1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * File: mca.c 4 * Purpose: Generic MCA handling layer 5 * 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 20 * 21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 23 * 24 * Copyright (C) 2006 FUJITSU LIMITED 25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 26 * 27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 29 * added min save state dump, added INIT handler. 30 * 31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 33 * errors, completed code for logging of corrected & uncorrected 34 * machine check errors, and updated for conformance with Nov. 2000 35 * revision of the SAL 3.0 spec. 36 * 37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 39 * set SAL default return values, changed error record structure to 40 * linked list, added init call to sal_get_state_info_size(). 41 * 42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 43 * GUID cleanups. 44 * 45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 46 * Added INIT backtrace support. 47 * 48 * 2003-12-08 Keith Owens <kaos@sgi.com> 49 * smp_call_function() must not be called from interrupt context 50 * (can deadlock on tasklist_lock). 51 * Use keventd to call smp_call_function(). 52 * 53 * 2004-02-01 Keith Owens <kaos@sgi.com> 54 * Avoid deadlock when using printk() for MCA and INIT records. 55 * Delete all record printing code, moved to salinfo_decode in user 56 * space. Mark variables and functions static where possible. 57 * Delete dead variables and functions. Reorder to remove the need 58 * for forward declarations and to consolidate related code. 59 * 60 * 2005-08-12 Keith Owens <kaos@sgi.com> 61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 62 * state. 63 * 64 * 2005-10-07 Keith Owens <kaos@sgi.com> 65 * Add notify_die() hooks. 66 * 67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 68 * Add printing support for MCA/INIT. 69 * 70 * 2007-04-27 Russ Anderson <rja@sgi.com> 71 * Support multiple cpus going through OS_MCA in the same event. 72 */ 73 #include <linux/jiffies.h> 74 #include <linux/types.h> 75 #include <linux/init.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/debug.h> 78 #include <linux/sched/task.h> 79 #include <linux/interrupt.h> 80 #include <linux/irq.h> 81 #include <linux/memblock.h> 82 #include <linux/acpi.h> 83 #include <linux/timer.h> 84 #include <linux/module.h> 85 #include <linux/kernel.h> 86 #include <linux/smp.h> 87 #include <linux/workqueue.h> 88 #include <linux/cpumask.h> 89 #include <linux/kdebug.h> 90 #include <linux/cpu.h> 91 #include <linux/gfp.h> 92 93 #include <asm/delay.h> 94 #include <asm/efi.h> 95 #include <asm/meminit.h> 96 #include <asm/page.h> 97 #include <asm/ptrace.h> 98 #include <asm/sal.h> 99 #include <asm/mca.h> 100 #include <asm/mca_asm.h> 101 #include <asm/kexec.h> 102 103 #include <asm/irq.h> 104 #include <asm/hw_irq.h> 105 #include <asm/tlb.h> 106 107 #include "mca_drv.h" 108 #include "entry.h" 109 #include "irq.h" 110 111 #if defined(IA64_MCA_DEBUG_INFO) 112 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 113 #else 114 # define IA64_MCA_DEBUG(fmt...) do {} while (0) 115 #endif 116 117 #define NOTIFY_INIT(event, regs, arg, spin) \ 118 do { \ 119 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 120 == NOTIFY_STOP) && ((spin) == 1)) \ 121 ia64_mca_spin(__func__); \ 122 } while (0) 123 124 #define NOTIFY_MCA(event, regs, arg, spin) \ 125 do { \ 126 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 127 == NOTIFY_STOP) && ((spin) == 1)) \ 128 ia64_mca_spin(__func__); \ 129 } while (0) 130 131 /* Used by mca_asm.S */ 132 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 133 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 134 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 135 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 136 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 137 138 unsigned long __per_cpu_mca[NR_CPUS]; 139 140 /* In mca_asm.S */ 141 extern void ia64_os_init_dispatch_monarch (void); 142 extern void ia64_os_init_dispatch_slave (void); 143 144 static int monarch_cpu = -1; 145 146 static ia64_mc_info_t ia64_mc_info; 147 148 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 149 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 150 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 151 #define CPE_HISTORY_LENGTH 5 152 #define CMC_HISTORY_LENGTH 5 153 154 static struct timer_list cpe_poll_timer; 155 static struct timer_list cmc_poll_timer; 156 /* 157 * This variable tells whether we are currently in polling mode. 158 * Start with this in the wrong state so we won't play w/ timers 159 * before the system is ready. 160 */ 161 static int cmc_polling_enabled = 1; 162 163 /* 164 * Clearing this variable prevents CPE polling from getting activated 165 * in mca_late_init. Use it if your system doesn't provide a CPEI, 166 * but encounters problems retrieving CPE logs. This should only be 167 * necessary for debugging. 168 */ 169 static int cpe_poll_enabled = 1; 170 171 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 172 173 static int mca_init __initdata; 174 175 /* 176 * limited & delayed printing support for MCA/INIT handler 177 */ 178 179 #define mprintk(fmt...) ia64_mca_printk(fmt) 180 181 #define MLOGBUF_SIZE (512+256*NR_CPUS) 182 #define MLOGBUF_MSGMAX 256 183 static char mlogbuf[MLOGBUF_SIZE]; 184 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 185 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 186 static unsigned long mlogbuf_start; 187 static unsigned long mlogbuf_end; 188 static unsigned int mlogbuf_finished = 0; 189 static unsigned long mlogbuf_timestamp = 0; 190 191 static int loglevel_save = -1; 192 #define BREAK_LOGLEVEL(__console_loglevel) \ 193 oops_in_progress = 1; \ 194 if (loglevel_save < 0) \ 195 loglevel_save = __console_loglevel; \ 196 __console_loglevel = 15; 197 198 #define RESTORE_LOGLEVEL(__console_loglevel) \ 199 if (loglevel_save >= 0) { \ 200 __console_loglevel = loglevel_save; \ 201 loglevel_save = -1; \ 202 } \ 203 mlogbuf_finished = 0; \ 204 oops_in_progress = 0; 205 206 /* 207 * Push messages into buffer, print them later if not urgent. 208 */ 209 void ia64_mca_printk(const char *fmt, ...) 210 { 211 va_list args; 212 int printed_len; 213 char temp_buf[MLOGBUF_MSGMAX]; 214 char *p; 215 216 va_start(args, fmt); 217 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 218 va_end(args); 219 220 /* Copy the output into mlogbuf */ 221 if (oops_in_progress) { 222 /* mlogbuf was abandoned, use printk directly instead. */ 223 printk("%s", temp_buf); 224 } else { 225 spin_lock(&mlogbuf_wlock); 226 for (p = temp_buf; *p; p++) { 227 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 228 if (next != mlogbuf_start) { 229 mlogbuf[mlogbuf_end] = *p; 230 mlogbuf_end = next; 231 } else { 232 /* buffer full */ 233 break; 234 } 235 } 236 mlogbuf[mlogbuf_end] = '\0'; 237 spin_unlock(&mlogbuf_wlock); 238 } 239 } 240 EXPORT_SYMBOL(ia64_mca_printk); 241 242 /* 243 * Print buffered messages. 244 * NOTE: call this after returning normal context. (ex. from salinfod) 245 */ 246 void ia64_mlogbuf_dump(void) 247 { 248 char temp_buf[MLOGBUF_MSGMAX]; 249 char *p; 250 unsigned long index; 251 unsigned long flags; 252 unsigned int printed_len; 253 254 /* Get output from mlogbuf */ 255 while (mlogbuf_start != mlogbuf_end) { 256 temp_buf[0] = '\0'; 257 p = temp_buf; 258 printed_len = 0; 259 260 spin_lock_irqsave(&mlogbuf_rlock, flags); 261 262 index = mlogbuf_start; 263 while (index != mlogbuf_end) { 264 *p = mlogbuf[index]; 265 index = (index + 1) % MLOGBUF_SIZE; 266 if (!*p) 267 break; 268 p++; 269 if (++printed_len >= MLOGBUF_MSGMAX - 1) 270 break; 271 } 272 *p = '\0'; 273 if (temp_buf[0]) 274 printk("%s", temp_buf); 275 mlogbuf_start = index; 276 277 mlogbuf_timestamp = 0; 278 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 279 } 280 } 281 EXPORT_SYMBOL(ia64_mlogbuf_dump); 282 283 /* 284 * Call this if system is going to down or if immediate flushing messages to 285 * console is required. (ex. recovery was failed, crash dump is going to be 286 * invoked, long-wait rendezvous etc.) 287 * NOTE: this should be called from monarch. 