
669 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
670 
671 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
672 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
673 }
674 
675 /*
676  * ia64_mca_cmc_vector_enable
677  *
678  *  Unmask the corrected machine check vector register in the processor.
679  *  This function is invoked on a per-processor basis.
680  *
681  * Inputs
682  *      dummy(unused)
683  *
684  * Outputs
685  *	None
686  */
687 static void
688 ia64_mca_cmc_vector_enable (void *dummy)
689 {
690 	cmcv_reg_t	cmcv;
691 
692 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
693 
694 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
695 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
696 
697 	IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
698 		       __func__, smp_processor_id(), cmcv.cmcv_vector);
699 }
700 
701 /*
702  * ia64_mca_cmc_vector_disable_keventd
703  *
704  * Called via keventd (smp_call_function() is not safe in interrupt context) to
705  * disable the cmc interrupt vector.
706  */
707 static void
708 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
709 {
710 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
711 }
712 
713 /*
714  * ia64_mca_cmc_vector_enable_keventd
715  *
716  * Called via keventd (smp_call_function() is not safe in interrupt context) to
717  * enable the cmc interrupt vector.
718  */
719 static void
720 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
721 {
722 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
723 }
724 
725 /*
726  * ia64_mca_wakeup
727  *
728  *	Send an inter-cpu interrupt to wake-up a particular cpu.
729  *
730  *  Inputs  :   cpuid
731  *  Outputs :   None
732  */
733 static void
734 ia64_mca_wakeup(int cpu)
735 {
736 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
737 }
738 
739 /*
740  * ia64_mca_wakeup_all
741  *
742  *	Wakeup all the slave cpus which have rendez'ed previously.
743  *
744  *  Inputs  :   None
745  *  Outputs :   None
746  */
747 static void
748 ia64_mca_wakeup_all(void)
749 {
750 	int cpu;
751 
752 	/* Clear the Rendez checkin flag for all cpus */
753 	for_each_online_cpu(cpu) {
754 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
755 			ia64_mca_wakeup(cpu);
756 	}
757 
758 }
759 
760 /*
761  * ia64_mca_rendez_interrupt_handler
762  *
763  *	This is handler used to put slave processors into spinloop
764  *	while the monarch processor does the mca handling and later
765  *	wake each slave up once the monarch is done.  The state
766  *	IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
767  *	in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
768  *	the cpu has come out of OS rendezvous.
769  *
770  *  Inputs  :   None
771  *  Outputs :   None
772  */
773 static irqreturn_t
774 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
775 {
776 	unsigned long flags;
777 	int cpu = smp_processor_id();
778 	struct ia64_mca_notify_die nd =
779 		{ .sos = NULL, .monarch_cpu = &monarch_cpu };
780 
781 	/* Mask all interrupts */
782 	local_irq_save(flags);
783 
784 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
785 
786 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
787 	/* Register with the SAL monarch that the slave has
788 	 * reached SAL
789 	 */
790 	ia64_sal_mc_rendez();
791 
792 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
793 
794 	/* Wait for the monarch cpu to exit. */
795 	while (monarch_cpu != -1)
796 	       cpu_relax();	/* spin until monarch leaves */
797 
798 	NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
799 
800 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
801 	/* Enable all interrupts */
802 	local_irq_restore(flags);
803 	return IRQ_HANDLED;
804 }
805 
806 /*
807  * ia64_mca_wakeup_int_handler
808  *
809  *	The interrupt handler for processing the inter-cpu interrupt to the
810  *	slave cpu which was spinning in the rendez loop.
811  *	Since this spinning is done by turning off the interrupts and
812  *	polling on the wakeup-interrupt bit in the IRR, there is
813  *	nothing useful to be done in the handler.
814  *
815  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
816  *	arg		(Interrupt handler specific argument)
817  *  Outputs :   None
818  *
819  */
820 static irqreturn_t
821 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
822 {
823 	return IRQ_HANDLED;
824 }
825 
826 /* Function pointer for extra MCA recovery */
827 int (*ia64_mca_ucmc_extension)
828 	(void*,struct ia64_sal_os_state*)
829 	= NULL;
830 
831 int
832 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
833 {
834 	if (ia64_mca_ucmc_extension)
835 		return 1;
836 
837 	ia64_mca_ucmc_extension = fn;
838 	return 0;
839 }
840 
841 void
842 ia64_unreg_MCA_extension(void)
843 {
844 	if (ia64_mca_ucmc_extension)
845 		ia64_mca_ucmc_extension = NULL;
846 }
847 
848 EXPORT_SYMBOL(ia64_reg_MCA_extension);
849 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
850 
851 
852 static inline void
853 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
854 {
855 	u64 fslot, tslot, nat;
856 	*tr = *fr;
857 	fslot = ((unsigned long)fr >> 3) & 63;
858 	tslot = ((unsigned long)tr >> 3) & 63;
859 	*tnat &= ~(1UL << tslot);
860 	nat = (fnat >> fslot) & 1;
861 	*tnat |= (nat << tslot);
862 }
863 
864 /* Change the comm field on the MCA/INT task to include the pid that
865  * was interrupted, it makes for easier debugging.  If that pid was 0
866  * (swapper or nested MCA/INIT) then use the start of the previous comm
867  * field suffixed with its cpu.
868  */
869 
870 static void
871 ia64_mca_modify_comm(const struct task_struct *previous_current)
872 {
873 	char *p, comm[sizeof(current->comm)];
874 	if (previous_current->pid)
875 		snprintf(comm, sizeof(comm), "%s %d",
876 			current->comm, previous_current->pid);
877 	else {
878 		int l;
879 		if ((p = strchr(previous_current->comm, ' ')))
880 			l = p - previous_current->comm;
881 		else
882 			l = strlen(previous_current->comm);
883 		snprintf(comm, sizeof(comm), "%s %*s %d",
884 			current->comm, l, previous_current->comm,
885 			task_thread_info(previous_current)->cpu);
886 	}
887 	memcpy(current->comm, comm, sizeof(current->comm));
888 }
889 
890 /* On entry to this routine, we are running on the per cpu stack, see
891  * mca_asm.h.  The original stack has not been touched by this event.  Some of
892  * the original stack's registers will be in the RBS on this stack.  This stack
893  * also contains a partial pt_regs and switch_stack, the rest of the data is in
894  * PAL minstate.
