1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * File: mca.c 4 * Purpose: Generic MCA handling layer 5 * 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 20 * 21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 23 * 24 * Copyright (C) 2006 FUJITSU LIMITED 25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 26 * 27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 29 * added min save state dump, added INIT handler. 30 * 31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 33 * errors, completed code for logging of corrected & uncorrected 34 * machine check errors, and updated for conformance with Nov. 2000 35 * revision of the SAL 3.0 spec. 36 * 37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 39 * set SAL default return values, changed error record structure to 40 * linked list, added init call to sal_get_state_info_size(). 41 * 42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 43 * GUID cleanups. 44 * 45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 46 * Added INIT backtrace support. 47 * 48 * 2003-12-08 Keith Owens <kaos@sgi.com> 49 * smp_call_function() must not be called from interrupt context 50 * (can deadlock on tasklist_lock). 51 * Use keventd to call smp_call_function(). 52 * 53 * 2004-02-01 Keith Owens <kaos@sgi.com> 54 * Avoid deadlock when using printk() for MCA and INIT records. 55 * Delete all record printing code, moved to salinfo_decode in user 56 * space. Mark variables and functions static where possible. 57 * Delete dead variables and functions. Reorder to remove the need 58 * for forward declarations and to consolidate related code. 59 * 60 * 2005-08-12 Keith Owens <kaos@sgi.com> 61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 62 * state. 63 * 64 * 2005-10-07 Keith Owens <kaos@sgi.com> 65 * Add notify_die() hooks. 66 * 67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 68 * Add printing support for MCA/INIT. 69 * 70 * 2007-04-27 Russ Anderson <rja@sgi.com> 71 * Support multiple cpus going through OS_MCA in the same event. 72 */ 73 #include <linux/jiffies.h> 74 #include <linux/types.h> 75 #include <linux/init.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/debug.h> 78 #include <linux/sched/task.h> 79 #include <linux/interrupt.h> 80 #include <linux/irq.h> 81 #include <linux/memblock.h> 82 #include <linux/acpi.h> 83 #include <linux/timer.h> 84 #include <linux/module.h> 85 #include <linux/kernel.h> 86 #include <linux/smp.h> 87 #include <linux/workqueue.h> 88 #include <linux/cpumask.h> 89 #include <linux/kdebug.h> 90 #include <linux/cpu.h> 91 #include <linux/gfp.h> 92 93 #include <asm/delay.h> 94 #include <asm/efi.h> 95 #include <asm/meminit.h> 96 #include <asm/page.h> 97 #include <asm/ptrace.h> 98 #include <asm/sal.h> 99 #include <asm/mca.h> 100 #include <asm/mca_asm.h> 101 #include <asm/kexec.h> 102 103 #include <asm/irq.h> 104 #include <asm/hw_irq.h> 105 #include <asm/tlb.h> 106 107 #include "mca_drv.h" 108 #include "entry.h" 109 #include "irq.h" 110 111 #if defined(IA64_MCA_DEBUG_INFO) 112 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 113 #else 114 # define IA64_MCA_DEBUG(fmt...) do {} while (0) 115 #endif 116 117 #define NOTIFY_INIT(event, regs, arg, spin) \ 118 do { \ 119 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 120 == NOTIFY_STOP) && ((spin) == 1)) \ 121 ia64_mca_spin(__func__); \ 122 } while (0) 123 124 #define NOTIFY_MCA(event, regs, arg, spin) \ 125 do { \ 126 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 127 == NOTIFY_STOP) && ((spin) == 1)) \ 128 ia64_mca_spin(__func__); \ 129 } while (0) 130 131 /* Used by mca_asm.S */ 132 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 133 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 134 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 135 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 136 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 137 138 unsigned long __per_cpu_mca[NR_CPUS]; 139 140 /* In mca_asm.S */ 141 extern void ia64_os_init_dispatch_monarch (void); 142 extern void ia64_os_init_dispatch_slave (void); 143 144 static int monarch_cpu = -1; 145 146 static ia64_mc_info_t ia64_mc_info; 147 148 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 149 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 150 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 151 #define CPE_HISTORY_LENGTH 5 152 #define CMC_HISTORY_LENGTH 5 153 154 static struct timer_list cpe_poll_timer; 155 static struct timer_list cmc_poll_timer; 156 /* 157 * This variable tells whether we are currently in polling mode. 158 * Start with this in the wrong state so we won't play w/ timers 159 * before the system is ready. 160 */ 161 static int cmc_polling_enabled = 1; 162 163 /* 164 * Clearing this variable prevents CPE polling from getting activated 165 * in mca_late_init. Use it if your system doesn't provide a CPEI, 166 * but encounters problems retrieving CPE logs. This should only be 167 * necessary for debugging. 168 */ 169 static int cpe_poll_enabled = 1; 170 171 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 172 173 static int mca_init __initdata; 174 175 /* 176 * limited & delayed printing support for MCA/INIT handler 177 */ 178 179 #define mprintk(fmt...) ia64_mca_printk(fmt) 180 181 #define MLOGBUF_SIZE (512+256*NR_CPUS) 182 #define MLOGBUF_MSGMAX 256 183 static char mlogbuf[MLOGBUF_SIZE]; 184 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 185 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 186 static unsigned long mlogbuf_start; 187 static unsigned long mlogbuf_end; 188 static unsigned int mlogbuf_finished = 0; 189 static unsigned long mlogbuf_timestamp = 0; 190 191 static int loglevel_save = -1; 192 #define BREAK_LOGLEVEL(__console_loglevel) \ 193 oops_in_progress = 1; \ 194 if (loglevel_save < 0) \ 195 loglevel_save = __console_loglevel; \ 196 __console_loglevel = 15; 197 198 #define RESTORE_LOGLEVEL(__console_loglevel) \ 199 if (loglevel_save >= 0) { \ 200 __console_loglevel = loglevel_save; \ 201 loglevel_save = -1; \ 202 } \ 203 mlogbuf_finished = 0; \ 204 oops_in_progress = 0; 205 206 /* 207 * Push messages into buffer, print them later if not urgent. 208 */ 209 void ia64_mca_printk(const char *fmt, ...) 210 { 211 va_list args; 212 int printed_len; 213 char temp_buf[MLOGBUF_MSGMAX]; 214 char *p; 215 216 va_start(args, fmt); 217 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 218 va_end(args); 219 220 /* Copy the output into mlogbuf */ 221 if (oops_in_progress) { 222 /* mlogbuf was abandoned, use printk directly instead. */ 223 printk("%s", temp_buf); 224 } else { 225 spin_lock(&mlogbuf_wlock); 226 for (p = temp_buf; *p; p++) { 227 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 228 if (next != mlogbuf_start) { 229 mlogbuf[mlogbuf_end] = *p; 230 mlogbuf_end = next; 231 } else { 232 /* buffer full */ 233 break; 234 } 235 } 236 mlogbuf[mlogbuf_end] = '\0'; 237 spin_unlock(&mlogbuf_wlock); 238 } 239 } 240 EXPORT_SYMBOL(ia64_mca_printk); 241 242 /* 243 * Print buffered messages. 244 * NOTE: call this after returning normal context. (ex. from salinfod) 245 */ 246 void ia64_mlogbuf_dump(void) 247 { 248 char temp_buf[MLOGBUF_MSGMAX]; 249 char *p; 250 unsigned long index; 251 unsigned long flags; 252 unsigned int printed_len; 253 254 /* Get output from mlogbuf */ 255 while (mlogbuf_start != mlogbuf_end) { 256 temp_buf[0] = '\0'; 257 p = temp_buf; 258 printed_len = 0; 259 260 spin_lock_irqsave(&mlogbuf_rlock, flags); 261 262 index = mlogbuf_start; 263 while (index != mlogbuf_end) { 264 *p = mlogbuf[index]; 265 index = (index + 1) % MLOGBUF_SIZE; 266 if (!*p) 267 break; 268 p++; 269 if (++printed_len >= MLOGBUF_MSGMAX - 1) 270 break; 271 } 272 *p = '\0'; 273 if (temp_buf[0]) 274 printk("%s", temp_buf); 275 mlogbuf_start = index; 276 277 mlogbuf_timestamp = 0; 278 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 279 } 280 } 281 EXPORT_SYMBOL(ia64_mlogbuf_dump); 282 283 /* 284 * Call this if system is going to down or if immediate flushing messages to 285 * console is required. (ex. recovery was failed, crash dump is going to be 286 * invoked, long-wait rendezvous etc.) 287 * NOTE: this should be called from monarch. 