288 */ 289 static void ia64_mlogbuf_finish(int wait) 290 { 291 BREAK_LOGLEVEL(console_loglevel); 292 293 spin_lock_init(&mlogbuf_rlock); 294 ia64_mlogbuf_dump(); 295 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 296 "MCA/INIT might be dodgy or fail.\n"); 297 298 if (!wait) 299 return; 300 301 /* wait for console */ 302 printk("Delaying for 5 seconds...\n"); 303 udelay(5*1000000); 304 305 mlogbuf_finished = 1; 306 } 307 308 /* 309 * Print buffered messages from INIT context. 310 */ 311 static void ia64_mlogbuf_dump_from_init(void) 312 { 313 if (mlogbuf_finished) 314 return; 315 316 if (mlogbuf_timestamp && 317 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 318 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 319 " and the system seems to be messed up.\n"); 320 ia64_mlogbuf_finish(0); 321 return; 322 } 323 324 if (!spin_trylock(&mlogbuf_rlock)) { 325 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 326 "Generated messages other than stack dump will be " 327 "buffered to mlogbuf and will be printed later.\n"); 328 printk(KERN_ERR "INIT: If messages would not printed after " 329 "this INIT, wait 30sec and assert INIT again.\n"); 330 if (!mlogbuf_timestamp) 331 mlogbuf_timestamp = jiffies; 332 return; 333 } 334 spin_unlock(&mlogbuf_rlock); 335 ia64_mlogbuf_dump(); 336 } 337 338 static inline void 339 ia64_mca_spin(const char *func) 340 { 341 if (monarch_cpu == smp_processor_id()) 342 ia64_mlogbuf_finish(0); 343 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 344 while (1) 345 cpu_relax(); 346 } 347 /* 348 * IA64_MCA log support 349 */ 350 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 351 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 352 353 typedef struct ia64_state_log_s 354 { 355 spinlock_t isl_lock; 356 int isl_index; 357 unsigned long isl_count; 358 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 359 } ia64_state_log_t; 360 361 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 362 363 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 364 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 365 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 366 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 367 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 368 #define IA64_LOG_INDEX_INC(it) \ 369 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 370 ia64_state_log[it].isl_count++;} 371 #define IA64_LOG_INDEX_DEC(it) \ 372 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 373 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 374 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 375 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 376 377 static inline void ia64_log_allocate(int it, u64 size) 378 { 379 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = 380 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 381 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) 382 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 383 384 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = 385 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 386 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) 387 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 388 } 389 390 /* 391 * ia64_log_init 392 * Reset the OS ia64 log buffer 393 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 394 * Outputs : None 395 */ 396 static void __init 397 ia64_log_init(int sal_info_type) 398 { 399 u64 max_size = 0; 400 401 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 402 IA64_LOG_LOCK_INIT(sal_info_type); 403 404 // SAL will tell us the maximum size of any error record of this type 405 max_size = ia64_sal_get_state_info_size(sal_info_type); 406 if (!max_size) 407 /* alloc_bootmem() doesn't like zero-sized allocations! */ 408 return; 409 410 // set up OS data structures to hold error info 411 ia64_log_allocate(sal_info_type, max_size); 412 } 413 414 /* 415 * ia64_log_get 416 * 417 * Get the current MCA log from SAL and copy it into the OS log buffer. 418 * 419 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 420 * irq_safe whether you can use printk at this point 421 * Outputs : size (total record length) 422 * *buffer (ptr to error record) 423 * 424 */ 425 static u64 426 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 427 { 428 sal_log_record_header_t *log_buffer; 429 u64 total_len = 0; 430 unsigned long s; 431 432 IA64_LOG_LOCK(sal_info_type); 433 434 /* Get the process state information */ 435 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 436 437 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 438 439 if (total_len) { 440 IA64_LOG_INDEX_INC(sal_info_type); 441 IA64_LOG_UNLOCK(sal_info_type); 442 if (irq_safe) { 443 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 444 __func__, sal_info_type, total_len); 445 } 446 *buffer = (u8 *) log_buffer; 447 return total_len; 448 } else { 449 IA64_LOG_UNLOCK(sal_info_type); 450 return 0; 451 } 452 } 453 454 /* 455 * ia64_mca_log_sal_error_record 456 * 457 * This function retrieves a specified error record type from SAL 458 * and wakes up any processes waiting for error records. 459 * 460 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 461 * FIXME: remove MCA and irq_safe. 462 */ 463 static void 464 ia64_mca_log_sal_error_record(int sal_info_type) 465 { 466 u8 *buffer; 467 sal_log_record_header_t *rh; 468 u64 size; 469 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 470 #ifdef IA64_MCA_DEBUG_INFO 471 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 472 #endif 473 474 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 475 if (!size) 476 return; 477 478 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 479 480 if (irq_safe) 481 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 482 smp_processor_id(), 483 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 484 485 /* Clear logs from corrected errors in case there's no user-level logger */ 486 rh = (sal_log_record_header_t *)buffer; 487 if (rh->severity == sal_log_severity_corrected) 488 ia64_sal_clear_state_info(sal_info_type); 489 } 490 491 /* 492 * search_mca_table 493 * See if the MCA surfaced in an instruction range 494 * that has been tagged as recoverable. 495 * 496 * Inputs 497 * first First address range to check 498 * last Last address range to check 499 * ip Instruction pointer, address we are looking for 500 * 501 * Return value: 502 * 1 on Success (in the table)/ 0 on Failure (not in the table) 503 */ 504 int 505 search_mca_table (const struct mca_table_entry *first, 506 const struct mca_table_entry *last, 507 unsigned long ip) 508 { 509 const struct mca_table_entry *curr; 510 u64 curr_start, curr_end; 511 512 curr = first; 513 while (curr <= last) { 514 curr_start = (u64) &curr->start_addr + curr->start_addr; 515 curr_end = (u64) &curr->end_addr + curr->end_addr; 516 517 if ((ip >= curr_start) && (ip <= curr_end)) { 518 return 1; 519 } 520 curr++; 521 } 522 return 0; 523 } 524 525 /* Given an address, look for it in the mca tables. */ 526 int mca_recover_range(unsigned long addr) 527 { 528 extern struct mca_table_entry __start___mca_table[]; 529 extern struct mca_table_entry __stop___mca_table[]; 530 531 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 532 } 533 EXPORT_SYMBOL_GPL(mca_recover_range); 534 535 int cpe_vector = -1; 536 int ia64_cpe_irq = -1; 537 538 static irqreturn_t 539 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 540 { 541 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 542 static int index; 543 static DEFINE_SPINLOCK(cpe_history_lock); 544 545 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 546 __func__, cpe_irq, smp_processor_id()); 547 548 /* SAL spec states this should run w/ interrupts enabled */ 549 local_irq_enable(); 550 551 spin_lock(&cpe_history_lock); 552 if (!cpe_poll_enabled && cpe_vector >= 0) { 553 554 int i, count = 1; /* we know 1 happened now */ 555 unsigned long now = jiffies; 556 557 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 558 if (now - cpe_history[i] <= HZ) 559 count++; 560 } 561 562 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 563 if (count >= CPE_HISTORY_LENGTH) { 564 565 cpe_poll_enabled = 1; 566 spin_unlock(&cpe_history_lock); 567 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 568 569 /* 570 * Corrected errors will still be corrected, but 571 * make sure there's a log somewhere that indicates 572 * something is generating more than we can handle. 