895  *
896  * The first thing to do is modify the original stack to look like a blocked
897  * task so we can run backtrace on the original task.  Also mark the per cpu
898  * stack as current to ensure that we use the correct task state, it also means
899  * that we can do backtrace on the MCA/INIT handler code itself.
900  */
901 
902 static struct task_struct *
903 ia64_mca_modify_original_stack(struct pt_regs *regs,
904 		const struct switch_stack *sw,
905 		struct ia64_sal_os_state *sos,
906 		const char *type)
907 {
908 	char *p;
909 	ia64_va va;
910 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */
911 	const pal_min_state_area_t *ms = sos->pal_min_state;
912 	struct task_struct *previous_current;
913 	struct pt_regs *old_regs;
914 	struct switch_stack *old_sw;
915 	unsigned size = sizeof(struct pt_regs) +
916 			sizeof(struct switch_stack) + 16;
917 	u64 *old_bspstore, *old_bsp;
918 	u64 *new_bspstore, *new_bsp;
919 	u64 old_unat, old_rnat, new_rnat, nat;
920 	u64 slots, loadrs = regs->loadrs;
921 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
922 	u64 ar_bspstore = regs->ar_bspstore;
923 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
924 	const u64 *bank;
925 	const char *msg;
926 	int cpu = smp_processor_id();
927 
928 	previous_current = curr_task(cpu);
929 	set_curr_task(cpu, current);
930 	if ((p = strchr(current->comm, ' ')))
931 		*p = '\0';
932 
933 	/* Best effort attempt to cope with MCA/INIT delivered while in
934 	 * physical mode.
935 	 */
936 	regs->cr_ipsr = ms->pmsa_ipsr;
937 	if (ia64_psr(regs)->dt == 0) {
938 		va.l = r12;
939 		if (va.f.reg == 0) {
940 			va.f.reg = 7;
941 			r12 = va.l;
942 		}
943 		va.l = r13;
944 		if (va.f.reg == 0) {
945 			va.f.reg = 7;
946 			r13 = va.l;
947 		}
948 	}
949 	if (ia64_psr(regs)->rt == 0) {
950 		va.l = ar_bspstore;
951 		if (va.f.reg == 0) {
952 			va.f.reg = 7;
953 			ar_bspstore = va.l;
954 		}
955 		va.l = ar_bsp;
956 		if (va.f.reg == 0) {
957 			va.f.reg = 7;
958 			ar_bsp = va.l;
959 		}
960 	}
961 
962 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
963 	 * have been copied to the old stack, the old stack may fail the
964 	 * validation tests below.  So ia64_old_stack() must restore the dirty
965 	 * registers from the new stack.  The old and new bspstore probably
966 	 * have different alignments, so loadrs calculated on the old bsp
967 	 * cannot be used to restore from the new bsp.  Calculate a suitable
968 	 * loadrs for the new stack and save it in the new pt_regs, where
969 	 * ia64_old_stack() can get it.
970 	 */
971 	old_bspstore = (u64 *)ar_bspstore;
972 	old_bsp = (u64 *)ar_bsp;
973 	slots = ia64_rse_num_regs(old_bspstore, old_bsp);
974 	new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
975 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
976 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
977 
978 	/* Verify the previous stack state before we change it */
979 	if (user_mode(regs)) {
980 		msg = "occurred in user space";
981 		/* previous_current is guaranteed to be valid when the task was
982 		 * in user space, so ...
983 		 */
984 		ia64_mca_modify_comm(previous_current);
985 		goto no_mod;
986 	}
987 
988 	if (r13 != sos->prev_IA64_KR_CURRENT) {
989 		msg = "inconsistent previous current and r13";
990 		goto no_mod;
991 	}
992 
993 	if (!mca_recover_range(ms->pmsa_iip)) {
994 		if ((r12 - r13) >= KERNEL_STACK_SIZE) {
995 			msg = "inconsistent r12 and r13";
996 			goto no_mod;
997 		}
998 		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
999 			msg = "inconsistent ar.bspstore and r13";
1000 			goto no_mod;
1001 		}
1002 		va.p = old_bspstore;
1003 		if (va.f.reg < 5) {
1004 			msg = "old_bspstore is in the wrong region";
1005 			goto no_mod;
1006 		}
1007 		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1008 			msg = "inconsistent ar.bsp and r13";
1009 			goto no_mod;
1010 		}
1011 		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1012 		if (ar_bspstore + size > r12) {
1013 			msg = "no room for blocked state";
1014 			goto no_mod;
1015 		}
1016 	}
1017 
1018 	ia64_mca_modify_comm(previous_current);
1019 
1020 	/* Make the original task look blocked.  First stack a struct pt_regs,
1021 	 * describing the state at the time of interrupt.  mca_asm.S built a
1022 	 * partial pt_regs, copy it and fill in the blanks using minstate.