288 */ 289 static void ia64_mlogbuf_finish(int wait) 290 { 291 BREAK_LOGLEVEL(console_loglevel); 292 293 ia64_mlogbuf_dump(); 294 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 295 "MCA/INIT might be dodgy or fail.\n"); 296 297 if (!wait) 298 return; 299 300 /* wait for console */ 301 printk("Delaying for 5 seconds...\n"); 302 udelay(5*1000000); 303 304 mlogbuf_finished = 1; 305 } 306 307 /* 308 * Print buffered messages from INIT context. 309 */ 310 static void ia64_mlogbuf_dump_from_init(void) 311 { 312 if (mlogbuf_finished) 313 return; 314 315 if (mlogbuf_timestamp && 316 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 317 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 318 " and the system seems to be messed up.\n"); 319 ia64_mlogbuf_finish(0); 320 return; 321 } 322 323 if (!spin_trylock(&mlogbuf_rlock)) { 324 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 325 "Generated messages other than stack dump will be " 326 "buffered to mlogbuf and will be printed later.\n"); 327 printk(KERN_ERR "INIT: If messages would not printed after " 328 "this INIT, wait 30sec and assert INIT again.\n"); 329 if (!mlogbuf_timestamp) 330 mlogbuf_timestamp = jiffies; 331 return; 332 } 333 spin_unlock(&mlogbuf_rlock); 334 ia64_mlogbuf_dump(); 335 } 336 337 static inline void 338 ia64_mca_spin(const char *func) 339 { 340 if (monarch_cpu == smp_processor_id()) 341 ia64_mlogbuf_finish(0); 342 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 343 while (1) 344 cpu_relax(); 345 } 346 /* 347 * IA64_MCA log support 348 */ 349 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 350 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 351 352 typedef struct ia64_state_log_s 353 { 354 spinlock_t isl_lock; 355 int isl_index; 356 unsigned long isl_count; 357 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 358 } ia64_state_log_t; 359 360 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 361 362 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 363 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 364 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 365 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 366 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 367 #define IA64_LOG_INDEX_INC(it) \ 368 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 369 ia64_state_log[it].isl_count++;} 370 #define IA64_LOG_INDEX_DEC(it) \ 371 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 372 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 373 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 374 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 375 376 static inline void ia64_log_allocate(int it, u64 size) 377 { 378 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = 379 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 380 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) 381 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 382 383 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = 384 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 385 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) 386 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 387 } 388 389 /* 390 * ia64_log_init 391 * Reset the OS ia64 log buffer 392 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 393 * Outputs : None 394 */ 395 static void __init 396 ia64_log_init(int sal_info_type) 397 { 398 u64 max_size = 0; 399 400 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 401 IA64_LOG_LOCK_INIT(sal_info_type); 402 403 // SAL will tell us the maximum size of any error record of this type 404 max_size = ia64_sal_get_state_info_size(sal_info_type); 405 if (!max_size) 406 /* alloc_bootmem() doesn't like zero-sized allocations! */ 407 return; 408 409 // set up OS data structures to hold error info 410 ia64_log_allocate(sal_info_type, max_size); 411 } 412 413 /* 414 * ia64_log_get 415 * 416 * Get the current MCA log from SAL and copy it into the OS log buffer. 417 * 418 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 419 * irq_safe whether you can use printk at this point 420 * Outputs : size (total record length) 421 * *buffer (ptr to error record) 422 * 423 */ 424 static u64 425 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 426 { 427 sal_log_record_header_t *log_buffer; 428 u64 total_len = 0; 429 unsigned long s; 430 431 IA64_LOG_LOCK(sal_info_type); 432 433 /* Get the process state information */ 434 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 435 436 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 437 438 if (total_len) { 439 IA64_LOG_INDEX_INC(sal_info_type); 440 IA64_LOG_UNLOCK(sal_info_type); 441 if (irq_safe) { 442 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 443 __func__, sal_info_type, total_len); 444 } 445 *buffer = (u8 *) log_buffer; 446 return total_len; 447 } else { 448 IA64_LOG_UNLOCK(sal_info_type); 449 return 0; 450 } 451 } 452 453 /* 454 * ia64_mca_log_sal_error_record 455 * 456 * This function retrieves a specified error record type from SAL 457 * and wakes up any processes waiting for error records. 458 * 459 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 460 * FIXME: remove MCA and irq_safe. 461 */ 462 static void 463 ia64_mca_log_sal_error_record(int sal_info_type) 464 { 465 u8 *buffer; 466 sal_log_record_header_t *rh; 467 u64 size; 468 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 469 #ifdef IA64_MCA_DEBUG_INFO 470 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 471 #endif 472 473 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 474 if (!size) 475 return; 476 477 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 478 479 if (irq_safe) 480 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 481 smp_processor_id(), 482 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 483 484 /* Clear logs from corrected errors in case there's no user-level logger */ 485 rh = (sal_log_record_header_t *)buffer; 486 if (rh->severity == sal_log_severity_corrected) 487 ia64_sal_clear_state_info(sal_info_type); 488 } 489 490 /* 491 * search_mca_table 492 * See if the MCA surfaced in an instruction range 493 * that has been tagged as recoverable. 494 * 495 * Inputs 496 * first First address range to check 497 * last Last address range to check 498 * ip Instruction pointer, address we are looking for 499 * 500 * Return value: 501 * 1 on Success (in the table)/ 0 on Failure (not in the table) 502 */ 503 int 504 search_mca_table (const struct mca_table_entry *first, 505 const struct mca_table_entry *last, 506 unsigned long ip) 507 { 508 const struct mca_table_entry *curr; 509 u64 curr_start, curr_end; 510 511 curr = first; 512 while (curr <= last) { 513 curr_start = (u64) &curr->start_addr + curr->start_addr; 514 curr_end = (u64) &curr->end_addr + curr->end_addr; 515 516 if ((ip >= curr_start) && (ip <= curr_end)) { 517 return 1; 518 } 519 curr++; 520 } 521 return 0; 522 } 523 524 /* Given an address, look for it in the mca tables. */ 525 int mca_recover_range(unsigned long addr) 526 { 527 extern struct mca_table_entry __start___mca_table[]; 528 extern struct mca_table_entry __stop___mca_table[]; 529 530 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 531 } 532 EXPORT_SYMBOL_GPL(mca_recover_range); 533 534 int cpe_vector = -1; 535 int ia64_cpe_irq = -1; 536 537 static irqreturn_t 538 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 539 { 540 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 541 static int index; 542 static DEFINE_SPINLOCK(cpe_history_lock); 543 544 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 545 __func__, cpe_irq, smp_processor_id()); 546 547 /* SAL spec states this should run w/ interrupts enabled */ 548 local_irq_enable(); 549 550 spin_lock(&cpe_history_lock); 551 if (!cpe_poll_enabled && cpe_vector >= 0) { 552 553 int i, count = 1; /* we know 1 happened now */ 554 unsigned long now = jiffies; 555 556 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 557 if (now - cpe_history[i] <= HZ) 558 count++; 559 } 560 561 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 562 if (count >= CPE_HISTORY_LENGTH) { 563 564 cpe_poll_enabled = 1; 565 spin_unlock(&cpe_history_lock); 566 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 567 568 /* 569 * Corrected errors will still be corrected, but 570 * make sure there's a log somewhere that indicates 571 * something is generating more than we can handle. 