573 */ 574 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 575 576 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 577 578 /* lock already released, get out now */ 579 goto out; 580 } else { 581 cpe_history[index++] = now; 582 if (index == CPE_HISTORY_LENGTH) 583 index = 0; 584 } 585 } 586 spin_unlock(&cpe_history_lock); 587 out: 588 /* Get the CPE error record and log it */ 589 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 590 591 local_irq_disable(); 592 593 return IRQ_HANDLED; 594 } 595 596 /* 597 * ia64_mca_register_cpev 598 * 599 * Register the corrected platform error vector with SAL. 600 * 601 * Inputs 602 * cpev Corrected Platform Error Vector number 603 * 604 * Outputs 605 * None 606 */ 607 void 608 ia64_mca_register_cpev (int cpev) 609 { 610 /* Register the CPE interrupt vector with SAL */ 611 struct ia64_sal_retval isrv; 612 613 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 614 if (isrv.status) { 615 printk(KERN_ERR "Failed to register Corrected Platform " 616 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 617 return; 618 } 619 620 IA64_MCA_DEBUG("%s: corrected platform error " 621 "vector %#x registered\n", __func__, cpev); 622 } 623 624 /* 625 * ia64_mca_cmc_vector_setup 626 * 627 * Setup the corrected machine check vector register in the processor. 628 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 629 * This function is invoked on a per-processor basis. 630 * 631 * Inputs 632 * None 633 * 634 * Outputs 635 * None 636 */ 637 void 638 ia64_mca_cmc_vector_setup (void) 639 { 640 cmcv_reg_t cmcv; 641 642 cmcv.cmcv_regval = 0; 643 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 644 cmcv.cmcv_vector = IA64_CMC_VECTOR; 645 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 646 647 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 648 __func__, smp_processor_id(), IA64_CMC_VECTOR); 649 650 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 651 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 652 } 653 654 /* 655 * ia64_mca_cmc_vector_disable 656 * 657 * Mask the corrected machine check vector register in the processor. 658 * This function is invoked on a per-processor basis. 659 * 660 * Inputs 661 * dummy(unused) 662 * 663 * Outputs 664 * None 665 */ 666 static void 667 ia64_mca_cmc_vector_disable (void *dummy) 668 { 669 cmcv_reg_t cmcv; 670 671 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 672 673 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 674 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 675 676 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 677 __func__, smp_processor_id(), cmcv.cmcv_vector); 678 } 679 680 /* 681 * ia64_mca_cmc_vector_enable 682 * 683 * Unmask the corrected machine check vector register in the processor. 684 * This function is invoked on a per-processor basis. 685 * 686 * Inputs 687 * dummy(unused) 688 * 689 * Outputs 690 * None 691 */ 692 static void 693 ia64_mca_cmc_vector_enable (void *dummy) 694 { 695 cmcv_reg_t cmcv; 696 697 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 698 699 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 700 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 701 702 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 703 __func__, smp_processor_id(), cmcv.cmcv_vector); 704 } 705 706 /* 707 * ia64_mca_cmc_vector_disable_keventd 708 * 709 * Called via keventd (smp_call_function() is not safe in interrupt context) to 710 * disable the cmc interrupt vector. 711 */ 712 static void 713 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 714 { 715 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 716 } 717 718 /* 719 * ia64_mca_cmc_vector_enable_keventd 720 * 721 * Called via keventd (smp_call_function() is not safe in interrupt context) to 722 * enable the cmc interrupt vector. 723 */ 724 static void 725 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 726 { 727 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 728 } 729 730 /* 731 * ia64_mca_wakeup 732 * 733 * Send an inter-cpu interrupt to wake-up a particular cpu. 734 * 735 * Inputs : cpuid 736 * Outputs : None 737 */ 738 static void 739 ia64_mca_wakeup(int cpu) 740 { 741 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 742 } 743 744 /* 745 * ia64_mca_wakeup_all 746 * 747 * Wakeup all the slave cpus which have rendez'ed previously. 748 * 749 * Inputs : None 750 * Outputs : None 751 */ 752 static void 753 ia64_mca_wakeup_all(void) 754 { 755 int cpu; 756 757 /* Clear the Rendez checkin flag for all cpus */ 758 for_each_online_cpu(cpu) { 759 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 760 ia64_mca_wakeup(cpu); 761 } 762 763 } 764 765 /* 766 * ia64_mca_rendez_interrupt_handler 767 * 768 * This is handler used to put slave processors into spinloop 769 * while the monarch processor does the mca handling and later 770 * wake each slave up once the monarch is done. The state 771 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 772 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 773 * the cpu has come out of OS rendezvous. 774 * 775 * Inputs : None 776 * Outputs : None 777 */ 778 static irqreturn_t 779 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 780 { 781 unsigned long flags; 782 int cpu = smp_processor_id(); 783 struct ia64_mca_notify_die nd = 784 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 785 786 /* Mask all interrupts */ 787 local_irq_save(flags); 788 789 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 790 791 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 792 /* Register with the SAL monarch that the slave has 793 * reached SAL 794 */ 795 ia64_sal_mc_rendez(); 796 797 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 798 799 /* Wait for the monarch cpu to exit. */ 800 while (monarch_cpu != -1) 801 cpu_relax(); /* spin until monarch leaves */ 802 803 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 804 805 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 806 /* Enable all interrupts */ 807 local_irq_restore(flags); 808 return IRQ_HANDLED; 809 } 810 811 /* 812 * ia64_mca_wakeup_int_handler 813 * 814 * The interrupt handler for processing the inter-cpu interrupt to the 815 * slave cpu which was spinning in the rendez loop. 816 * Since this spinning is done by turning off the interrupts and 817 * polling on the wakeup-interrupt bit in the IRR, there is 818 * nothing useful to be done in the handler. 