1023 	 */
1024 	p = (char *)r12 - sizeof(*regs);
1025 	old_regs = (struct pt_regs *)p;
1026 	memcpy(old_regs, regs, sizeof(*regs));
1027 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
1028 	 * pmsa_{xip,xpsr,xfs}
1029 	 */
1030 	if (ia64_psr(regs)->ic) {
1031 		old_regs->cr_iip = ms->pmsa_iip;
1032 		old_regs->cr_ipsr = ms->pmsa_ipsr;
1033 		old_regs->cr_ifs = ms->pmsa_ifs;
1034 	} else {
1035 		old_regs->cr_iip = ms->pmsa_xip;
1036 		old_regs->cr_ipsr = ms->pmsa_xpsr;
1037 		old_regs->cr_ifs = ms->pmsa_xfs;
1038 	}
1039 	old_regs->pr = ms->pmsa_pr;
1040 	old_regs->b0 = ms->pmsa_br0;
1041 	old_regs->loadrs = loadrs;
1042 	old_regs->ar_rsc = ms->pmsa_rsc;
1043 	old_unat = old_regs->ar_unat;
1044 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
1045 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
1046 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
1047 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
1048 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
1049 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
1050 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
1051 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
1052 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
1053 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
1054 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
1055 	if (ia64_psr(old_regs)->bn)
1056 		bank = ms->pmsa_bank1_gr;
1057 	else
1058 		bank = ms->pmsa_bank0_gr;
1059 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
1060 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
1061 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
1062 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
1063 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
1064 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
1065 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
1066 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
1067 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
1068 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
1069 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
1070 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
1071 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
1072 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
1073 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
1074 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
1075 
1076 	/* Next stack a struct switch_stack.  mca_asm.S built a partial
1077 	 * switch_stack, copy it and fill in the blanks using pt_regs and
1078 	 * minstate.
1079 	 *
1080 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1081 	 * ar.pfs is set to 0.
1082 	 *
1083 	 * unwind.c::unw_unwind() does special processing for interrupt frames.
1084 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1085 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1086 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1087 	 * switch_stack on the original stack so it will unwind correctly when
1088 	 * unwind.c reads pt_regs.
1089 	 *
1090 	 * thread.ksp is updated to point to the synthesized switch_stack.
1091 	 */
1092 	p -= sizeof(struct switch_stack);
1093 	old_sw = (struct switch_stack *)p;
1094 	memcpy(old_sw, sw, sizeof(*sw));
1095 	old_sw->caller_unat = old_unat;
1096 	old_sw->ar_fpsr = old_regs->ar_fpsr;
1097 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1098 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1099 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1100 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1101 	old_sw->b0 = (u64)ia64_leave_kernel;
1102 	old_sw->b1 = ms->pmsa_br1;
1103 	old_sw->ar_pfs = 0;
1104 	old_sw->ar_unat = old_unat;
1105 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1106 	previous_current->thread.ksp = (u64)p - 16;
1107 
1108 	/* Finally copy the original stack's registers back to its RBS.
1109 	 * Registers from ar.bspstore through ar.bsp at the time of the event
1110 	 * are in the current RBS, copy them back to the original stack.  The
1111 	 * copy must be done register by register because the original bspstore
1112 	 * and the current one have different alignments, so the saved RNAT
1113 	 * data occurs at different places.
1114 	 *
1115 	 * mca_asm does cover, so the old_bsp already includes all registers at
1116 	 * the time of MCA/INIT.  It also does flushrs, so all registers before
1117 	 * this function have been written to backing store on the MCA/INIT
1118 	 * stack.
1119 	 */
1120 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1121 	old_rnat = regs->ar_rnat;
1122 	while (slots--) {
1123 		if (ia64_rse_is_rnat_slot(new_bspstore)) {
1124 			new_rnat = ia64_get_rnat(new_bspstore++);
1125 		}
1126 		if (ia64_rse_is_rnat_slot(old_bspstore)) {
1127 			*old_bspstore++ = old_rnat;
1128 			old_rnat = 0;
1129 		}
1130 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1131 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1132 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1133 		*old_bspstore++ = *new_bspstore++;
1134 	}
1135 	old_sw->ar_bspstore = (unsigned long)old_bspstore;
1136 	old_sw->ar_rnat = old_rnat;
1137 
1138 	sos->prev_task = previous_current;
1139 	return previous_current;
1140 
1141 no_mod:
1142 	printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1143 			smp_processor_id(), type, msg);
1144 	return previous_current;
1145 }
1146 
1147 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1148  * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1149  * not entered rendezvous yet then wait a bit.  The assumption is that any
1150  * slave that has not rendezvoused after a reasonable time is never going to do
1151  * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1152  * interrupt, as well as cpus that receive the INIT slave event.
1153  */
1154 
1155 static void
1156 ia64_wait_for_slaves(int monarch, const char *type)
1157 {
1158 	int c, i , wait;
1159 
1160 	/*
1161 	 * wait 5 seconds total for slaves (arbitrary)
1162 	 */
1163 	for (i = 0; i < 5000; i++) {
1164 		wait = 0;
1165 		for_each_online_cpu(c) {
1166 			if (c == monarch)
1167 				continue;
1168 			if (ia64_mc_info.imi_rendez_checkin[c]
1169 					== IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1170 				udelay(1000);		/* short wait */
1171 				wait = 1;
1172 				break;
1173 			}
1174 		}
1175 		if (!wait)
1176 			goto all_in;
1177 	}
1178 
1179 	/*
1180 	 * Maybe slave(s) dead. Print buffered messages immediately.
1181 	 */
1182 	ia64_mlogbuf_finish(0);
1183 	mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1184 	for_each_online_cpu(c) {
1185 		if (c == monarch)
1186 			continue;
1187 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1188 			mprintk(" %d", c);
1189 	}
1190 	mprintk("\n");
1191 	return;
1192 
1193 all_in:
1194 	mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1195 	return;
1196 }
1197 
1198 /*  mca_insert_tr
1199  *
1200  *  Switch rid when TR reload and needed!
