1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * File: mca.c 4 * Purpose: Generic MCA handling layer 5 * 6 * Copyright (C) 2003 Hewlett-Packard Co 7 * David Mosberger-Tang <davidm@hpl.hp.com> 8 * 9 * Copyright (C) 2002 Dell Inc. 10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com> 11 * 12 * Copyright (C) 2002 Intel 13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com> 14 * 15 * Copyright (C) 2001 Intel 16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com> 17 * 18 * Copyright (C) 2000 Intel 19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com> 20 * 21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc. 22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com> 23 * 24 * Copyright (C) 2006 FUJITSU LIMITED 25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 26 * 27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com> 28 * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, 29 * added min save state dump, added INIT handler. 30 * 31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com> 32 * Added setup of CMCI and CPEI IRQs, logging of corrected platform 33 * errors, completed code for logging of corrected & uncorrected 34 * machine check errors, and updated for conformance with Nov. 2000 35 * revision of the SAL 3.0 spec. 36 * 37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com> 38 * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag, 39 * set SAL default return values, changed error record structure to 40 * linked list, added init call to sal_get_state_info_size(). 41 * 42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com> 43 * GUID cleanups. 44 * 45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com> 46 * Added INIT backtrace support. 47 * 48 * 2003-12-08 Keith Owens <kaos@sgi.com> 49 * smp_call_function() must not be called from interrupt context 50 * (can deadlock on tasklist_lock). 51 * Use keventd to call smp_call_function(). 52 * 53 * 2004-02-01 Keith Owens <kaos@sgi.com> 54 * Avoid deadlock when using printk() for MCA and INIT records. 55 * Delete all record printing code, moved to salinfo_decode in user 56 * space. Mark variables and functions static where possible. 57 * Delete dead variables and functions. Reorder to remove the need 58 * for forward declarations and to consolidate related code. 59 * 60 * 2005-08-12 Keith Owens <kaos@sgi.com> 61 * Convert MCA/INIT handlers to use per event stacks and SAL/OS 62 * state. 63 * 64 * 2005-10-07 Keith Owens <kaos@sgi.com> 65 * Add notify_die() hooks. 66 * 67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com> 68 * Add printing support for MCA/INIT. 69 * 70 * 2007-04-27 Russ Anderson <rja@sgi.com> 71 * Support multiple cpus going through OS_MCA in the same event. 72 */ 73 #include <linux/jiffies.h> 74 #include <linux/types.h> 75 #include <linux/init.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/debug.h> 78 #include <linux/sched/task.h> 79 #include <linux/interrupt.h> 80 #include <linux/irq.h> 81 #include <linux/memblock.h> 82 #include <linux/acpi.h> 83 #include <linux/timer.h> 84 #include <linux/module.h> 85 #include <linux/kernel.h> 86 #include <linux/smp.h> 87 #include <linux/workqueue.h> 88 #include <linux/cpumask.h> 89 #include <linux/kdebug.h> 90 #include <linux/cpu.h> 91 #include <linux/gfp.h> 92 93 #include <asm/delay.h> 94 #include <asm/meminit.h> 95 #include <asm/page.h> 96 #include <asm/ptrace.h> 97 #include <asm/sal.h> 98 #include <asm/mca.h> 99 #include <asm/kexec.h> 100 101 #include <asm/irq.h> 102 #include <asm/hw_irq.h> 103 #include <asm/tlb.h> 104 105 #include "mca_drv.h" 106 #include "entry.h" 107 108 #if defined(IA64_MCA_DEBUG_INFO) 109 # define IA64_MCA_DEBUG(fmt...) printk(fmt) 110 #else 111 # define IA64_MCA_DEBUG(fmt...) 112 #endif 113 114 #define NOTIFY_INIT(event, regs, arg, spin) \ 115 do { \ 116 if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \ 117 == NOTIFY_STOP) && ((spin) == 1)) \ 118 ia64_mca_spin(__func__); \ 119 } while (0) 120 121 #define NOTIFY_MCA(event, regs, arg, spin) \ 122 do { \ 123 if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \ 124 == NOTIFY_STOP) && ((spin) == 1)) \ 125 ia64_mca_spin(__func__); \ 126 } while (0) 127 128 /* Used by mca_asm.S */ 129 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ 130 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ 131 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ 132 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ 133 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */ 134 135 unsigned long __per_cpu_mca[NR_CPUS]; 136 137 /* In mca_asm.S */ 138 extern void ia64_os_init_dispatch_monarch (void); 139 extern void ia64_os_init_dispatch_slave (void); 140 141 static int monarch_cpu = -1; 142 143 static ia64_mc_info_t ia64_mc_info; 144 145 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ 146 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */ 147 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */ 148 #define CPE_HISTORY_LENGTH 5 149 #define CMC_HISTORY_LENGTH 5 150 151 static struct timer_list cpe_poll_timer; 152 static struct timer_list cmc_poll_timer; 153 /* 154 * This variable tells whether we are currently in polling mode. 155 * Start with this in the wrong state so we won't play w/ timers 156 * before the system is ready. 157 */ 158 static int cmc_polling_enabled = 1; 159 160 /* 161 * Clearing this variable prevents CPE polling from getting activated 162 * in mca_late_init. Use it if your system doesn't provide a CPEI, 163 * but encounters problems retrieving CPE logs. This should only be 164 * necessary for debugging. 165 */ 166 static int cpe_poll_enabled = 1; 167 168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); 169 170 static int mca_init __initdata; 171 172 /* 173 * limited & delayed printing support for MCA/INIT handler 174 */ 175 176 #define mprintk(fmt...) ia64_mca_printk(fmt) 177 178 #define MLOGBUF_SIZE (512+256*NR_CPUS) 179 #define MLOGBUF_MSGMAX 256 180 static char mlogbuf[MLOGBUF_SIZE]; 181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */ 182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */ 183 static unsigned long mlogbuf_start; 184 static unsigned long mlogbuf_end; 185 static unsigned int mlogbuf_finished = 0; 186 static unsigned long mlogbuf_timestamp = 0; 187 188 static int loglevel_save = -1; 189 #define BREAK_LOGLEVEL(__console_loglevel) \ 190 oops_in_progress = 1; \ 191 if (loglevel_save < 0) \ 192 loglevel_save = __console_loglevel; \ 193 __console_loglevel = 15; 194 195 #define RESTORE_LOGLEVEL(__console_loglevel) \ 196 if (loglevel_save >= 0) { \ 197 __console_loglevel = loglevel_save; \ 198 loglevel_save = -1; \ 199 } \ 200 mlogbuf_finished = 0; \ 201 oops_in_progress = 0; 202 203 /* 204 * Push messages into buffer, print them later if not urgent. 205 */ 206 void ia64_mca_printk(const char *fmt, ...) 207 { 208 va_list args; 209 int printed_len; 210 char temp_buf[MLOGBUF_MSGMAX]; 211 char *p; 212 213 va_start(args, fmt); 214 printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args); 215 va_end(args); 216 217 /* Copy the output into mlogbuf */ 218 if (oops_in_progress) { 219 /* mlogbuf was abandoned, use printk directly instead. */ 220 printk("%s", temp_buf); 221 } else { 222 spin_lock(&mlogbuf_wlock); 223 for (p = temp_buf; *p; p++) { 224 unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE; 225 if (next != mlogbuf_start) { 226 mlogbuf[mlogbuf_end] = *p; 227 mlogbuf_end = next; 228 } else { 229 /* buffer full */ 230 break; 231 } 232 } 233 mlogbuf[mlogbuf_end] = '\0'; 234 spin_unlock(&mlogbuf_wlock); 235 } 236 } 237 EXPORT_SYMBOL(ia64_mca_printk); 238 239 /* 240 * Print buffered messages. 241 * NOTE: call this after returning normal context. (ex. from salinfod) 242 */ 243 void ia64_mlogbuf_dump(void) 244 { 245 char temp_buf[MLOGBUF_MSGMAX]; 246 char *p; 247 unsigned long index; 248 unsigned long flags; 249 unsigned int printed_len; 250 251 /* Get output from mlogbuf */ 252 while (mlogbuf_start != mlogbuf_end) { 253 temp_buf[0] = '\0'; 254 p = temp_buf; 255 printed_len = 0; 256 257 spin_lock_irqsave(&mlogbuf_rlock, flags); 258 259 index = mlogbuf_start; 260 while (index != mlogbuf_end) { 261 *p = mlogbuf[index]; 262 index = (index + 1) % MLOGBUF_SIZE; 263 if (!*p) 264 break; 265 p++; 266 if (++printed_len >= MLOGBUF_MSGMAX - 1) 267 break; 268 } 269 *p = '\0'; 270 if (temp_buf[0]) 271 printk("%s", temp_buf); 272 mlogbuf_start = index; 273 274 mlogbuf_timestamp = 0; 275 spin_unlock_irqrestore(&mlogbuf_rlock, flags); 276 } 277 } 278 EXPORT_SYMBOL(ia64_mlogbuf_dump); 279 280 /* 281 * Call this if system is going to down or if immediate flushing messages to 282 * console is required. (ex. recovery was failed, crash dump is going to be 283 * invoked, long-wait rendezvous etc.) 284 * NOTE: this should be called from monarch. 