819 * 820 * Inputs : wakeup_irq (Wakeup-interrupt bit) 821 * arg (Interrupt handler specific argument) 822 * Outputs : None 823 * 824 */ 825 static irqreturn_t 826 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 827 { 828 return IRQ_HANDLED; 829 } 830 831 /* Function pointer for extra MCA recovery */ 832 int (*ia64_mca_ucmc_extension) 833 (void*,struct ia64_sal_os_state*) 834 = NULL; 835 836 int 837 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 838 { 839 if (ia64_mca_ucmc_extension) 840 return 1; 841 842 ia64_mca_ucmc_extension = fn; 843 return 0; 844 } 845 846 void 847 ia64_unreg_MCA_extension(void) 848 { 849 if (ia64_mca_ucmc_extension) 850 ia64_mca_ucmc_extension = NULL; 851 } 852 853 EXPORT_SYMBOL(ia64_reg_MCA_extension); 854 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 855 856 857 static inline void 858 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 859 { 860 u64 fslot, tslot, nat; 861 *tr = *fr; 862 fslot = ((unsigned long)fr >> 3) & 63; 863 tslot = ((unsigned long)tr >> 3) & 63; 864 *tnat &= ~(1UL << tslot); 865 nat = (fnat >> fslot) & 1; 866 *tnat |= (nat << tslot); 867 } 868 869 /* Change the comm field on the MCA/INT task to include the pid that 870 * was interrupted, it makes for easier debugging. If that pid was 0 871 * (swapper or nested MCA/INIT) then use the start of the previous comm 872 * field suffixed with its cpu. 873 */ 874 875 static void 876 ia64_mca_modify_comm(const struct task_struct *previous_current) 877 { 878 char *p, comm[sizeof(current->comm)]; 879 if (previous_current->pid) 880 snprintf(comm, sizeof(comm), "%s %d", 881 current->comm, previous_current->pid); 882 else { 883 int l; 884 if ((p = strchr(previous_current->comm, ' '))) 885 l = p - previous_current->comm; 886 else 887 l = strlen(previous_current->comm); 888 snprintf(comm, sizeof(comm), "%s %*s %d", 889 current->comm, l, previous_current->comm, 890 task_thread_info(previous_current)->cpu); 891 } 892 memcpy(current->comm, comm, sizeof(current->comm)); 893 } 894 895 static void 896 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 897 unsigned long *nat) 898 { 899 const struct pal_min_state_area *ms = sos->pal_min_state; 900 const u64 *bank; 901 902 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 903 * pmsa_{xip,xpsr,xfs} 904 */ 905 if (ia64_psr(regs)->ic) { 906 regs->cr_iip = ms->pmsa_iip; 907 regs->cr_ipsr = ms->pmsa_ipsr; 908 regs->cr_ifs = ms->pmsa_ifs; 909 } else { 910 regs->cr_iip = ms->pmsa_xip; 911 regs->cr_ipsr = ms->pmsa_xpsr; 912 regs->cr_ifs = ms->pmsa_xfs; 913 914 sos->iip = ms->pmsa_iip; 915 sos->ipsr = ms->pmsa_ipsr; 916 sos->ifs = ms->pmsa_ifs; 917 } 918 regs->pr = ms->pmsa_pr; 919 regs->b0 = ms->pmsa_br0; 920 regs->ar_rsc = ms->pmsa_rsc; 921 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 922 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 923 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 924 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 925 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 926 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 927 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 928 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 929 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 930 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 931 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 932 if (ia64_psr(regs)->bn) 933 bank = ms->pmsa_bank1_gr; 934 else 935 bank = ms->pmsa_bank0_gr; 936 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 937 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 938 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 939 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 940 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 941 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 942 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 943 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 944 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 945 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 946 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 947 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 948 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 949 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 950 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 951 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 952 } 953 954 /* On entry to this routine, we are running on the per cpu stack, see 955 * mca_asm.h. The original stack has not been touched by this event. Some of 956 * the original stack's registers will be in the RBS on this stack. This stack 957 * also contains a partial pt_regs and switch_stack, the rest of the data is in 958 * PAL minstate. 959 * 960 * The first thing to do is modify the original stack to look like a blocked 961 * task so we can run backtrace on the original task. Also mark the per cpu 962 * stack as current to ensure that we use the correct task state, it also means 963 * that we can do backtrace on the MCA/INIT handler code itself. 964 */ 965 966 static struct task_struct * 967 ia64_mca_modify_original_stack(struct pt_regs *regs, 968 const struct switch_stack *sw, 969 struct ia64_sal_os_state *sos, 970 const char *type) 971 { 972 char *p; 973 ia64_va va; 974 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 975 const struct pal_min_state_area *ms = sos->pal_min_state; 976 struct task_struct *previous_current; 977 struct pt_regs *old_regs; 978 struct switch_stack *old_sw; 979 unsigned size = sizeof(struct pt_regs) + 980 sizeof(struct switch_stack) + 16; 981 unsigned long *old_bspstore, *old_bsp; 982 unsigned long *new_bspstore, *new_bsp; 983 unsigned long old_unat, old_rnat, new_rnat, nat; 984 u64 slots, loadrs = regs->loadrs; 985 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 986 u64 ar_bspstore = regs->ar_bspstore; 987 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 988 const char *msg; 989 int cpu = smp_processor_id(); 990 991 previous_current = curr_task(cpu); 992 ia64_set_curr_task(cpu, current); 993 if ((p = strchr(current->comm, ' '))) 994 *p = '\0'; 995 996 /* Best effort attempt to cope with MCA/INIT delivered while in 997 * physical mode. 998 */ 999 regs->cr_ipsr = ms->pmsa_ipsr; 1000 if (ia64_psr(regs)->dt == 0) { 1001 va.l = r12; 1002 if (va.f.reg == 0) { 1003 va.f.reg = 7; 1004 r12 = va.l; 1005 } 1006 va.l = r13; 1007 if (va.f.reg == 0) { 1008 va.f.reg = 7; 1009 r13 = va.l; 1010 } 1011 } 1012 if (ia64_psr(regs)->rt == 0) { 1013 va.l = ar_bspstore; 1014 if (va.f.reg == 0) { 1015 va.f.reg = 7; 1016 ar_bspstore = va.l; 1017 } 1018 va.l = ar_bsp; 1019 if (va.f.reg == 0) { 1020 va.f.reg = 7; 1021 ar_bsp = va.l; 1022 } 1023 } 1024 1025 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1026 * have been copied to the old stack, the old stack may fail the 1027 * validation tests below. So ia64_old_stack() must restore the dirty 1028 * registers from the new stack. The old and new bspstore probably 1029 * have different alignments, so loadrs calculated on the old bsp 1030 * cannot be used to restore from the new bsp. Calculate a suitable 1031 * loadrs for the new stack and save it in the new pt_regs, where 1032 * ia64_old_stack() can get it. 1033 */ 1034 old_bspstore = (unsigned long *)ar_bspstore; 1035 old_bsp = (unsigned long *)ar_bsp; 1036 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1037 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1038 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1039 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1040 1041 /* Verify the previous stack state before we change it */ 1042 if (user_mode(regs)) { 1043 msg = "occurred in user space"; 1044 /* previous_current is guaranteed to be valid when the task was 1045 * in user space, so ... 1046 */ 1047 ia64_mca_modify_comm(previous_current); 1048 goto no_mod; 1049 } 1050 1051 if (r13 != sos->prev_IA64_KR_CURRENT) { 1052 msg = "inconsistent previous current and r13"; 1053 goto no_mod; 1054 } 1055 1056 if (!mca_recover_range(ms->pmsa_iip)) { 1057 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1058 msg = "inconsistent r12 and r13"; 1059 goto no_mod; 1060 } 1061 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1062 msg = "inconsistent ar.bspstore and r13"; 1063 goto no_mod; 1064 } 1065 va.p = old_bspstore; 1066 if (va.f.reg < 5) { 1067 msg = "old_bspstore is in the wrong region"; 1068 goto no_mod; 1069 } 1070 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1071 msg = "inconsistent ar.bsp and r13"; 1072 goto no_mod; 1073 } 1074 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1075 if (ar_bspstore + size > r12) { 1076 msg = "no room for blocked state"; 1077 goto no_mod; 1078 } 1079 } 1080 1081 ia64_mca_modify_comm(previous_current); 1082 1083 /* Make the original task look blocked. First stack a struct pt_regs, 1084 * describing the state at the time of interrupt. mca_asm.S built a 1085 * partial pt_regs, copy it and fill in the blanks using minstate. 