1201  *  iord: 1: itr, 2: itr;
1202  *
1203 */
1204 static void mca_insert_tr(u64 iord)
1205 {
1206 
1207 	int i;
1208 	u64 old_rr;
1209 	struct ia64_tr_entry *p;
1210 	unsigned long psr;
1211 	int cpu = smp_processor_id();
1212 
1213 	psr = ia64_clear_ic();
1214 	for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1215 		p = &__per_cpu_idtrs[cpu][iord-1][i];
1216 		if (p->pte & 0x1) {
1217 			old_rr = ia64_get_rr(p->ifa);
1218 			if (old_rr != p->rr) {
1219 				ia64_set_rr(p->ifa, p->rr);
1220 				ia64_srlz_d();
1221 			}
1222 			ia64_ptr(iord, p->ifa, p->itir >> 2);
1223 			ia64_srlz_i();
1224 			if (iord & 0x1) {
1225 				ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1226 				ia64_srlz_i();
1227 			}
1228 			if (iord & 0x2) {
1229 				ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1230 				ia64_srlz_i();
1231 			}
1232 			if (old_rr != p->rr) {
1233 				ia64_set_rr(p->ifa, old_rr);
1234 				ia64_srlz_d();
1235 			}
1236 		}
1237 	}
1238 	ia64_set_psr(psr);
1239 }
1240 
1241 /*
1242  * ia64_mca_handler
1243  *
1244  *	This is uncorrectable machine check handler called from OS_MCA
1245  *	dispatch code which is in turn called from SAL_CHECK().
1246  *	This is the place where the core of OS MCA handling is done.
1247  *	Right now the logs are extracted and displayed in a well-defined
1248  *	format. This handler code is supposed to be run only on the
1249  *	monarch processor. Once the monarch is done with MCA handling
1250  *	further MCA logging is enabled by clearing logs.
1251  *	Monarch also has the duty of sending wakeup-IPIs to pull the
1252  *	slave processors out of rendezvous spinloop.
1253  *
1254  *	If multiple processors call into OS_MCA, the first will become
1255  *	the monarch.  Subsequent cpus will be recorded in the mca_cpu
1256  *	bitmask.  After the first monarch has processed its MCA, it
1257  *	will wake up the next cpu in the mca_cpu bitmask and then go
1258  *	into the rendezvous loop.  When all processors have serviced
1259  *	their MCA, the last monarch frees up the rest of the processors.
1260  */
1261 void
1262 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1263 		 struct ia64_sal_os_state *sos)
1264 {
1265 	int recover, cpu = smp_processor_id();
1266 	struct task_struct *previous_current;
1267 	struct ia64_mca_notify_die nd =
1268 		{ .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1269 	static atomic_t mca_count;
1270 	static cpumask_t mca_cpu;
1271 
1272 	if (atomic_add_return(1, &mca_count) == 1) {
1273 		monarch_cpu = cpu;
1274 		sos->monarch = 1;
1275 	} else {
1276 		cpu_set(cpu, mca_cpu);
1277 		sos->monarch = 0;
1278 	}
1279 	mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1280 		"monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1281 
1282 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1283 
1284 	NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1285 
1286 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1287 	if (sos->monarch) {
1288 		ia64_wait_for_slaves(cpu, "MCA");
1289 
1290 		/* Wakeup all the processors which are spinning in the
1291 		 * rendezvous loop.  They will leave SAL, then spin in the OS
1292 		 * with interrupts disabled until this monarch cpu leaves the
1293 		 * MCA handler.  That gets control back to the OS so we can
1294 		 * backtrace the other cpus, backtrace when spinning in SAL
1295 		 * does not work.
1296 		 */
1297 		ia64_mca_wakeup_all();
1298 	} else {
1299 		while (cpu_isset(cpu, mca_cpu))
1300 			cpu_relax();	/* spin until monarch wakes us */
1301 	}
1302 
1303 	NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1304 
1305 	/* Get the MCA error record and log it */
1306 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1307 
1308 	/* MCA error recovery */
1309 	recover = (ia64_mca_ucmc_extension
1310 		&& ia64_mca_ucmc_extension(
1311 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1312 			sos));
1313 
1314 	if (recover) {
1315 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1316 		rh->severity = sal_log_severity_corrected;
1317 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1318 		sos->os_status = IA64_MCA_CORRECTED;
1319 	} else {
1320 		/* Dump buffered message to console */
1321 		ia64_mlogbuf_finish(1);
1322 	}
1323 
1324 	if (__get_cpu_var(ia64_mca_tr_reload)) {
1325 		mca_insert_tr(0x1); /*Reload dynamic itrs*/
1326 		mca_insert_tr(0x2); /*Reload dynamic itrs*/
1327 	}
1328 
1329 	NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1330 
1331 	if (atomic_dec_return(&mca_count) > 0) {
1332 		int i;
1333 
1334 		/* wake up the next monarch cpu,
1335 		 * and put this cpu in the rendez loop.
1336 		 */
1337 		for_each_online_cpu(i) {
1338 			if (cpu_isset(i, mca_cpu)) {
1339 				monarch_cpu = i;
1340 				cpu_clear(i, mca_cpu);	/* wake next cpu */
1341 				while (monarch_cpu != -1)
1342 					cpu_relax();	/* spin until last cpu leaves */
1343 				set_curr_task(cpu, previous_current);
1344 				ia64_mc_info.imi_rendez_checkin[cpu]
1345 						= IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1346 				return;
1347 			}
1348 		}
1349 	}
1350 	set_curr_task(cpu, previous_current);
1351 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1352 	monarch_cpu = -1;	/* This frees the slaves and previous monarchs */
1353 }
1354 
1355 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1356 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1357 
1358 /*
1359  * ia64_mca_cmc_int_handler
1360  *
1361  *  This is corrected machine check interrupt handler.
1362  *	Right now the logs are extracted and displayed in a well-defined
1363  *	format.
1364  *
1365  * Inputs
1366  *      interrupt number
1367  *      client data arg ptr
1368  *
1369  * Outputs
1370  *	None
1371  */
1372 static irqreturn_t
1373 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1374 {
1375 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH];
1376 	static int		index;
1377 	static DEFINE_SPINLOCK(cmc_history_lock);
1378 
1379 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1380 		       __func__, cmc_irq, smp_processor_id());
1381 
1382 	/* SAL spec states this should run w/ interrupts enabled */
1383 	local_irq_enable();
1384 
1385 	spin_lock(&cmc_history_lock);
1386 	if (!cmc_polling_enabled) {
1387 		int i, count = 1; /* we know 1 happened now */
1388 		unsigned long now = jiffies;
1389 
1390 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1391 			if (now - cmc_history[i] <= HZ)
1392 				count++;
1393 		}
1394 
1395 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1396 		if (count >= CMC_HISTORY_LENGTH) {
1397 
1398 			cmc_polling_enabled = 1;
1399 			spin_unlock(&cmc_history_lock);
1400 			/* If we're being hit with CMC interrupts, we won't
1401 			 * ever execute the schedule_work() below.  Need to
1402 			 * disable CMC interrupts on this processor now.