572 */ 573 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 574 575 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 576 577 /* lock already released, get out now */ 578 goto out; 579 } else { 580 cpe_history[index++] = now; 581 if (index == CPE_HISTORY_LENGTH) 582 index = 0; 583 } 584 } 585 spin_unlock(&cpe_history_lock); 586 out: 587 /* Get the CPE error record and log it */ 588 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 589 590 local_irq_disable(); 591 592 return IRQ_HANDLED; 593 } 594 595 /* 596 * ia64_mca_register_cpev 597 * 598 * Register the corrected platform error vector with SAL. 599 * 600 * Inputs 601 * cpev Corrected Platform Error Vector number 602 * 603 * Outputs 604 * None 605 */ 606 void 607 ia64_mca_register_cpev (int cpev) 608 { 609 /* Register the CPE interrupt vector with SAL */ 610 struct ia64_sal_retval isrv; 611 612 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 613 if (isrv.status) { 614 printk(KERN_ERR "Failed to register Corrected Platform " 615 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 616 return; 617 } 618 619 IA64_MCA_DEBUG("%s: corrected platform error " 620 "vector %#x registered\n", __func__, cpev); 621 } 622 623 /* 624 * ia64_mca_cmc_vector_setup 625 * 626 * Setup the corrected machine check vector register in the processor. 627 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 628 * This function is invoked on a per-processor basis. 629 * 630 * Inputs 631 * None 632 * 633 * Outputs 634 * None 635 */ 636 void 637 ia64_mca_cmc_vector_setup (void) 638 { 639 cmcv_reg_t cmcv; 640 641 cmcv.cmcv_regval = 0; 642 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 643 cmcv.cmcv_vector = IA64_CMC_VECTOR; 644 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 645 646 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 647 __func__, smp_processor_id(), IA64_CMC_VECTOR); 648 649 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 650 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 651 } 652 653 /* 654 * ia64_mca_cmc_vector_disable 655 * 656 * Mask the corrected machine check vector register in the processor. 657 * This function is invoked on a per-processor basis. 658 * 659 * Inputs 660 * dummy(unused) 661 * 662 * Outputs 663 * None 664 */ 665 static void 666 ia64_mca_cmc_vector_disable (void *dummy) 667 { 668 cmcv_reg_t cmcv; 669 670 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 671 672 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 673 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 674 675 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 676 __func__, smp_processor_id(), cmcv.cmcv_vector); 677 } 678 679 /* 680 * ia64_mca_cmc_vector_enable 681 * 682 * Unmask the corrected machine check vector register in the processor. 683 * This function is invoked on a per-processor basis. 684 * 685 * Inputs 686 * dummy(unused) 687 * 688 * Outputs 689 * None 690 */ 691 static void 692 ia64_mca_cmc_vector_enable (void *dummy) 693 { 694 cmcv_reg_t cmcv; 695 696 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 697 698 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 699 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 700 701 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 702 __func__, smp_processor_id(), cmcv.cmcv_vector); 703 } 704 705 /* 706 * ia64_mca_cmc_vector_disable_keventd 707 * 708 * Called via keventd (smp_call_function() is not safe in interrupt context) to 709 * disable the cmc interrupt vector. 710 */ 711 static void 712 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 713 { 714 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 715 } 716 717 /* 718 * ia64_mca_cmc_vector_enable_keventd 719 * 720 * Called via keventd (smp_call_function() is not safe in interrupt context) to 721 * enable the cmc interrupt vector. 722 */ 723 static void 724 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 725 { 726 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 727 } 728 729 /* 730 * ia64_mca_wakeup 731 * 732 * Send an inter-cpu interrupt to wake-up a particular cpu. 733 * 734 * Inputs : cpuid 735 * Outputs : None 736 */ 737 static void 738 ia64_mca_wakeup(int cpu) 739 { 740 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 741 } 742 743 /* 744 * ia64_mca_wakeup_all 745 * 746 * Wakeup all the slave cpus which have rendez'ed previously. 747 * 748 * Inputs : None 749 * Outputs : None 750 */ 751 static void 752 ia64_mca_wakeup_all(void) 753 { 754 int cpu; 755 756 /* Clear the Rendez checkin flag for all cpus */ 757 for_each_online_cpu(cpu) { 758 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 759 ia64_mca_wakeup(cpu); 760 } 761 762 } 763 764 /* 765 * ia64_mca_rendez_interrupt_handler 766 * 767 * This is handler used to put slave processors into spinloop 768 * while the monarch processor does the mca handling and later 769 * wake each slave up once the monarch is done. The state 770 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 771 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 772 * the cpu has come out of OS rendezvous. 773 * 774 * Inputs : None 775 * Outputs : None 776 */ 777 static irqreturn_t 778 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 779 { 780 unsigned long flags; 781 int cpu = smp_processor_id(); 782 struct ia64_mca_notify_die nd = 783 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 784 785 /* Mask all interrupts */ 786 local_irq_save(flags); 787 788 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 789 790 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 791 /* Register with the SAL monarch that the slave has 792 * reached SAL 793 */ 794 ia64_sal_mc_rendez(); 795 796 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 797 798 /* Wait for the monarch cpu to exit. */ 799 while (monarch_cpu != -1) 800 cpu_relax(); /* spin until monarch leaves */ 801 802 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 803 804 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 805 /* Enable all interrupts */ 806 local_irq_restore(flags); 807 return IRQ_HANDLED; 808 } 809 810 /* 811 * ia64_mca_wakeup_int_handler 812 * 813 * The interrupt handler for processing the inter-cpu interrupt to the 814 * slave cpu which was spinning in the rendez loop. 815 * Since this spinning is done by turning off the interrupts and 816 * polling on the wakeup-interrupt bit in the IRR, there is 817 * nothing useful to be done in the handler. 