1086 */ 1087 p = (char *)r12 - sizeof(*regs); 1088 old_regs = (struct pt_regs *)p; 1089 memcpy(old_regs, regs, sizeof(*regs)); 1090 old_regs->loadrs = loadrs; 1091 old_unat = old_regs->ar_unat; 1092 finish_pt_regs(old_regs, sos, &old_unat); 1093 1094 /* Next stack a struct switch_stack. mca_asm.S built a partial 1095 * switch_stack, copy it and fill in the blanks using pt_regs and 1096 * minstate. 1097 * 1098 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1099 * ar.pfs is set to 0. 1100 * 1101 * unwind.c::unw_unwind() does special processing for interrupt frames. 1102 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1103 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1104 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1105 * switch_stack on the original stack so it will unwind correctly when 1106 * unwind.c reads pt_regs. 1107 * 1108 * thread.ksp is updated to point to the synthesized switch_stack. 1109 */ 1110 p -= sizeof(struct switch_stack); 1111 old_sw = (struct switch_stack *)p; 1112 memcpy(old_sw, sw, sizeof(*sw)); 1113 old_sw->caller_unat = old_unat; 1114 old_sw->ar_fpsr = old_regs->ar_fpsr; 1115 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1116 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1117 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1118 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1119 old_sw->b0 = (u64)ia64_leave_kernel; 1120 old_sw->b1 = ms->pmsa_br1; 1121 old_sw->ar_pfs = 0; 1122 old_sw->ar_unat = old_unat; 1123 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1124 previous_current->thread.ksp = (u64)p - 16; 1125 1126 /* Finally copy the original stack's registers back to its RBS. 1127 * Registers from ar.bspstore through ar.bsp at the time of the event 1128 * are in the current RBS, copy them back to the original stack. The 1129 * copy must be done register by register because the original bspstore 1130 * and the current one have different alignments, so the saved RNAT 1131 * data occurs at different places. 1132 * 1133 * mca_asm does cover, so the old_bsp already includes all registers at 1134 * the time of MCA/INIT. It also does flushrs, so all registers before 1135 * this function have been written to backing store on the MCA/INIT 1136 * stack. 1137 */ 1138 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1139 old_rnat = regs->ar_rnat; 1140 while (slots--) { 1141 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1142 new_rnat = ia64_get_rnat(new_bspstore++); 1143 } 1144 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1145 *old_bspstore++ = old_rnat; 1146 old_rnat = 0; 1147 } 1148 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1149 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1150 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1151 *old_bspstore++ = *new_bspstore++; 1152 } 1153 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1154 old_sw->ar_rnat = old_rnat; 1155 1156 sos->prev_task = previous_current; 1157 return previous_current; 1158 1159 no_mod: 1160 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1161 smp_processor_id(), type, msg); 1162 old_unat = regs->ar_unat; 1163 finish_pt_regs(regs, sos, &old_unat); 1164 return previous_current; 1165 } 1166 1167 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1168 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1169 * not entered rendezvous yet then wait a bit. The assumption is that any 1170 * slave that has not rendezvoused after a reasonable time is never going to do 1171 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1172 * interrupt, as well as cpus that receive the INIT slave event. 1173 */ 1174 1175 static void 1176 ia64_wait_for_slaves(int monarch, const char *type) 1177 { 1178 int c, i , wait; 1179 1180 /* 1181 * wait 5 seconds total for slaves (arbitrary) 1182 */ 1183 for (i = 0; i < 5000; i++) { 1184 wait = 0; 1185 for_each_online_cpu(c) { 1186 if (c == monarch) 1187 continue; 1188 if (ia64_mc_info.imi_rendez_checkin[c] 1189 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1190 udelay(1000); /* short wait */ 1191 wait = 1; 1192 break; 1193 } 1194 } 1195 if (!wait) 1196 goto all_in; 1197 } 1198 1199 /* 1200 * Maybe slave(s) dead. Print buffered messages immediately. 1201 */ 1202 ia64_mlogbuf_finish(0); 1203 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1204 for_each_online_cpu(c) { 1205 if (c == monarch) 1206 continue; 1207 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1208 mprintk(" %d", c); 1209 } 1210 mprintk("\n"); 1211 return; 1212 1213 all_in: 1214 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1215 return; 1216 } 1217 1218 /* mca_insert_tr 1219 * 1220 * Switch rid when TR reload and needed! 1221 * iord: 1: itr, 2: itr; 1222 * 1223 */ 1224 static void mca_insert_tr(u64 iord) 1225 { 1226 1227 int i; 1228 u64 old_rr; 1229 struct ia64_tr_entry *p; 1230 unsigned long psr; 1231 int cpu = smp_processor_id(); 1232 1233 if (!ia64_idtrs[cpu]) 1234 return; 1235 1236 psr = ia64_clear_ic(); 1237 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1238 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1239 if (p->pte & 0x1) { 1240 old_rr = ia64_get_rr(p->ifa); 1241 if (old_rr != p->rr) { 1242 ia64_set_rr(p->ifa, p->rr); 1243 ia64_srlz_d(); 1244 } 1245 ia64_ptr(iord, p->ifa, p->itir >> 2); 1246 ia64_srlz_i(); 1247 if (iord & 0x1) { 1248 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1249 ia64_srlz_i(); 1250 } 1251 if (iord & 0x2) { 1252 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1253 ia64_srlz_i(); 1254 } 1255 if (old_rr != p->rr) { 1256 ia64_set_rr(p->ifa, old_rr); 1257 ia64_srlz_d(); 1258 } 1259 } 1260 } 1261 ia64_set_psr(psr); 1262 } 1263 1264 /* 1265 * ia64_mca_handler 1266 * 1267 * This is uncorrectable machine check handler called from OS_MCA 1268 * dispatch code which is in turn called from SAL_CHECK(). 1269 * This is the place where the core of OS MCA handling is done. 1270 * Right now the logs are extracted and displayed in a well-defined 1271 * format. This handler code is supposed to be run only on the 1272 * monarch processor. Once the monarch is done with MCA handling 1273 * further MCA logging is enabled by clearing logs. 1274 * Monarch also has the duty of sending wakeup-IPIs to pull the 1275 * slave processors out of rendezvous spinloop. 1276 * 1277 * If multiple processors call into OS_MCA, the first will become 1278 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1279 * bitmask. After the first monarch has processed its MCA, it 1280 * will wake up the next cpu in the mca_cpu bitmask and then go 1281 * into the rendezvous loop. When all processors have serviced 1282 * their MCA, the last monarch frees up the rest of the processors. 1283 */ 1284 void 1285 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1286 struct ia64_sal_os_state *sos) 1287 { 1288 int recover, cpu = smp_processor_id(); 1289 struct task_struct *previous_current; 1290 struct ia64_mca_notify_die nd = 1291 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1292 static atomic_t mca_count; 1293 static cpumask_t mca_cpu; 1294 1295 if (atomic_add_return(1, &mca_count) == 1) { 1296 monarch_cpu = cpu; 1297 sos->monarch = 1; 1298 } else { 1299 cpumask_set_cpu(cpu, &mca_cpu); 1300 sos->monarch = 0; 1301 } 1302 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1303 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1304 1305 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1306 1307 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1308 1309 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1310 if (sos->monarch) { 1311 ia64_wait_for_slaves(cpu, "MCA"); 1312 1313 /* Wakeup all the processors which are spinning in the 1314 * rendezvous loop. They will leave SAL, then spin in the OS 1315 * with interrupts disabled until this monarch cpu leaves the 1316 * MCA handler. That gets control back to the OS so we can 1317 * backtrace the other cpus, backtrace when spinning in SAL 1318 * does not work. 1319 */ 1320 ia64_mca_wakeup_all(); 1321 } else { 1322 while (cpumask_test_cpu(cpu, &mca_cpu)) 1323 cpu_relax(); /* spin until monarch wakes us */ 1324 } 1325 1326 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1327 