1403 			 */
1404 			ia64_mca_cmc_vector_disable(NULL);
1405 			schedule_work(&cmc_disable_work);
1406 
1407 			/*
1408 			 * Corrected errors will still be corrected, but
1409 			 * make sure there's a log somewhere that indicates
1410 			 * something is generating more than we can handle.
1411 			 */
1412 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1413 
1414 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1415 
1416 			/* lock already released, get out now */
1417 			goto out;
1418 		} else {
1419 			cmc_history[index++] = now;
1420 			if (index == CMC_HISTORY_LENGTH)
1421 				index = 0;
1422 		}
1423 	}
1424 	spin_unlock(&cmc_history_lock);
1425 out:
1426 	/* Get the CMC error record and log it */
1427 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1428 
1429 	return IRQ_HANDLED;
1430 }
1431 
1432 /*
1433  *  ia64_mca_cmc_int_caller
1434  *
1435  * 	Triggered by sw interrupt from CMC polling routine.  Calls
1436  * 	real interrupt handler and either triggers a sw interrupt
1437  * 	on the next cpu or does cleanup at the end.
1438  *
1439  * Inputs
1440  *	interrupt number
1441  *	client data arg ptr
1442  * Outputs
1443  * 	handled
1444  */
1445 static irqreturn_t
1446 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1447 {
1448 	static int start_count = -1;
1449 	unsigned int cpuid;
1450 
1451 	cpuid = smp_processor_id();
1452 
1453 	/* If first cpu, update count */
1454 	if (start_count == -1)
1455 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1456 
1457 	ia64_mca_cmc_int_handler(cmc_irq, arg);
1458 
1459 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1460 
1461 	if (cpuid < NR_CPUS) {
1462 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1463 	} else {
1464 		/* If no log record, switch out of polling mode */
1465 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1466 
1467 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1468 			schedule_work(&cmc_enable_work);
1469 			cmc_polling_enabled = 0;
1470 
1471 		} else {
1472 
1473 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1474 		}
1475 
1476 		start_count = -1;
1477 	}
1478 
1479 	return IRQ_HANDLED;
1480 }
1481 
1482 /*
1483  *  ia64_mca_cmc_poll
1484  *
1485  *	Poll for Corrected Machine Checks (CMCs)
1486  *
1487  * Inputs   :   dummy(unused)
1488  * Outputs  :   None
1489  *
1490  */
1491 static void
1492 ia64_mca_cmc_poll (unsigned long dummy)
1493 {
1494 	/* Trigger a CMC interrupt cascade  */
1495 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1496 }
1497 
1498 /*
1499  *  ia64_mca_cpe_int_caller
1500  *
1501  * 	Triggered by sw interrupt from CPE polling routine.  Calls
1502  * 	real interrupt handler and either triggers a sw interrupt
1503  * 	on the next cpu or does cleanup at the end.
1504  *
1505  * Inputs
1506  *	interrupt number
1507  *	client data arg ptr
1508  * Outputs
1509  * 	handled
1510  */
1511 #ifdef CONFIG_ACPI
1512 
1513 static irqreturn_t
1514 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1515 {
1516 	static int start_count = -1;
1517 	static int poll_time = MIN_CPE_POLL_INTERVAL;
1518 	unsigned int cpuid;
1519 
1520 	cpuid = smp_processor_id();
1521 
1522 	/* If first cpu, update count */
1523 	if (start_count == -1)
1524 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1525 
1526 	ia64_mca_cpe_int_handler(cpe_irq, arg);
1527 
1528 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1529 
1530 	if (cpuid < NR_CPUS) {
1531 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1532 	} else {
1533 		/*
1534 		 * If a log was recorded, increase our polling frequency,
1535 		 * otherwise, backoff or return to interrupt mode.
1536 		 */
1537 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1538 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1539 		} else if (cpe_vector < 0) {
1540 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1541 		} else {
1542 			poll_time = MIN_CPE_POLL_INTERVAL;
1543 
1544 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1545 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1546 			cpe_poll_enabled = 0;
1547 		}
1548 
1549 		if (cpe_poll_enabled)
1550 			mod_timer(&cpe_poll_timer, jiffies + poll_time);
1551 		start_count = -1;
1552 	}
1553 
1554 	return IRQ_HANDLED;
1555 }
1556 
1557 /*
1558  *  ia64_mca_cpe_poll
1559  *
1560  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt
1561  *	on first cpu, from there it will trickle through all the cpus.
1562  *
1563  * Inputs   :   dummy(unused)
1564  * Outputs  :   None
1565  *
1566  */
1567 static void
1568 ia64_mca_cpe_poll (unsigned long dummy)
1569 {
1570 	/* Trigger a CPE interrupt cascade  */
1571 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1572 }
1573 
1574 #endif /* CONFIG_ACPI */
1575 
1576 static int
1577 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1578 {
1579 	int c;
1580 	struct task_struct *g, *t;
1581 	if (val != DIE_INIT_MONARCH_PROCESS)
1582 		return NOTIFY_DONE;
1583 #ifdef CONFIG_KEXEC
1584 	if (atomic_read(&kdump_in_progress))
1585 		return NOTIFY_DONE;
1586 #endif
1587 
1588 	/*
1589 	 * FIXME: mlogbuf will brim over with INIT stack dumps.
1590 	 * To enable show_stack from INIT, we use oops_in_progress which should
1591 	 * be used in real oops. This would cause something wrong after INIT.