285 */ 286 static void ia64_mlogbuf_finish(int wait) 287 { 288 BREAK_LOGLEVEL(console_loglevel); 289 290 spin_lock_init(&mlogbuf_rlock); 291 ia64_mlogbuf_dump(); 292 printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, " 293 "MCA/INIT might be dodgy or fail.\n"); 294 295 if (!wait) 296 return; 297 298 /* wait for console */ 299 printk("Delaying for 5 seconds...\n"); 300 udelay(5*1000000); 301 302 mlogbuf_finished = 1; 303 } 304 305 /* 306 * Print buffered messages from INIT context. 307 */ 308 static void ia64_mlogbuf_dump_from_init(void) 309 { 310 if (mlogbuf_finished) 311 return; 312 313 if (mlogbuf_timestamp && 314 time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) { 315 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT " 316 " and the system seems to be messed up.\n"); 317 ia64_mlogbuf_finish(0); 318 return; 319 } 320 321 if (!spin_trylock(&mlogbuf_rlock)) { 322 printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. " 323 "Generated messages other than stack dump will be " 324 "buffered to mlogbuf and will be printed later.\n"); 325 printk(KERN_ERR "INIT: If messages would not printed after " 326 "this INIT, wait 30sec and assert INIT again.\n"); 327 if (!mlogbuf_timestamp) 328 mlogbuf_timestamp = jiffies; 329 return; 330 } 331 spin_unlock(&mlogbuf_rlock); 332 ia64_mlogbuf_dump(); 333 } 334 335 static inline void 336 ia64_mca_spin(const char *func) 337 { 338 if (monarch_cpu == smp_processor_id()) 339 ia64_mlogbuf_finish(0); 340 mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); 341 while (1) 342 cpu_relax(); 343 } 344 /* 345 * IA64_MCA log support 346 */ 347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */ 348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */ 349 350 typedef struct ia64_state_log_s 351 { 352 spinlock_t isl_lock; 353 int isl_index; 354 unsigned long isl_count; 355 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ 356 } ia64_state_log_t; 357 358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; 359 360 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) 361 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) 362 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) 363 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index 364 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index 365 #define IA64_LOG_INDEX_INC(it) \ 366 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ 367 ia64_state_log[it].isl_count++;} 368 #define IA64_LOG_INDEX_DEC(it) \ 369 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index 370 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) 371 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) 372 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count 373 374 static inline void ia64_log_allocate(int it, u64 size) 375 { 376 ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = 377 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 378 if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]) 379 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 380 381 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = 382 (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES); 383 if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]) 384 panic("%s: Failed to allocate %llu bytes\n", __func__, size); 385 } 386 387 /* 388 * ia64_log_init 389 * Reset the OS ia64 log buffer 390 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 391 * Outputs : None 392 */ 393 static void __init 394 ia64_log_init(int sal_info_type) 395 { 396 u64 max_size = 0; 397 398 IA64_LOG_NEXT_INDEX(sal_info_type) = 0; 399 IA64_LOG_LOCK_INIT(sal_info_type); 400 401 // SAL will tell us the maximum size of any error record of this type 402 max_size = ia64_sal_get_state_info_size(sal_info_type); 403 if (!max_size) 404 /* alloc_bootmem() doesn't like zero-sized allocations! */ 405 return; 406 407 // set up OS data structures to hold error info 408 ia64_log_allocate(sal_info_type, max_size); 409 } 410 411 /* 412 * ia64_log_get 413 * 414 * Get the current MCA log from SAL and copy it into the OS log buffer. 