1328 /* Get the MCA error record and log it */ 1329 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1330 1331 /* MCA error recovery */ 1332 recover = (ia64_mca_ucmc_extension 1333 && ia64_mca_ucmc_extension( 1334 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1335 sos)); 1336 1337 if (recover) { 1338 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1339 rh->severity = sal_log_severity_corrected; 1340 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1341 sos->os_status = IA64_MCA_CORRECTED; 1342 } else { 1343 /* Dump buffered message to console */ 1344 ia64_mlogbuf_finish(1); 1345 } 1346 1347 if (__this_cpu_read(ia64_mca_tr_reload)) { 1348 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1349 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1350 } 1351 1352 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1353 1354 if (atomic_dec_return(&mca_count) > 0) { 1355 int i; 1356 1357 /* wake up the next monarch cpu, 1358 * and put this cpu in the rendez loop. 1359 */ 1360 for_each_online_cpu(i) { 1361 if (cpumask_test_cpu(i, &mca_cpu)) { 1362 monarch_cpu = i; 1363 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ 1364 while (monarch_cpu != -1) 1365 cpu_relax(); /* spin until last cpu leaves */ 1366 ia64_set_curr_task(cpu, previous_current); 1367 ia64_mc_info.imi_rendez_checkin[cpu] 1368 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1369 return; 1370 } 1371 } 1372 } 1373 ia64_set_curr_task(cpu, previous_current); 1374 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1375 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1376 } 1377 1378 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1379 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1380 1381 /* 1382 * ia64_mca_cmc_int_handler 1383 * 1384 * This is corrected machine check interrupt handler. 1385 * Right now the logs are extracted and displayed in a well-defined 1386 * format. 1387 * 1388 * Inputs 1389 * interrupt number 1390 * client data arg ptr 1391 * 1392 * Outputs 1393 * None 1394 */ 1395 static irqreturn_t 1396 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1397 { 1398 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1399 static int index; 1400 static DEFINE_SPINLOCK(cmc_history_lock); 1401 1402 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1403 __func__, cmc_irq, smp_processor_id()); 1404 1405 /* SAL spec states this should run w/ interrupts enabled */ 1406 local_irq_enable(); 1407 1408 spin_lock(&cmc_history_lock); 1409 if (!cmc_polling_enabled) { 1410 int i, count = 1; /* we know 1 happened now */ 1411 unsigned long now = jiffies; 1412 1413 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1414 if (now - cmc_history[i] <= HZ) 1415 count++; 1416 } 1417 1418 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1419 if (count >= CMC_HISTORY_LENGTH) { 1420 1421 cmc_polling_enabled = 1; 1422 spin_unlock(&cmc_history_lock); 1423 /* If we're being hit with CMC interrupts, we won't 1424 * ever execute the schedule_work() below. Need to 1425 * disable CMC interrupts on this processor now. 1426 */ 1427 ia64_mca_cmc_vector_disable(NULL); 1428 schedule_work(&cmc_disable_work); 1429 1430 /* 1431 * Corrected errors will still be corrected, but 1432 * make sure there's a log somewhere that indicates 1433 * something is generating more than we can handle. 1434 */ 1435 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1436 1437 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1438 1439 /* lock already released, get out now */ 1440 goto out; 1441 } else { 1442 cmc_history[index++] = now; 1443 if (index == CMC_HISTORY_LENGTH) 1444 index = 0; 1445 } 1446 } 1447 spin_unlock(&cmc_history_lock); 1448 out: 1449 /* Get the CMC error record and log it */ 1450 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1451 1452 local_irq_disable(); 1453 1454 return IRQ_HANDLED; 1455 } 1456 1457 /* 1458 * ia64_mca_cmc_int_caller 1459 * 1460 * Triggered by sw interrupt from CMC polling routine. Calls 1461 * real interrupt handler and either triggers a sw interrupt 1462 * on the next cpu or does cleanup at the end. 1463 * 1464 * Inputs 1465 * interrupt number 1466 * client data arg ptr 1467 * Outputs 1468 * handled 1469 */ 1470 static irqreturn_t 1471 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1472 { 1473 static int start_count = -1; 1474 unsigned int cpuid; 1475 1476 cpuid = smp_processor_id(); 1477 1478 /* If first cpu, update count */ 1479 if (start_count == -1) 1480 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1481 1482 ia64_mca_cmc_int_handler(cmc_irq, arg); 1483 1484 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1485 1486 if (cpuid < nr_cpu_ids) { 1487 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1488 } else { 1489 /* If no log record, switch out of polling mode */ 1490 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1491 1492 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1493 schedule_work(&cmc_enable_work); 1494 cmc_polling_enabled = 0; 1495 1496 } else { 1497 1498 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1499 } 1500 1501 start_count = -1; 1502 } 1503 1504 return IRQ_HANDLED; 1505 } 1506 1507 /* 1508 * ia64_mca_cmc_poll 1509 * 1510 * Poll for Corrected Machine Checks (CMCs) 1511 * 1512 * Inputs : dummy(unused) 1513 * Outputs : None 1514 * 1515 */ 1516 static void 1517 ia64_mca_cmc_poll (struct timer_list *unused) 1518 { 1519 /* Trigger a CMC interrupt cascade */ 1520 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, 1521 IA64_IPI_DM_INT, 0); 1522 } 1523 1524 /* 1525 * ia64_mca_cpe_int_caller 1526 * 1527 * Triggered by sw interrupt from CPE polling routine. Calls 1528 * real interrupt handler and either triggers a sw interrupt 1529 * on the next cpu or does cleanup at the end. 1530 * 1531 * Inputs 1532 * interrupt number 1533 * client data arg ptr 1534 * Outputs 1535 * handled 1536 */ 1537 static irqreturn_t 1538 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1539 { 1540 static int start_count = -1; 1541 static int poll_time = MIN_CPE_POLL_INTERVAL; 1542 unsigned int cpuid; 1543 1544 cpuid = smp_processor_id(); 1545 1546 /* If first cpu, update count */ 1547 if (start_count == -1) 1548 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1549 1550 ia64_mca_cpe_int_handler(cpe_irq, arg); 1551 1552 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1553 1554 if (cpuid < NR_CPUS) { 1555 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1556 } else { 1557 /* 1558 * If a log was recorded, increase our polling frequency, 1559 * otherwise, backoff or return to interrupt mode. 1560 */ 1561 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1562 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1563 } else if (cpe_vector < 0) { 1564 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1565 } else { 1566 poll_time = MIN_CPE_POLL_INTERVAL; 1567 1568 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1569 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1570 cpe_poll_enabled = 0; 1571 } 1572 1573 if (cpe_poll_enabled) 1574 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1575 start_count = -1; 1576 } 1577 1578 return IRQ_HANDLED; 1579 } 1580 1581 /* 1582 * ia64_mca_cpe_poll 1583 * 1584 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1585 * on first cpu, from there it will trickle through all the cpus. 1586 * 1587 * Inputs : dummy(unused) 1588 * Outputs : None 1589 * 1590 */ 1591 static void 1592 ia64_mca_cpe_poll (struct timer_list *unused) 1593 { 1594 /* Trigger a CPE interrupt cascade */ 1595 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, 1596 IA64_IPI_DM_INT, 0); 1597 } 1598 1599 static int 1600 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1601 { 1602 int c; 1603 struct task_struct *g, *t; 1604 if (val != DIE_INIT_MONARCH_PROCESS) 1605 return NOTIFY_DONE; 1606 #ifdef CONFIG_KEXEC 1607 if (atomic_read(&kdump_in_progress)) 1608 return NOTIFY_DONE; 1609 #endif 1610 1611 /* 1612 * FIXME: mlogbuf will brim over with INIT stack dumps. 