818 * 819 * Inputs : wakeup_irq (Wakeup-interrupt bit) 820 * arg (Interrupt handler specific argument) 821 * Outputs : None 822 * 823 */ 824 static irqreturn_t 825 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 826 { 827 return IRQ_HANDLED; 828 } 829 830 /* Function pointer for extra MCA recovery */ 831 int (*ia64_mca_ucmc_extension) 832 (void*,struct ia64_sal_os_state*) 833 = NULL; 834 835 int 836 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 837 { 838 if (ia64_mca_ucmc_extension) 839 return 1; 840 841 ia64_mca_ucmc_extension = fn; 842 return 0; 843 } 844 845 void 846 ia64_unreg_MCA_extension(void) 847 { 848 if (ia64_mca_ucmc_extension) 849 ia64_mca_ucmc_extension = NULL; 850 } 851 852 EXPORT_SYMBOL(ia64_reg_MCA_extension); 853 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 854 855 856 static inline void 857 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 858 { 859 u64 fslot, tslot, nat; 860 *tr = *fr; 861 fslot = ((unsigned long)fr >> 3) & 63; 862 tslot = ((unsigned long)tr >> 3) & 63; 863 *tnat &= ~(1UL << tslot); 864 nat = (fnat >> fslot) & 1; 865 *tnat |= (nat << tslot); 866 } 867 868 /* Change the comm field on the MCA/INT task to include the pid that 869 * was interrupted, it makes for easier debugging. If that pid was 0 870 * (swapper or nested MCA/INIT) then use the start of the previous comm 871 * field suffixed with its cpu. 872 */ 873 874 static void 875 ia64_mca_modify_comm(const struct task_struct *previous_current) 876 { 877 char *p, comm[sizeof(current->comm)]; 878 if (previous_current->pid) 879 snprintf(comm, sizeof(comm), "%s %d", 880 current->comm, previous_current->pid); 881 else { 882 int l; 883 if ((p = strchr(previous_current->comm, ' '))) 884 l = p - previous_current->comm; 885 else 886 l = strlen(previous_current->comm); 887 snprintf(comm, sizeof(comm), "%s %*s %d", 888 current->comm, l, previous_current->comm, 889 task_thread_info(previous_current)->cpu); 890 } 891 memcpy(current->comm, comm, sizeof(current->comm)); 892 } 893 894 static void 895 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 896 unsigned long *nat) 897 { 898 const struct pal_min_state_area *ms = sos->pal_min_state; 899 const u64 *bank; 900 901 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 902 * pmsa_{xip,xpsr,xfs} 903 */ 904 if (ia64_psr(regs)->ic) { 905 regs->cr_iip = ms->pmsa_iip; 906 regs->cr_ipsr = ms->pmsa_ipsr; 907 regs->cr_ifs = ms->pmsa_ifs; 908 } else { 909 regs->cr_iip = ms->pmsa_xip; 910 regs->cr_ipsr = ms->pmsa_xpsr; 911 regs->cr_ifs = ms->pmsa_xfs; 912 913 sos->iip = ms->pmsa_iip; 914 sos->ipsr = ms->pmsa_ipsr; 915 sos->ifs = ms->pmsa_ifs; 916 } 917 regs->pr = ms->pmsa_pr; 918 regs->b0 = ms->pmsa_br0; 919 regs->ar_rsc = ms->pmsa_rsc; 920 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 921 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 922 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 923 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 924 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 925 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 926 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 927 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 928 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 929 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 930 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 931 if (ia64_psr(regs)->bn) 932 bank = ms->pmsa_bank1_gr; 933 else 934 bank = ms->pmsa_bank0_gr; 935 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 936 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 937 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 938 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 939 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 940 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 941 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 942 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 943 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 944 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 945 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 946 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 947 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 948 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 949 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 950 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 951 } 952 953 /* On entry to this routine, we are running on the per cpu stack, see 954 * mca_asm.h. The original stack has not been touched by this event. Some of 955 * the original stack's registers will be in the RBS on this stack. This stack 956 * also contains a partial pt_regs and switch_stack, the rest of the data is in 957 * PAL minstate. 958 * 959 * The first thing to do is modify the original stack to look like a blocked 960 * task so we can run backtrace on the original task. Also mark the per cpu 961 * stack as current to ensure that we use the correct task state, it also means 962 * that we can do backtrace on the MCA/INIT handler code itself. 963 */ 964 965 static struct task_struct * 966 ia64_mca_modify_original_stack(struct pt_regs *regs, 967 const struct switch_stack *sw, 968 struct ia64_sal_os_state *sos, 969 const char *type) 970 { 971 char *p; 972 ia64_va va; 973 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 974 const struct pal_min_state_area *ms = sos->pal_min_state; 975 struct task_struct *previous_current; 976 struct pt_regs *old_regs; 977 struct switch_stack *old_sw; 978 unsigned size = sizeof(struct pt_regs) + 979 sizeof(struct switch_stack) + 16; 980 unsigned long *old_bspstore, *old_bsp; 981 unsigned long *new_bspstore, *new_bsp; 982 unsigned long old_unat, old_rnat, new_rnat, nat; 983 u64 slots, loadrs = regs->loadrs; 984 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 985 u64 ar_bspstore = regs->ar_bspstore; 986 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 987 const char *msg; 988 int cpu = smp_processor_id(); 989 990 previous_current = curr_task(cpu); 991 ia64_set_curr_task(cpu, current); 992 if ((p = strchr(current->comm, ' '))) 993 *p = '\0'; 994 995 /* Best effort attempt to cope with MCA/INIT delivered while in 996 * physical mode. 997 */ 998 regs->cr_ipsr = ms->pmsa_ipsr; 999 if (ia64_psr(regs)->dt == 0) { 1000 va.l = r12; 1001 if (va.f.reg == 0) { 1002 va.f.reg = 7; 1003 r12 = va.l; 1004 } 1005 va.l = r13; 1006 if (va.f.reg == 0) { 1007 va.f.reg = 7; 1008 r13 = va.l; 1009 } 1010 } 1011 if (ia64_psr(regs)->rt == 0) { 1012 va.l = ar_bspstore; 1013 if (va.f.reg == 0) { 1014 va.f.reg = 7; 1015 ar_bspstore = va.l; 1016 } 1017 va.l = ar_bsp; 1018 if (va.f.reg == 0) { 1019 va.f.reg = 7; 1020 ar_bsp = va.l; 1021 } 1022 } 1023 1024 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1025 * have been copied to the old stack, the old stack may fail the 1026 * validation tests below. So ia64_old_stack() must restore the dirty 1027 * registers from the new stack. The old and new bspstore probably 1028 * have different alignments, so loadrs calculated on the old bsp 1029 * cannot be used to restore from the new bsp. Calculate a suitable 1030 * loadrs for the new stack and save it in the new pt_regs, where 1031 * ia64_old_stack() can get it. 1032 */ 1033 old_bspstore = (unsigned long *)ar_bspstore; 1034 old_bsp = (unsigned long *)ar_bsp; 1035 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1036 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1037 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1038 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1039 1040 /* Verify the previous stack state before we change it */ 1041 if (user_mode(regs)) { 1042 msg = "occurred in user space"; 1043 /* previous_current is guaranteed to be valid when the task was 1044 * in user space, so ... 1045 */ 1046 ia64_mca_modify_comm(previous_current); 1047 goto no_mod; 1048 } 1049 1050 if (r13 != sos->prev_IA64_KR_CURRENT) { 1051 msg = "inconsistent previous current and r13"; 1052 goto no_mod; 1053 } 1054 1055 if (!mca_recover_range(ms->pmsa_iip)) { 1056 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1057 msg = "inconsistent r12 and r13"; 1058 goto no_mod; 1059 } 1060 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1061 msg = "inconsistent ar.bspstore and r13"; 1062 goto no_mod; 1063 } 1064 va.p = old_bspstore; 1065 if (va.f.reg < 5) { 1066 msg = "old_bspstore is in the wrong region"; 1067 goto no_mod; 1068 } 1069 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1070 msg = "inconsistent ar.bsp and r13"; 1071 goto no_mod; 1072 } 1073 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1074 if (ar_bspstore + size > r12) { 1075 msg = "no room for blocked state"; 1076 goto no_mod; 1077 } 1078 } 1079 1080 ia64_mca_modify_comm(previous_current); 1081 1082 /* Make the original task look blocked. First stack a struct pt_regs, 1083 * describing the state at the time of interrupt. mca_asm.S built a 1084 * partial pt_regs, copy it and fill in the blanks using minstate. 