1592 	 */
1593 	BREAK_LOGLEVEL(console_loglevel);
1594 	ia64_mlogbuf_dump_from_init();
1595 
1596 	printk(KERN_ERR "Processes interrupted by INIT -");
1597 	for_each_online_cpu(c) {
1598 		struct ia64_sal_os_state *s;
1599 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1600 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1601 		g = s->prev_task;
1602 		if (g) {
1603 			if (g->pid)
1604 				printk(" %d", g->pid);
1605 			else
1606 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1607 		}
1608 	}
1609 	printk("\n\n");
1610 	if (read_trylock(&tasklist_lock)) {
1611 		do_each_thread (g, t) {
1612 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1613 			show_stack(t, NULL);
1614 		} while_each_thread (g, t);
1615 		read_unlock(&tasklist_lock);
1616 	}
1617 	/* FIXME: This will not restore zapped printk locks. */
1618 	RESTORE_LOGLEVEL(console_loglevel);
1619 	return NOTIFY_DONE;
1620 }
1621 
1622 /*
1623  * C portion of the OS INIT handler
1624  *
1625  * Called from ia64_os_init_dispatch
1626  *
1627  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1628  * this event.  This code is used for both monarch and slave INIT events, see
1629  * sos->monarch.
1630  *
1631  * All INIT events switch to the INIT stack and change the previous process to
1632  * blocked status.  If one of the INIT events is the monarch then we are
1633  * probably processing the nmi button/command.  Use the monarch cpu to dump all
1634  * the processes.  The slave INIT events all spin until the monarch cpu
1635  * returns.  We can also get INIT slave events for MCA, in which case the MCA
1636  * process is the monarch.
1637  */
1638 
1639 void
1640 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1641 		  struct ia64_sal_os_state *sos)
1642 {
1643 	static atomic_t slaves;
1644 	static atomic_t monarchs;
1645 	struct task_struct *previous_current;
1646 	int cpu = smp_processor_id();
1647 	struct ia64_mca_notify_die nd =
1648 		{ .sos = sos, .monarch_cpu = &monarch_cpu };
1649 
1650 	NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1651 
1652 	mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1653 		sos->proc_state_param, cpu, sos->monarch);
1654 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1655 
1656 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1657 	sos->os_status = IA64_INIT_RESUME;
1658 
1659 	/* FIXME: Workaround for broken proms that drive all INIT events as
1660 	 * slaves.  The last slave that enters is promoted to be a monarch.
1661 	 * Remove this code in September 2006, that gives platforms a year to
1662 	 * fix their proms and get their customers updated.
1663 	 */
1664 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1665 		mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1666 		        __func__, cpu);
1667 		atomic_dec(&slaves);
1668 		sos->monarch = 1;
1669 	}
1670 
1671 	/* FIXME: Workaround for broken proms that drive all INIT events as
1672 	 * monarchs.  Second and subsequent monarchs are demoted to slaves.
1673 	 * Remove this code in September 2006, that gives platforms a year to
1674 	 * fix their proms and get their customers updated.
1675 	 */
1676 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1677 		mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1678 			       __func__, cpu);
1679 		atomic_dec(&monarchs);
1680 		sos->monarch = 0;
1681 	}
1682 
1683 	if (!sos->monarch) {
1684 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1685 		while (monarch_cpu == -1)
1686 		       cpu_relax();	/* spin until monarch enters */
1687 
1688 		NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1689 		NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1690 
1691 		while (monarch_cpu != -1)
1692 		       cpu_relax();	/* spin until monarch leaves */
1693 
1694 		NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1695 
1696 		mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1697 		set_curr_task(cpu, previous_current);
1698 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1699 		atomic_dec(&slaves);
1700 		return;
1701 	}
1702 
1703 	monarch_cpu = cpu;
1704 	NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1705 
1706 	/*
1707 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1708 	 * generated via the BMC's command-line interface, but since the console is on the
1709 	 * same serial line, the user will need some time to switch out of the BMC before
1710 	 * the dump begins.
1711 	 */
1712 	mprintk("Delaying for 5 seconds...\n");
1713 	udelay(5*1000000);
1714 	ia64_wait_for_slaves(cpu, "INIT");
1715 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1716 	 * to default_monarch_init_process() above and just print all the
1717 	 * tasks.
1718 	 */
1719 	NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1720 	NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1721 
1722 	mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1723 	atomic_dec(&monarchs);
1724 	set_curr_task(cpu, previous_current);
1725 	monarch_cpu = -1;
1726 	return;
1727 }
1728 
1729 static int __init
1730 ia64_mca_disable_cpe_polling(char *str)
1731 {
1732 	cpe_poll_enabled = 0;
1733 	return 1;
1734 }
1735 
1736 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1737 
1738 static struct irqaction cmci_irqaction = {
1739 	.handler =	ia64_mca_cmc_int_handler,
1740 	.flags =	IRQF_DISABLED,
1741 	.name =		"cmc_hndlr"
1742 };
1743 
1744 static struct irqaction cmcp_irqaction = {
1745 	.handler =	ia64_mca_cmc_int_caller,
1746 	.flags =	IRQF_DISABLED,
1747 	.name =		"cmc_poll"
1748 };
1749 
1750 static struct irqaction mca_rdzv_irqaction = {
1751 	.handler =	ia64_mca_rendez_int_handler,
1752 	.flags =	IRQF_DISABLED,
1753 	.name =		"mca_rdzv"
1754 };
1755 
1756 static struct irqaction mca_wkup_irqaction = {
1757 	.handler =	ia64_mca_wakeup_int_handler,
1758 	.flags =	IRQF_DISABLED,
1759 	.name =		"mca_wkup"
1760 };
1761 
1762 #ifdef CONFIG_ACPI
1763 static struct irqaction mca_cpe_irqaction = {
1764 	.handler =	ia64_mca_cpe_int_handler,
1765 	.flags =	IRQF_DISABLED,
1766 	.name =		"cpe_hndlr"
1767 };
1768 
1769 static struct irqaction mca_cpep_irqaction = {
1770 	.handler =	ia64_mca_cpe_int_caller,
1771 	.flags =	IRQF_DISABLED,
1772 	.name =		"cpe_poll"
1773 };
1774 #endif /* CONFIG_ACPI */
1775 
1776 /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1777  * these stacks can never sleep, they cannot return from the kernel to user
1778  * space, they do not appear in a normal ps listing.  So there is no need to
1779  * format most of the fields.