1613 * To enable show_stack from INIT, we use oops_in_progress which should 1614 * be used in real oops. This would cause something wrong after INIT. 1615 */ 1616 BREAK_LOGLEVEL(console_loglevel); 1617 ia64_mlogbuf_dump_from_init(); 1618 1619 printk(KERN_ERR "Processes interrupted by INIT -"); 1620 for_each_online_cpu(c) { 1621 struct ia64_sal_os_state *s; 1622 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1623 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1624 g = s->prev_task; 1625 if (g) { 1626 if (g->pid) 1627 printk(" %d", g->pid); 1628 else 1629 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1630 } 1631 } 1632 printk("\n\n"); 1633 if (read_trylock(&tasklist_lock)) { 1634 do_each_thread (g, t) { 1635 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1636 show_stack(t, NULL, KERN_DEFAULT); 1637 } while_each_thread (g, t); 1638 read_unlock(&tasklist_lock); 1639 } 1640 /* FIXME: This will not restore zapped printk locks. */ 1641 RESTORE_LOGLEVEL(console_loglevel); 1642 return NOTIFY_DONE; 1643 } 1644 1645 /* 1646 * C portion of the OS INIT handler 1647 * 1648 * Called from ia64_os_init_dispatch 1649 * 1650 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1651 * this event. This code is used for both monarch and slave INIT events, see 1652 * sos->monarch. 1653 * 1654 * All INIT events switch to the INIT stack and change the previous process to 1655 * blocked status. If one of the INIT events is the monarch then we are 1656 * probably processing the nmi button/command. Use the monarch cpu to dump all 1657 * the processes. The slave INIT events all spin until the monarch cpu 1658 * returns. We can also get INIT slave events for MCA, in which case the MCA 1659 * process is the monarch. 1660 */ 1661 1662 void 1663 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1664 struct ia64_sal_os_state *sos) 1665 { 1666 static atomic_t slaves; 1667 static atomic_t monarchs; 1668 struct task_struct *previous_current; 1669 int cpu = smp_processor_id(); 1670 struct ia64_mca_notify_die nd = 1671 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1672 1673 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1674 1675 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1676 sos->proc_state_param, cpu, sos->monarch); 1677 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1678 1679 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1680 sos->os_status = IA64_INIT_RESUME; 1681 1682 /* FIXME: Workaround for broken proms that drive all INIT events as 1683 * slaves. The last slave that enters is promoted to be a monarch. 1684 * Remove this code in September 2006, that gives platforms a year to 1685 * fix their proms and get their customers updated. 1686 */ 1687 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1688 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1689 __func__, cpu); 1690 atomic_dec(&slaves); 1691 sos->monarch = 1; 1692 } 1693 1694 /* FIXME: Workaround for broken proms that drive all INIT events as 1695 * monarchs. Second and subsequent monarchs are demoted to slaves. 1696 * Remove this code in September 2006, that gives platforms a year to 1697 * fix their proms and get their customers updated. 1698 */ 1699 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1700 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1701 __func__, cpu); 1702 atomic_dec(&monarchs); 1703 sos->monarch = 0; 1704 } 1705 1706 if (!sos->monarch) { 1707 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1708 1709 #ifdef CONFIG_KEXEC 1710 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1711 udelay(1000); 1712 #else 1713 while (monarch_cpu == -1) 1714 cpu_relax(); /* spin until monarch enters */ 1715 #endif 1716 1717 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1718 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1719 1720 #ifdef CONFIG_KEXEC 1721 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1722 udelay(1000); 1723 #else 1724 while (monarch_cpu != -1) 1725 cpu_relax(); /* spin until monarch leaves */ 1726 #endif 1727 1728 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1729 1730 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1731 ia64_set_curr_task(cpu, previous_current); 1732 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1733 atomic_dec(&slaves); 1734 return; 1735 } 1736 1737 monarch_cpu = cpu; 1738 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1739 1740 /* 1741 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1742 * generated via the BMC's command-line interface, but since the console is on the 1743 * same serial line, the user will need some time to switch out of the BMC before 1744 * the dump begins. 1745 */ 1746 mprintk("Delaying for 5 seconds...\n"); 1747 udelay(5*1000000); 1748 ia64_wait_for_slaves(cpu, "INIT"); 1749 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1750 * to default_monarch_init_process() above and just print all the 1751 * tasks. 1752 */ 1753 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1754 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1755 1756 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1757 atomic_dec(&monarchs); 1758 ia64_set_curr_task(cpu, previous_current); 1759 monarch_cpu = -1; 1760 return; 1761 } 1762 1763 static int __init 1764 ia64_mca_disable_cpe_polling(char *str) 1765 { 1766 cpe_poll_enabled = 0; 1767 return 1; 1768 } 1769 1770 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1771 1772 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1773 * these stacks can never sleep, they cannot return from the kernel to user 1774 * space, they do not appear in a normal ps listing. So there is no need to 1775 * format most of the fields. 1776 */ 1777 1778 static void 1779 format_mca_init_stack(void *mca_data, unsigned long offset, 1780 const char *type, int cpu) 1781 { 1782 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1783 struct thread_info *ti; 1784 memset(p, 0, KERNEL_STACK_SIZE); 1785 ti = task_thread_info(p); 1786 ti->flags = _TIF_MCA_INIT; 1787 ti->preempt_count = 1; 1788 ti->task = p; 1789 ti->cpu = cpu; 1790 p->stack = ti; 1791 p->state = TASK_UNINTERRUPTIBLE; 1792 cpumask_set_cpu(cpu, &p->cpus_mask); 1793 INIT_LIST_HEAD(&p->tasks); 1794 p->parent = p->real_parent = p->group_leader = p; 1795 INIT_LIST_HEAD(&p->children); 1796 INIT_LIST_HEAD(&p->sibling); 1797 strncpy(p->comm, type, sizeof(p->comm)-1); 1798 } 1799 1800 /* Caller prevents this from being called after init */ 1801 static void * __ref mca_bootmem(void) 1802 { 1803 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); 1804 } 1805 1806 /* Do per-CPU MCA-related initialization. */ 1807 void 1808 ia64_mca_cpu_init(void *cpu_data) 1809 { 1810 void *pal_vaddr; 1811 void *data; 1812 long sz = sizeof(struct ia64_mca_cpu); 1813 int cpu = smp_processor_id(); 1814 static int first_time = 1; 1815 1816 /* 1817 * Structure will already be allocated if cpu has been online, 1818 * then offlined. 1819 */ 1820 if (__per_cpu_mca[cpu]) { 1821 data = __va(__per_cpu_mca[cpu]); 1822 } else { 1823 if (first_time) { 1824 data = mca_bootmem(); 1825 first_time = 0; 1826 } else 1827 data = (void *)__get_free_pages(GFP_ATOMIC, 1828 get_order(sz)); 1829 if (!data) 1830 panic("Could not allocate MCA memory for cpu %d\n", 1831 cpu); 1832 } 1833 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1834 "MCA", cpu); 1835 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1836 "INIT", cpu); 1837 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); 1838 1839 /* 1840 * Stash away a copy of the PTE needed to map the per-CPU page. 1841 * We may need it during MCA recovery. 1842 */ 1843 __this_cpu_write(ia64_mca_per_cpu_pte, 1844 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); 1845 1846 /* 1847 * Also, stash away a copy of the PAL address and the PTE 1848 * needed to map it. 1849 */ 1850 pal_vaddr = efi_get_pal_addr(); 1851 if (!pal_vaddr) 1852 return; 1853 __this_cpu_write(ia64_mca_pal_base, 1854 GRANULEROUNDDOWN((unsigned long) pal_vaddr)); 1855 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), 1856 PAGE_KERNEL))); 1857 } 1858 1859 static int ia64_mca_cpu_online(unsigned int cpu) 1860 { 1861 unsigned long flags; 1862 1863 local_irq_save(flags); 1864 if (!cmc_polling_enabled) 1865 ia64_mca_cmc_vector_enable(NULL); 1866 local_irq_restore(flags); 1867 return 0; 1868 } 1869 1870 /* 1871 * ia64_mca_init 1872 * 1873 * Do all the system level mca specific initialization. 