1085 */ 1086 p = (char *)r12 - sizeof(*regs); 1087 old_regs = (struct pt_regs *)p; 1088 memcpy(old_regs, regs, sizeof(*regs)); 1089 old_regs->loadrs = loadrs; 1090 old_unat = old_regs->ar_unat; 1091 finish_pt_regs(old_regs, sos, &old_unat); 1092 1093 /* Next stack a struct switch_stack. mca_asm.S built a partial 1094 * switch_stack, copy it and fill in the blanks using pt_regs and 1095 * minstate. 1096 * 1097 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1098 * ar.pfs is set to 0. 1099 * 1100 * unwind.c::unw_unwind() does special processing for interrupt frames. 1101 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1102 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1103 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1104 * switch_stack on the original stack so it will unwind correctly when 1105 * unwind.c reads pt_regs. 1106 * 1107 * thread.ksp is updated to point to the synthesized switch_stack. 1108 */ 1109 p -= sizeof(struct switch_stack); 1110 old_sw = (struct switch_stack *)p; 1111 memcpy(old_sw, sw, sizeof(*sw)); 1112 old_sw->caller_unat = old_unat; 1113 old_sw->ar_fpsr = old_regs->ar_fpsr; 1114 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1115 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1116 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1117 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1118 old_sw->b0 = (u64)ia64_leave_kernel; 1119 old_sw->b1 = ms->pmsa_br1; 1120 old_sw->ar_pfs = 0; 1121 old_sw->ar_unat = old_unat; 1122 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1123 previous_current->thread.ksp = (u64)p - 16; 1124 1125 /* Finally copy the original stack's registers back to its RBS. 1126 * Registers from ar.bspstore through ar.bsp at the time of the event 1127 * are in the current RBS, copy them back to the original stack. The 1128 * copy must be done register by register because the original bspstore 1129 * and the current one have different alignments, so the saved RNAT 1130 * data occurs at different places. 1131 * 1132 * mca_asm does cover, so the old_bsp already includes all registers at 1133 * the time of MCA/INIT. It also does flushrs, so all registers before 1134 * this function have been written to backing store on the MCA/INIT 1135 * stack. 1136 */ 1137 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1138 old_rnat = regs->ar_rnat; 1139 while (slots--) { 1140 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1141 new_rnat = ia64_get_rnat(new_bspstore++); 1142 } 1143 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1144 *old_bspstore++ = old_rnat; 1145 old_rnat = 0; 1146 } 1147 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1148 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1149 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1150 *old_bspstore++ = *new_bspstore++; 1151 } 1152 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1153 old_sw->ar_rnat = old_rnat; 1154 1155 sos->prev_task = previous_current; 1156 return previous_current; 1157 1158 no_mod: 1159 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1160 smp_processor_id(), type, msg); 1161 old_unat = regs->ar_unat; 1162 finish_pt_regs(regs, sos, &old_unat); 1163 return previous_current; 1164 } 1165 1166 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1167 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1168 * not entered rendezvous yet then wait a bit. The assumption is that any 1169 * slave that has not rendezvoused after a reasonable time is never going to do 1170 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1171 * interrupt, as well as cpus that receive the INIT slave event. 1172 */ 1173 1174 static void 1175 ia64_wait_for_slaves(int monarch, const char *type) 1176 { 1177 int c, i , wait; 1178 1179 /* 1180 * wait 5 seconds total for slaves (arbitrary) 1181 */ 1182 for (i = 0; i < 5000; i++) { 1183 wait = 0; 1184 for_each_online_cpu(c) { 1185 if (c == monarch) 1186 continue; 1187 if (ia64_mc_info.imi_rendez_checkin[c] 1188 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1189 udelay(1000); /* short wait */ 1190 wait = 1; 1191 break; 1192 } 1193 } 1194 if (!wait) 1195 goto all_in; 1196 } 1197 1198 /* 1199 * Maybe slave(s) dead. Print buffered messages immediately. 1200 */ 1201 ia64_mlogbuf_finish(0); 1202 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1203 for_each_online_cpu(c) { 1204 if (c == monarch) 1205 continue; 1206 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1207 mprintk(" %d", c); 1208 } 1209 mprintk("\n"); 1210 return; 1211 1212 all_in: 1213 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1214 return; 1215 } 1216 1217 /* mca_insert_tr 1218 * 1219 * Switch rid when TR reload and needed! 1220 * iord: 1: itr, 2: itr; 1221 * 1222 */ 1223 static void mca_insert_tr(u64 iord) 1224 { 1225 1226 int i; 1227 u64 old_rr; 1228 struct ia64_tr_entry *p; 1229 unsigned long psr; 1230 int cpu = smp_processor_id(); 1231 1232 if (!ia64_idtrs[cpu]) 1233 return; 1234 1235 psr = ia64_clear_ic(); 1236 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1237 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1238 if (p->pte & 0x1) { 1239 old_rr = ia64_get_rr(p->ifa); 1240 if (old_rr != p->rr) { 1241 ia64_set_rr(p->ifa, p->rr); 1242 ia64_srlz_d(); 1243 } 1244 ia64_ptr(iord, p->ifa, p->itir >> 2); 1245 ia64_srlz_i(); 1246 if (iord & 0x1) { 1247 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1248 ia64_srlz_i(); 1249 } 1250 if (iord & 0x2) { 1251 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1252 ia64_srlz_i(); 1253 } 1254 if (old_rr != p->rr) { 1255 ia64_set_rr(p->ifa, old_rr); 1256 ia64_srlz_d(); 1257 } 1258 } 1259 } 1260 ia64_set_psr(psr); 1261 } 1262 1263 /* 1264 * ia64_mca_handler 1265 * 1266 * This is uncorrectable machine check handler called from OS_MCA 1267 * dispatch code which is in turn called from SAL_CHECK(). 1268 * This is the place where the core of OS MCA handling is done. 1269 * Right now the logs are extracted and displayed in a well-defined 1270 * format. This handler code is supposed to be run only on the 1271 * monarch processor. Once the monarch is done with MCA handling 1272 * further MCA logging is enabled by clearing logs. 1273 * Monarch also has the duty of sending wakeup-IPIs to pull the 1274 * slave processors out of rendezvous spinloop. 1275 * 1276 * If multiple processors call into OS_MCA, the first will become 1277 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1278 * bitmask. After the first monarch has processed its MCA, it 1279 * will wake up the next cpu in the mca_cpu bitmask and then go 1280 * into the rendezvous loop. When all processors have serviced 1281 * their MCA, the last monarch frees up the rest of the processors. 1282 */ 1283 void 1284 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1285 struct ia64_sal_os_state *sos) 1286 { 1287 int recover, cpu = smp_processor_id(); 1288 struct task_struct *previous_current; 1289 struct ia64_mca_notify_die nd = 1290 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1291 static atomic_t mca_count; 1292 static cpumask_t mca_cpu; 1293 1294 if (atomic_add_return(1, &mca_count) == 1) { 1295 monarch_cpu = cpu; 1296 sos->monarch = 1; 1297 } else { 1298 cpumask_set_cpu(cpu, &mca_cpu); 1299 sos->monarch = 0; 1300 } 1301 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1302 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1303 1304 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1305 1306 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1307 1308 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1309 if (sos->monarch) { 1310 ia64_wait_for_slaves(cpu, "MCA"); 1311 1312 /* Wakeup all the processors which are spinning in the 1313 * rendezvous loop. They will leave SAL, then spin in the OS 1314 * with interrupts disabled until this monarch cpu leaves the 1315 * MCA handler. That gets control back to the OS so we can 1316 * backtrace the other cpus, backtrace when spinning in SAL 1317 * does not work. 1318 */ 1319 ia64_mca_wakeup_all(); 1320 } else { 1321 while (cpumask_test_cpu(cpu, &mca_cpu)) 1322 cpu_relax(); /* spin until monarch wakes us */ 1323 } 1324 1325 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1326 1327 /* Get the MCA error record and log it */ 1328 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1329 1330 /* MCA error recovery */ 1331 recover = (ia64_mca_ucmc_extension 1332 && ia64_mca_ucmc_extension( 1333 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1334 sos)); 1335 1336 if (recover) { 1337 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1338 rh->severity = sal_log_severity_corrected; 1339 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1340 sos->os_status = IA64_MCA_CORRECTED; 1341 } else { 1342 /* Dump buffered message to console */ 1343 ia64_mlogbuf_finish(1); 1344 } 1345 1346 if (__this_cpu_read(ia64_mca_tr_reload)) { 1347 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1348 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1349 } 1350 1351 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1352 1353 if (atomic_dec_return(&mca_count) > 0) { 1354 int i; 1355 1356 /* wake up the next monarch cpu, 1357 * and put this cpu in the rendez loop. 1358 */ 1359 for_each_online_cpu(i) { 1360 if (cpumask_test_cpu(i, &mca_cpu)) { 1361 monarch_cpu = i; 1362 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ 1363 while (monarch_cpu != -1) 1364 cpu_relax(); /* spin until last cpu leaves */ 1365 ia64_set_curr_task(cpu, previous_current); 1366 ia64_mc_info.imi_rendez_checkin[cpu] 1367 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1368 return; 1369 } 1370 } 1371 } 1372 ia64_set_curr_task(cpu, previous_current); 1373 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1374 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1375 } 1376 1377 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1378 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1379 1380 /* 1381 * ia64_mca_cmc_int_handler 1382 * 1383 * This is corrected machine check interrupt handler. 1384 * Right now the logs are extracted and displayed in a well-defined 1385 * format. 1386 * 1387 * Inputs 1388 * interrupt number 1389 * client data arg ptr 1390 * 1391 * Outputs 1392 * None 1393 */ 1394 static irqreturn_t 1395 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1396 { 1397 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1398 static int index; 1399 static DEFINE_SPINLOCK(cmc_history_lock); 1400 1401 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1402 __func__, cmc_irq, smp_processor_id()); 1403 1404 /* SAL spec states this should run w/ interrupts enabled */ 1405 local_irq_enable(); 1406 1407 spin_lock(&cmc_history_lock); 1408 if (!cmc_polling_enabled) { 1409 int i, count = 1; /* we know 1 happened now */ 1410 unsigned long now = jiffies; 1411 1412 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1413 if (now - cmc_history[i] <= HZ) 1414 count++; 1415 } 1416 1417 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1418 if (count >= CMC_HISTORY_LENGTH) { 1419 1420 cmc_polling_enabled = 1; 1421 spin_unlock(&cmc_history_lock); 1422 /* If we're being hit with CMC interrupts, we won't 1423 * ever execute the schedule_work() below. Need to 1424 * disable CMC interrupts on this processor now. 1425 */ 1426 ia64_mca_cmc_vector_disable(NULL); 1427 schedule_work(&cmc_disable_work); 1428 1429 /* 1430 * Corrected errors will still be corrected, but 1431 * make sure there's a log somewhere that indicates 1432 * something is generating more than we can handle. 1433 */ 1434 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1435 1436 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1437 1438 /* lock already released, get out now */ 1439 goto out; 1440 } else { 1441 cmc_history[index++] = now; 1442 if (index == CMC_HISTORY_LENGTH) 1443 index = 0; 1444 } 1445 } 1446 spin_unlock(&cmc_history_lock); 1447 out: 1448 /* Get the CMC error record and log it */ 1449 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1450 1451 local_irq_disable(); 1452 1453 return IRQ_HANDLED; 1454 } 1455 1456 /* 1457 * ia64_mca_cmc_int_caller 1458 * 1459 * Triggered by sw interrupt from CMC polling routine. Calls 1460 * real interrupt handler and either triggers a sw interrupt 1461 * on the next cpu or does cleanup at the end. 1462 * 1463 * Inputs 1464 * interrupt number 1465 * client data arg ptr 1466 * Outputs 1467 * handled 1468 */ 1469 static irqreturn_t 1470 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1471 { 1472 static int start_count = -1; 1473 unsigned int cpuid; 1474 1475 cpuid = smp_processor_id(); 1476 1477 /* If first cpu, update count */ 1478 if (start_count == -1) 1479 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1480 1481 ia64_mca_cmc_int_handler(cmc_irq, arg); 1482 1483 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1484 1485 if (cpuid < nr_cpu_ids) { 1486 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1487 } else { 1488 /* If no log record, switch out of polling mode */ 1489 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1490 1491 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1492 schedule_work(&cmc_enable_work); 1493 cmc_polling_enabled = 0; 1494 1495 } else { 1496 1497 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1498 } 1499 1500 start_count = -1; 1501 } 1502 1503 return IRQ_HANDLED; 1504 } 1505 1506 /* 1507 * ia64_mca_cmc_poll 1508 * 1509 * Poll for Corrected Machine Checks (CMCs) 1510 * 1511 * Inputs : dummy(unused) 1512 * Outputs : None 1513 * 1514 */ 1515 static void 1516 ia64_mca_cmc_poll (struct timer_list *unused) 1517 { 1518 /* Trigger a CMC interrupt cascade */ 1519 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, 1520 IA64_IPI_DM_INT, 0); 1521 } 1522 1523 /* 1524 * ia64_mca_cpe_int_caller 1525 * 1526 * Triggered by sw interrupt from CPE polling routine. Calls 1527 * real interrupt handler and either triggers a sw interrupt 1528 * on the next cpu or does cleanup at the end. 1529 * 1530 * Inputs 1531 * interrupt number 1532 * client data arg ptr 1533 * Outputs 1534 * handled 1535 */ 1536 static irqreturn_t 1537 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1538 { 1539 static int start_count = -1; 1540 static int poll_time = MIN_CPE_POLL_INTERVAL; 1541 unsigned int cpuid; 1542 1543 cpuid = smp_processor_id(); 1544 1545 /* If first cpu, update count */ 1546 if (start_count == -1) 1547 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1548 1549 ia64_mca_cpe_int_handler(cpe_irq, arg); 1550 1551 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1552 1553 if (cpuid < NR_CPUS) { 1554 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1555 } else { 1556 /* 1557 * If a log was recorded, increase our polling frequency, 1558 * otherwise, backoff or return to interrupt mode. 1559 */ 1560 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1561 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1562 } else if (cpe_vector < 0) { 1563 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1564 } else { 1565 poll_time = MIN_CPE_POLL_INTERVAL; 1566 1567 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1568 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1569 cpe_poll_enabled = 0; 1570 } 1571 1572 if (cpe_poll_enabled) 1573 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1574 start_count = -1; 1575 } 1576 1577 return IRQ_HANDLED; 1578 } 1579 1580 /* 1581 * ia64_mca_cpe_poll 1582 * 1583 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1584 * on first cpu, from there it will trickle through all the cpus. 1585 * 1586 * Inputs : dummy(unused) 1587 * Outputs : None 1588 * 1589 */ 1590 static void 1591 ia64_mca_cpe_poll (struct timer_list *unused) 1592 { 1593 /* Trigger a CPE interrupt cascade */ 1594 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, 1595 IA64_IPI_DM_INT, 0); 1596 } 1597 1598 static int 1599 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1600 { 1601 int c; 1602 struct task_struct *g, *t; 1603 if (val != DIE_INIT_MONARCH_PROCESS) 1604 return NOTIFY_DONE; 1605 #ifdef CONFIG_KEXEC 1606 if (atomic_read(&kdump_in_progress)) 1607 return NOTIFY_DONE; 1608 #endif 1609 1610 /* 1611 * FIXME: mlogbuf will brim over with INIT stack dumps. 