1780  */
1781 
1782 static void __cpuinit
1783 format_mca_init_stack(void *mca_data, unsigned long offset,
1784 		const char *type, int cpu)
1785 {
1786 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1787 	struct thread_info *ti;
1788 	memset(p, 0, KERNEL_STACK_SIZE);
1789 	ti = task_thread_info(p);
1790 	ti->flags = _TIF_MCA_INIT;
1791 	ti->preempt_count = 1;
1792 	ti->task = p;
1793 	ti->cpu = cpu;
1794 	p->stack = ti;
1795 	p->state = TASK_UNINTERRUPTIBLE;
1796 	cpu_set(cpu, p->cpus_allowed);
1797 	INIT_LIST_HEAD(&p->tasks);
1798 	p->parent = p->real_parent = p->group_leader = p;
1799 	INIT_LIST_HEAD(&p->children);
1800 	INIT_LIST_HEAD(&p->sibling);
1801 	strncpy(p->comm, type, sizeof(p->comm)-1);
1802 }
1803 
1804 /* Caller prevents this from being called after init */
1805 static void * __init_refok mca_bootmem(void)
1806 {
1807 	return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1808 	                    KERNEL_STACK_SIZE, 0);
1809 }
1810 
1811 /* Do per-CPU MCA-related initialization.  */
1812 void __cpuinit
1813 ia64_mca_cpu_init(void *cpu_data)
1814 {
1815 	void *pal_vaddr;
1816 	void *data;
1817 	long sz = sizeof(struct ia64_mca_cpu);
1818 	int cpu = smp_processor_id();
1819 	static int first_time = 1;
1820 
1821 	/*
1822 	 * Structure will already be allocated if cpu has been online,
1823 	 * then offlined.
1824 	 */
1825 	if (__per_cpu_mca[cpu]) {
1826 		data = __va(__per_cpu_mca[cpu]);
1827 	} else {
1828 		if (first_time) {
1829 			data = mca_bootmem();
1830 			first_time = 0;
1831 		} else
1832 			data = page_address(alloc_pages_node(numa_node_id(),
1833 					GFP_KERNEL, get_order(sz)));
1834 		if (!data)
1835 			panic("Could not allocate MCA memory for cpu %d\n",
1836 					cpu);
1837 	}
1838 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1839 		"MCA", cpu);
1840 	format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1841 		"INIT", cpu);
1842 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1843 
1844 	/*
1845 	 * Stash away a copy of the PTE needed to map the per-CPU page.
1846 	 * We may need it during MCA recovery.
1847 	 */
1848 	__get_cpu_var(ia64_mca_per_cpu_pte) =
1849 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1850 
1851 	/*
1852 	 * Also, stash away a copy of the PAL address and the PTE
1853 	 * needed to map it.
1854 	 */
1855 	pal_vaddr = efi_get_pal_addr();
1856 	if (!pal_vaddr)
1857 		return;
1858 	__get_cpu_var(ia64_mca_pal_base) =
1859 		GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1860 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1861 							      PAGE_KERNEL));
1862 }
1863 
1864 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1865 {
1866 	unsigned long flags;
1867 
1868 	local_irq_save(flags);
1869 	if (!cmc_polling_enabled)
1870 		ia64_mca_cmc_vector_enable(NULL);
1871 	local_irq_restore(flags);
1872 }
1873 
1874 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1875 				      unsigned long action,
1876 				      void *hcpu)
1877 {
1878 	int hotcpu = (unsigned long) hcpu;
1879 
1880 	switch (action) {
1881 	case CPU_ONLINE:
1882 	case CPU_ONLINE_FROZEN:
1883 		smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1884 					 NULL, 0);
1885 		break;
1886 	}
1887 	return NOTIFY_OK;
1888 }
1889 
1890 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1891 	.notifier_call = mca_cpu_callback
1892 };
1893 
1894 /*
1895  * ia64_mca_init
1896  *
1897  *  Do all the system level mca specific initialization.
1898  *
1899  *	1. Register spinloop and wakeup request interrupt vectors
1900  *
1901  *	2. Register OS_MCA handler entry point
1902  *
1903  *	3. Register OS_INIT handler entry point
1904  *
1905  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1906  *
1907  *  Note that this initialization is done very early before some kernel
1908  *  services are available.