1874 * 1875 * 1. Register spinloop and wakeup request interrupt vectors 1876 * 1877 * 2. Register OS_MCA handler entry point 1878 * 1879 * 3. Register OS_INIT handler entry point 1880 * 1881 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1882 * 1883 * Note that this initialization is done very early before some kernel 1884 * services are available. 1885 * 1886 * Inputs : None 1887 * 1888 * Outputs : None 1889 */ 1890 void __init 1891 ia64_mca_init(void) 1892 { 1893 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1894 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1895 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1896 int i; 1897 long rc; 1898 struct ia64_sal_retval isrv; 1899 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1900 static struct notifier_block default_init_monarch_nb = { 1901 .notifier_call = default_monarch_init_process, 1902 .priority = 0/* we need to notified last */ 1903 }; 1904 1905 IA64_MCA_DEBUG("%s: begin\n", __func__); 1906 1907 /* Clear the Rendez checkin flag for all cpus */ 1908 for(i = 0 ; i < NR_CPUS; i++) 1909 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1910 1911 /* 1912 * Register the rendezvous spinloop and wakeup mechanism with SAL 1913 */ 1914 1915 /* Register the rendezvous interrupt vector with SAL */ 1916 while (1) { 1917 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1918 SAL_MC_PARAM_MECHANISM_INT, 1919 IA64_MCA_RENDEZ_VECTOR, 1920 timeout, 1921 SAL_MC_PARAM_RZ_ALWAYS); 1922 rc = isrv.status; 1923 if (rc == 0) 1924 break; 1925 if (rc == -2) { 1926 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1927 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1928 timeout = isrv.v0; 1929 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1930 continue; 1931 } 1932 printk(KERN_ERR "Failed to register rendezvous interrupt " 1933 "with SAL (status %ld)\n", rc); 1934 return; 1935 } 1936 1937 /* Register the wakeup interrupt vector with SAL */ 1938 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1939 SAL_MC_PARAM_MECHANISM_INT, 1940 IA64_MCA_WAKEUP_VECTOR, 1941 0, 0); 1942 rc = isrv.status; 1943 if (rc) { 1944 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1945 "(status %ld)\n", rc); 1946 return; 1947 } 1948 1949 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 1950 1951 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1952 /* 1953 * XXX - disable SAL checksum by setting size to 0; should be 1954 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1955 */ 1956 ia64_mc_info.imi_mca_handler_size = 0; 1957 1958 /* Register the os mca handler with SAL */ 1959 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 1960 ia64_mc_info.imi_mca_handler, 1961 ia64_tpa(mca_hldlr_ptr->gp), 1962 ia64_mc_info.imi_mca_handler_size, 1963 0, 0, 0))) 1964 { 1965 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 1966 "(status %ld)\n", rc); 1967 return; 1968 } 1969 1970 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 1971 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 1972 1973 /* 1974 * XXX - disable SAL checksum by setting size to 0, should be 1975 * size of the actual init handler in mca_asm.S. 1976 */ 1977 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 1978 ia64_mc_info.imi_monarch_init_handler_size = 0; 1979 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 1980 ia64_mc_info.imi_slave_init_handler_size = 0; 1981 1982 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 1983 ia64_mc_info.imi_monarch_init_handler); 1984 1985 /* Register the os init handler with SAL */ 1986 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 1987 ia64_mc_info.imi_monarch_init_handler, 1988 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1989 ia64_mc_info.imi_monarch_init_handler_size, 1990 ia64_mc_info.imi_slave_init_handler, 1991 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1992 ia64_mc_info.imi_slave_init_handler_size))) 1993 { 1994 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 1995 "(status %ld)\n", rc); 1996 return; 1997 } 1998 if (register_die_notifier(&default_init_monarch_nb)) { 1999 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 2000 return; 2001 } 2002 2003 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2004 2005 /* Initialize the areas set aside by the OS to buffer the 2006 * platform/processor error states for MCA/INIT/CMC 2007 * handling. 2008 */ 2009 ia64_log_init(SAL_INFO_TYPE_MCA); 2010 ia64_log_init(SAL_INFO_TYPE_INIT); 2011 ia64_log_init(SAL_INFO_TYPE_CMC); 2012 ia64_log_init(SAL_INFO_TYPE_CPE); 2013 2014 mca_init = 1; 2015 printk(KERN_INFO "MCA related initialization done\n"); 2016 } 2017 2018 2019 /* 2020 * These pieces cannot be done in ia64_mca_init() because it is called before 2021 * early_irq_init() which would wipe out our percpu irq registrations. But we 2022 * cannot leave them until ia64_mca_late_init() because by then all the other 2023 * processors have been brought online and have set their own CMC vectors to 2024 * point at a non-existant action. Called from arch_early_irq_init(). 2025 */ 2026 void __init ia64_mca_irq_init(void) 2027 { 2028 /* 2029 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2030 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2031 */ 2032 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0, 2033 "cmc_hndlr"); 2034 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0, 2035 "cmc_poll"); 2036 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2037 2038 /* Setup the MCA rendezvous interrupt vector */ 2039 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler, 2040 0, "mca_rdzv"); 2041 2042 /* Setup the MCA wakeup interrupt vector */ 2043 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler, 2044 0, "mca_wkup"); 2045 2046 /* Setup the CPEI/P handler */ 2047 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0, 2048 "cpe_poll"); 2049 } 2050 2051 /* 2052 * ia64_mca_late_init 2053 * 2054 * Opportunity to setup things that require initialization later 2055 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2056 * platform doesn't support an interrupt driven mechanism. 2057 * 2058 * Inputs : None 2059 * Outputs : Status 2060 */ 2061 static int __init 2062 ia64_mca_late_init(void) 2063 { 2064 if (!mca_init) 2065 return 0; 2066 2067 /* Setup the CMCI/P vector and handler */ 2068 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); 2069 2070 /* Unmask/enable the vector */ 2071 cmc_polling_enabled = 0; 2072 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", 2073 ia64_mca_cpu_online, NULL); 2074 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2075 2076 /* Setup the CPEI/P vector and handler */ 2077 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2078 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); 2079 2080 { 2081 unsigned int irq; 2082 2083 if (cpe_vector >= 0) { 2084 /* If platform supports CPEI, enable the irq. */ 2085 irq = local_vector_to_irq(cpe_vector); 2086 if (irq > 0) { 2087 cpe_poll_enabled = 0; 2088 irq_set_status_flags(irq, IRQ_PER_CPU); 2089 if (request_irq(irq, ia64_mca_cpe_int_handler, 2090 0, "cpe_hndlr", NULL)) 2091 pr_err("Failed to register cpe_hndlr interrupt\n"); 2092 ia64_cpe_irq = irq; 2093 ia64_mca_register_cpev(cpe_vector); 2094 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2095 __func__); 2096 return 0; 2097 } 2098 printk(KERN_ERR "%s: Failed to find irq for CPE " 2099 "interrupt handler, vector %d\n", 2100 __func__, cpe_vector); 2101 } 2102 /* If platform doesn't support CPEI, get the timer going. */ 2103 if (cpe_poll_enabled) { 2104 ia64_mca_cpe_poll(0UL); 2105 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2106 } 2107 } 2108 2109 return 0; 2110 } 2111 2112 device_initcall(ia64_mca_late_init); 2113