1612 * To enable show_stack from INIT, we use oops_in_progress which should 1613 * be used in real oops. This would cause something wrong after INIT. 1614 */ 1615 BREAK_LOGLEVEL(console_loglevel); 1616 ia64_mlogbuf_dump_from_init(); 1617 1618 printk(KERN_ERR "Processes interrupted by INIT -"); 1619 for_each_online_cpu(c) { 1620 struct ia64_sal_os_state *s; 1621 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1622 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1623 g = s->prev_task; 1624 if (g) { 1625 if (g->pid) 1626 printk(" %d", g->pid); 1627 else 1628 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1629 } 1630 } 1631 printk("\n\n"); 1632 if (read_trylock(&tasklist_lock)) { 1633 for_each_process_thread(g, t) { 1634 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1635 show_stack(t, NULL, KERN_DEFAULT); 1636 } 1637 read_unlock(&tasklist_lock); 1638 } 1639 /* FIXME: This will not restore zapped printk locks. */ 1640 RESTORE_LOGLEVEL(console_loglevel); 1641 return NOTIFY_DONE; 1642 } 1643 1644 /* 1645 * C portion of the OS INIT handler 1646 * 1647 * Called from ia64_os_init_dispatch 1648 * 1649 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1650 * this event. This code is used for both monarch and slave INIT events, see 1651 * sos->monarch. 1652 * 1653 * All INIT events switch to the INIT stack and change the previous process to 1654 * blocked status. If one of the INIT events is the monarch then we are 1655 * probably processing the nmi button/command. Use the monarch cpu to dump all 1656 * the processes. The slave INIT events all spin until the monarch cpu 1657 * returns. We can also get INIT slave events for MCA, in which case the MCA 1658 * process is the monarch. 1659 */ 1660 1661 void 1662 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1663 struct ia64_sal_os_state *sos) 1664 { 1665 static atomic_t slaves; 1666 static atomic_t monarchs; 1667 struct task_struct *previous_current; 1668 int cpu = smp_processor_id(); 1669 struct ia64_mca_notify_die nd = 1670 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1671 1672 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1673 1674 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1675 sos->proc_state_param, cpu, sos->monarch); 1676 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1677 1678 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1679 sos->os_status = IA64_INIT_RESUME; 1680 1681 /* FIXME: Workaround for broken proms that drive all INIT events as 1682 * slaves. The last slave that enters is promoted to be a monarch. 1683 * Remove this code in September 2006, that gives platforms a year to 1684 * fix their proms and get their customers updated. 1685 */ 1686 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1687 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1688 __func__, cpu); 1689 atomic_dec(&slaves); 1690 sos->monarch = 1; 1691 } 1692 1693 /* FIXME: Workaround for broken proms that drive all INIT events as 1694 * monarchs. Second and subsequent monarchs are demoted to slaves. 1695 * Remove this code in September 2006, that gives platforms a year to 1696 * fix their proms and get their customers updated. 1697 */ 1698 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1699 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1700 __func__, cpu); 1701 atomic_dec(&monarchs); 1702 sos->monarch = 0; 1703 } 1704 1705 if (!sos->monarch) { 1706 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1707 1708 #ifdef CONFIG_KEXEC 1709 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1710 udelay(1000); 1711 #else 1712 while (monarch_cpu == -1) 1713 cpu_relax(); /* spin until monarch enters */ 1714 #endif 1715 1716 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1717 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1718 1719 #ifdef CONFIG_KEXEC 1720 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1721 udelay(1000); 1722 #else 1723 while (monarch_cpu != -1) 1724 cpu_relax(); /* spin until monarch leaves */ 1725 #endif 1726 1727 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1728 1729 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1730 ia64_set_curr_task(cpu, previous_current); 1731 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1732 atomic_dec(&slaves); 1733 return; 1734 } 1735 1736 monarch_cpu = cpu; 1737 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1738 1739 /* 1740 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1741 * generated via the BMC's command-line interface, but since the console is on the 1742 * same serial line, the user will need some time to switch out of the BMC before 1743 * the dump begins. 1744 */ 1745 mprintk("Delaying for 5 seconds...\n"); 1746 udelay(5*1000000); 1747 ia64_wait_for_slaves(cpu, "INIT"); 1748 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1749 * to default_monarch_init_process() above and just print all the 1750 * tasks. 1751 */ 1752 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1753 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1754 1755 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1756 atomic_dec(&monarchs); 1757 ia64_set_curr_task(cpu, previous_current); 1758 monarch_cpu = -1; 1759 return; 1760 } 1761 1762 static int __init 1763 ia64_mca_disable_cpe_polling(char *str) 1764 { 1765 cpe_poll_enabled = 0; 1766 return 1; 1767 } 1768 1769 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1770 1771 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1772 * these stacks can never sleep, they cannot return from the kernel to user 1773 * space, they do not appear in a normal ps listing. So there is no need to 1774 * format most of the fields. 1775 */ 1776 1777 static void 1778 format_mca_init_stack(void *mca_data, unsigned long offset, 1779 const char *type, int cpu) 1780 { 1781 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1782 struct thread_info *ti; 1783 memset(p, 0, KERNEL_STACK_SIZE); 1784 ti = task_thread_info(p); 1785 ti->flags = _TIF_MCA_INIT; 1786 ti->preempt_count = 1; 1787 ti->task = p; 1788 ti->cpu = cpu; 1789 p->stack = ti; 1790 p->__state = TASK_UNINTERRUPTIBLE; 1791 cpumask_set_cpu(cpu, &p->cpus_mask); 1792 INIT_LIST_HEAD(&p->tasks); 1793 p->parent = p->real_parent = p->group_leader = p; 1794 INIT_LIST_HEAD(&p->children); 1795 INIT_LIST_HEAD(&p->sibling); 1796 strscpy(p->comm, type, sizeof(p->comm)-1); 1797 } 1798 1799 /* Caller prevents this from being called after init */ 1800 static void * __ref mca_bootmem(void) 1801 { 1802 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); 1803 } 1804 1805 /* Do per-CPU MCA-related initialization. */ 1806 void 1807 ia64_mca_cpu_init(void *cpu_data) 1808 { 1809 void *pal_vaddr; 1810 void *data; 1811 long sz = sizeof(struct ia64_mca_cpu); 1812 int cpu = smp_processor_id(); 1813 static int first_time = 1; 1814 1815 /* 1816 * Structure will already be allocated if cpu has been online, 1817 * then offlined. 1818 */ 1819 if (__per_cpu_mca[cpu]) { 1820 data = __va(__per_cpu_mca[cpu]); 1821 } else { 1822 if (first_time) { 1823 data = mca_bootmem(); 1824 first_time = 0; 1825 } else 1826 data = (void *)__get_free_pages(GFP_ATOMIC, 1827 get_order(sz)); 1828 if (!data) 1829 panic("Could not allocate MCA memory for cpu %d\n", 1830 cpu); 1831 } 1832 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1833 "MCA", cpu); 1834 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1835 "INIT", cpu); 1836 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); 1837 1838 /* 1839 * Stash away a copy of the PTE needed to map the per-CPU page. 1840 * We may need it during MCA recovery. 1841 */ 1842 __this_cpu_write(ia64_mca_per_cpu_pte, 1843 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); 1844 1845 /* 1846 * Also, stash away a copy of the PAL address and the PTE 1847 * needed to map it. 1848 */ 1849 pal_vaddr = efi_get_pal_addr(); 1850 if (!pal_vaddr) 1851 return; 1852 __this_cpu_write(ia64_mca_pal_base, 1853 GRANULEROUNDDOWN((unsigned long) pal_vaddr)); 1854 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), 1855 PAGE_KERNEL))); 1856 } 1857 1858 static int ia64_mca_cpu_online(unsigned int cpu) 1859 { 1860 unsigned long flags; 1861 1862 local_irq_save(flags); 1863 if (!cmc_polling_enabled) 1864 ia64_mca_cmc_vector_enable(NULL); 1865 local_irq_restore(flags); 1866 return 0; 1867 } 1868 1869 /* 1870 * ia64_mca_init 1871 * 1872 * Do all the system level mca specific initialization. 