1909  *
1910  *  Inputs  :   None
1911  *
1912  *  Outputs :   None
1913  */
1914 void __init
1915 ia64_mca_init(void)
1916 {
1917 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1918 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1919 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1920 	int i;
1921 	s64 rc;
1922 	struct ia64_sal_retval isrv;
1923 	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */
1924 	static struct notifier_block default_init_monarch_nb = {
1925 		.notifier_call = default_monarch_init_process,
1926 		.priority = 0/* we need to notified last */
1927 	};
1928 
1929 	IA64_MCA_DEBUG("%s: begin\n", __func__);
1930 
1931 	/* Clear the Rendez checkin flag for all cpus */
1932 	for(i = 0 ; i < NR_CPUS; i++)
1933 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1934 
1935 	/*
1936 	 * Register the rendezvous spinloop and wakeup mechanism with SAL
1937 	 */
1938 
1939 	/* Register the rendezvous interrupt vector with SAL */
1940 	while (1) {
1941 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1942 					      SAL_MC_PARAM_MECHANISM_INT,
1943 					      IA64_MCA_RENDEZ_VECTOR,
1944 					      timeout,
1945 					      SAL_MC_PARAM_RZ_ALWAYS);
1946 		rc = isrv.status;
1947 		if (rc == 0)
1948 			break;
1949 		if (rc == -2) {
1950 			printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1951 				"%ld to %ld milliseconds\n", timeout, isrv.v0);
1952 			timeout = isrv.v0;
1953 			NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1954 			continue;
1955 		}
1956 		printk(KERN_ERR "Failed to register rendezvous interrupt "
1957 		       "with SAL (status %ld)\n", rc);
1958 		return;
1959 	}
1960 
1961 	/* Register the wakeup interrupt vector with SAL */
1962 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1963 				      SAL_MC_PARAM_MECHANISM_INT,
1964 				      IA64_MCA_WAKEUP_VECTOR,
1965 				      0, 0);
1966 	rc = isrv.status;
1967 	if (rc) {
1968 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1969 		       "(status %ld)\n", rc);
1970 		return;
1971 	}
1972 
1973 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1974 
1975 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1976 	/*
1977 	 * XXX - disable SAL checksum by setting size to 0; should be
1978 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1979 	 */
1980 	ia64_mc_info.imi_mca_handler_size	= 0;
1981 
1982 	/* Register the os mca handler with SAL */
1983 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1984 				       ia64_mc_info.imi_mca_handler,
1985 				       ia64_tpa(mca_hldlr_ptr->gp),
1986 				       ia64_mc_info.imi_mca_handler_size,
1987 				       0, 0, 0)))
1988 	{
1989 		printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1990 		       "(status %ld)\n", rc);
1991 		return;
1992 	}
1993 
1994 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1995 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1996 
1997 	/*
1998 	 * XXX - disable SAL checksum by setting size to 0, should be
1999 	 * size of the actual init handler in mca_asm.S.
2000 	 */
2001 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp);
2002 	ia64_mc_info.imi_monarch_init_handler_size	= 0;
2003 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp);
2004 	ia64_mc_info.imi_slave_init_handler_size	= 0;
2005 
2006 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2007 		       ia64_mc_info.imi_monarch_init_handler);
2008 
2009 	/* Register the os init handler with SAL */
2010 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2011 				       ia64_mc_info.imi_monarch_init_handler,
2012 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2013 				       ia64_mc_info.imi_monarch_init_handler_size,
2014 				       ia64_mc_info.imi_slave_init_handler,
2015 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
2016 				       ia64_mc_info.imi_slave_init_handler_size)))
2017 	{
2018 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2019 		       "(status %ld)\n", rc);
2020 		return;
2021 	}
2022 	if (register_die_notifier(&default_init_monarch_nb)) {
2023 		printk(KERN_ERR "Failed to register default monarch INIT process\n");
2024 		return;
2025 	}
2026 
2027 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2028 
2029 	/*
2030 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2031 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2032 	 */
2033 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2034 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2035 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2036 
2037 	/* Setup the MCA rendezvous interrupt vector */
2038 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2039 
2040 	/* Setup the MCA wakeup interrupt vector */
2041 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2042 
2043 #ifdef CONFIG_ACPI
2044 	/* Setup the CPEI/P handler */
2045 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2046 #endif
2047 
2048 	/* Initialize the areas set aside by the OS to buffer the
2049 	 * platform/processor error states for MCA/INIT/CMC
2050 	 * handling.
2051 	 */
2052 	ia64_log_init(SAL_INFO_TYPE_MCA);
2053 	ia64_log_init(SAL_INFO_TYPE_INIT);
2054 	ia64_log_init(SAL_INFO_TYPE_CMC);
2055 	ia64_log_init(SAL_INFO_TYPE_CPE);
2056 
2057 	mca_init = 1;
2058 	printk(KERN_INFO "MCA related initialization done\n");
2059 }
2060 
2061 /*
2062  * ia64_mca_late_init
2063  *
2064  *	Opportunity to setup things that require initialization later
2065  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the
2066  *	platform doesn't support an interrupt driven mechanism.
2067  *
2068  *  Inputs  :   None
2069  *  Outputs :   Status
2070  */
2071 static int __init
2072 ia64_mca_late_init(void)
2073 {
2074 	if (!mca_init)
2075 		return 0;
2076 
2077 	register_hotcpu_notifier(&mca_cpu_notifier);
2078 
2079 	/* Setup the CMCI/P vector and handler */
2080 	init_timer(&cmc_poll_timer);
2081 	cmc_poll_timer.function = ia64_mca_cmc_poll;
2082 
2083 	/* Unmask/enable the vector */
2084 	cmc_polling_enabled = 0;
2085 	schedule_work(&cmc_enable_work);
2086 
2087 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2088 
2089 #ifdef CONFIG_ACPI
2090 	/* Setup the CPEI/P vector and handler */
2091 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2092 	init_timer(&cpe_poll_timer);
2093 	cpe_poll_timer.function = ia64_mca_cpe_poll;
2094 
2095 	{
2096 		irq_desc_t *desc;
2097 		unsigned int irq;
2098 
2099 		if (cpe_vector >= 0) {
2100 			/* If platform supports CPEI, enable the irq. */
2101 			irq = local_vector_to_irq(cpe_vector);
2102 			if (irq > 0) {
2103 				cpe_poll_enabled = 0;
2104 				desc = irq_desc + irq;
2105 				desc->status |= IRQ_PER_CPU;
2106 				setup_irq(irq, &mca_cpe_irqaction);
2107 				ia64_cpe_irq = irq;
2108 				ia64_mca_register_cpev(cpe_vector);
2109 				IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2110 					__func__);
2111 				return 0;
2112 			}
2113 			printk(KERN_ERR "%s: Failed to find irq for CPE "
2114 					"interrupt handler, vector %d\n",
2115 					__func__, cpe_vector);
2116 		}
2117 		/* If platform doesn't support CPEI, get the timer going. */
2118 		if (cpe_poll_enabled) {
2119 			ia64_mca_cpe_poll(0UL);
2120 			IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2121 		}
2122 	}
2123 #endif
2124 
2125 	return 0;
2126 }
2127 
2128 device_initcall(ia64_mca_late_init);
2129