1873 * 1874 * 1. Register spinloop and wakeup request interrupt vectors 1875 * 1876 * 2. Register OS_MCA handler entry point 1877 * 1878 * 3. Register OS_INIT handler entry point 1879 * 1880 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1881 * 1882 * Note that this initialization is done very early before some kernel 1883 * services are available. 1884 * 1885 * Inputs : None 1886 * 1887 * Outputs : None 1888 */ 1889 void __init 1890 ia64_mca_init(void) 1891 { 1892 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1893 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1894 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1895 int i; 1896 long rc; 1897 struct ia64_sal_retval isrv; 1898 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1899 static struct notifier_block default_init_monarch_nb = { 1900 .notifier_call = default_monarch_init_process, 1901 .priority = 0/* we need to notified last */ 1902 }; 1903 1904 IA64_MCA_DEBUG("%s: begin\n", __func__); 1905 1906 /* Clear the Rendez checkin flag for all cpus */ 1907 for(i = 0 ; i < NR_CPUS; i++) 1908 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1909 1910 /* 1911 * Register the rendezvous spinloop and wakeup mechanism with SAL 1912 */ 1913 1914 /* Register the rendezvous interrupt vector with SAL */ 1915 while (1) { 1916 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1917 SAL_MC_PARAM_MECHANISM_INT, 1918 IA64_MCA_RENDEZ_VECTOR, 1919 timeout, 1920 SAL_MC_PARAM_RZ_ALWAYS); 1921 rc = isrv.status; 1922 if (rc == 0) 1923 break; 1924 if (rc == -2) { 1925 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1926 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1927 timeout = isrv.v0; 1928 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1929 continue; 1930 } 1931 printk(KERN_ERR "Failed to register rendezvous interrupt " 1932 "with SAL (status %ld)\n", rc); 1933 return; 1934 } 1935 1936 /* Register the wakeup interrupt vector with SAL */ 1937 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1938 SAL_MC_PARAM_MECHANISM_INT, 1939 IA64_MCA_WAKEUP_VECTOR, 1940 0, 0); 1941 rc = isrv.status; 1942 if (rc) { 1943 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1944 "(status %ld)\n", rc); 1945 return; 1946 } 1947 1948 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 1949 1950 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1951 /* 1952 * XXX - disable SAL checksum by setting size to 0; should be 1953 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1954 */ 1955 ia64_mc_info.imi_mca_handler_size = 0; 1956 1957 /* Register the os mca handler with SAL */ 1958 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 1959 ia64_mc_info.imi_mca_handler, 1960 ia64_tpa(mca_hldlr_ptr->gp), 1961 ia64_mc_info.imi_mca_handler_size, 1962 0, 0, 0))) 1963 { 1964 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 1965 "(status %ld)\n", rc); 1966 return; 1967 } 1968 1969 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 1970 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 1971 1972 /* 1973 * XXX - disable SAL checksum by setting size to 0, should be 1974 * size of the actual init handler in mca_asm.S. 1975 */ 1976 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 1977 ia64_mc_info.imi_monarch_init_handler_size = 0; 1978 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 1979 ia64_mc_info.imi_slave_init_handler_size = 0; 1980 1981 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 1982 ia64_mc_info.imi_monarch_init_handler); 1983 1984 /* Register the os init handler with SAL */ 1985 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 1986 ia64_mc_info.imi_monarch_init_handler, 1987 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1988 ia64_mc_info.imi_monarch_init_handler_size, 1989 ia64_mc_info.imi_slave_init_handler, 1990 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 1991 ia64_mc_info.imi_slave_init_handler_size))) 1992 { 1993 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 1994 "(status %ld)\n", rc); 1995 return; 1996 } 1997 if (register_die_notifier(&default_init_monarch_nb)) { 1998 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 1999 return; 2000 } 2001 2002 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2003 2004 /* Initialize the areas set aside by the OS to buffer the 2005 * platform/processor error states for MCA/INIT/CMC 2006 * handling. 2007 */ 2008 ia64_log_init(SAL_INFO_TYPE_MCA); 2009 ia64_log_init(SAL_INFO_TYPE_INIT); 2010 ia64_log_init(SAL_INFO_TYPE_CMC); 2011 ia64_log_init(SAL_INFO_TYPE_CPE); 2012 2013 mca_init = 1; 2014 printk(KERN_INFO "MCA related initialization done\n"); 2015 } 2016 2017 2018 /* 2019 * These pieces cannot be done in ia64_mca_init() because it is called before 2020 * early_irq_init() which would wipe out our percpu irq registrations. But we 2021 * cannot leave them until ia64_mca_late_init() because by then all the other 2022 * processors have been brought online and have set their own CMC vectors to 2023 * point at a non-existant action. Called from arch_early_irq_init(). 2024 */ 2025 void __init ia64_mca_irq_init(void) 2026 { 2027 /* 2028 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2029 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2030 */ 2031 register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0, 2032 "cmc_hndlr"); 2033 register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0, 2034 "cmc_poll"); 2035 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2036 2037 /* Setup the MCA rendezvous interrupt vector */ 2038 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler, 2039 0, "mca_rdzv"); 2040 2041 /* Setup the MCA wakeup interrupt vector */ 2042 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler, 2043 0, "mca_wkup"); 2044 2045 /* Setup the CPEI/P handler */ 2046 register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0, 2047 "cpe_poll"); 2048 } 2049 2050 /* 2051 * ia64_mca_late_init 2052 * 2053 * Opportunity to setup things that require initialization later 2054 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2055 * platform doesn't support an interrupt driven mechanism. 2056 * 2057 * Inputs : None 2058 * Outputs : Status 2059 */ 2060 static int __init 2061 ia64_mca_late_init(void) 2062 { 2063 if (!mca_init) 2064 return 0; 2065 2066 /* Setup the CMCI/P vector and handler */ 2067 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); 2068 2069 /* Unmask/enable the vector */ 2070 cmc_polling_enabled = 0; 2071 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", 2072 ia64_mca_cpu_online, NULL); 2073 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2074 2075 /* Setup the CPEI/P vector and handler */ 2076 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2077 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); 2078 2079 { 2080 unsigned int irq; 2081 2082 if (cpe_vector >= 0) { 2083 /* If platform supports CPEI, enable the irq. */ 2084 irq = local_vector_to_irq(cpe_vector); 2085 if (irq > 0) { 2086 cpe_poll_enabled = 0; 2087 irq_set_status_flags(irq, IRQ_PER_CPU); 2088 if (request_irq(irq, ia64_mca_cpe_int_handler, 2089 0, "cpe_hndlr", NULL)) 2090 pr_err("Failed to register cpe_hndlr interrupt\n"); 2091 ia64_cpe_irq = irq; 2092 ia64_mca_register_cpev(cpe_vector); 2093 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2094 __func__); 2095 return 0; 2096 } 2097 printk(KERN_ERR "%s: Failed to find irq for CPE " 2098 "interrupt handler, vector %d\n", 2099 __func__, cpe_vector); 2100 } 2101 /* If platform doesn't support CPEI, get the timer going. */ 2102 if (cpe_poll_enabled) { 2103 ia64_mca_cpe_poll(0UL); 2104 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2105 } 2106 } 2107 2108 return 0; 2109 } 2110 2111 device_initcall(ia64_mca_late_init); 2112