415 * 416 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) 417 * irq_safe whether you can use printk at this point 418 * Outputs : size (total record length) 419 * *buffer (ptr to error record) 420 * 421 */ 422 static u64 423 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) 424 { 425 sal_log_record_header_t *log_buffer; 426 u64 total_len = 0; 427 unsigned long s; 428 429 IA64_LOG_LOCK(sal_info_type); 430 431 /* Get the process state information */ 432 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); 433 434 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); 435 436 if (total_len) { 437 IA64_LOG_INDEX_INC(sal_info_type); 438 IA64_LOG_UNLOCK(sal_info_type); 439 if (irq_safe) { 440 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n", 441 __func__, sal_info_type, total_len); 442 } 443 *buffer = (u8 *) log_buffer; 444 return total_len; 445 } else { 446 IA64_LOG_UNLOCK(sal_info_type); 447 return 0; 448 } 449 } 450 451 /* 452 * ia64_mca_log_sal_error_record 453 * 454 * This function retrieves a specified error record type from SAL 455 * and wakes up any processes waiting for error records. 456 * 457 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) 458 * FIXME: remove MCA and irq_safe. 459 */ 460 static void 461 ia64_mca_log_sal_error_record(int sal_info_type) 462 { 463 u8 *buffer; 464 sal_log_record_header_t *rh; 465 u64 size; 466 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; 467 #ifdef IA64_MCA_DEBUG_INFO 468 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; 469 #endif 470 471 size = ia64_log_get(sal_info_type, &buffer, irq_safe); 472 if (!size) 473 return; 474 475 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); 476 477 if (irq_safe) 478 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", 479 smp_processor_id(), 480 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); 481 482 /* Clear logs from corrected errors in case there's no user-level logger */ 483 rh = (sal_log_record_header_t *)buffer; 484 if (rh->severity == sal_log_severity_corrected) 485 ia64_sal_clear_state_info(sal_info_type); 486 } 487 488 /* 489 * search_mca_table 490 * See if the MCA surfaced in an instruction range 491 * that has been tagged as recoverable. 492 * 493 * Inputs 494 * first First address range to check 495 * last Last address range to check 496 * ip Instruction pointer, address we are looking for 497 * 498 * Return value: 499 * 1 on Success (in the table)/ 0 on Failure (not in the table) 500 */ 501 int 502 search_mca_table (const struct mca_table_entry *first, 503 const struct mca_table_entry *last, 504 unsigned long ip) 505 { 506 const struct mca_table_entry *curr; 507 u64 curr_start, curr_end; 508 509 curr = first; 510 while (curr <= last) { 511 curr_start = (u64) &curr->start_addr + curr->start_addr; 512 curr_end = (u64) &curr->end_addr + curr->end_addr; 513 514 if ((ip >= curr_start) && (ip <= curr_end)) { 515 return 1; 516 } 517 curr++; 518 } 519 return 0; 520 } 521 522 /* Given an address, look for it in the mca tables. */ 523 int mca_recover_range(unsigned long addr) 524 { 525 extern struct mca_table_entry __start___mca_table[]; 526 extern struct mca_table_entry __stop___mca_table[]; 527 528 return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); 529 } 530 EXPORT_SYMBOL_GPL(mca_recover_range); 531 532 int cpe_vector = -1; 533 int ia64_cpe_irq = -1; 534 535 static irqreturn_t 536 ia64_mca_cpe_int_handler (int cpe_irq, void *arg) 537 { 538 static unsigned long cpe_history[CPE_HISTORY_LENGTH]; 539 static int index; 540 static DEFINE_SPINLOCK(cpe_history_lock); 541 542 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 543 __func__, cpe_irq, smp_processor_id()); 544 545 /* SAL spec states this should run w/ interrupts enabled */ 546 local_irq_enable(); 547 548 spin_lock(&cpe_history_lock); 549 if (!cpe_poll_enabled && cpe_vector >= 0) { 550 551 int i, count = 1; /* we know 1 happened now */ 552 unsigned long now = jiffies; 553 554 for (i = 0; i < CPE_HISTORY_LENGTH; i++) { 555 if (now - cpe_history[i] <= HZ) 556 count++; 557 } 558 559 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); 560 if (count >= CPE_HISTORY_LENGTH) { 561 562 cpe_poll_enabled = 1; 563 spin_unlock(&cpe_history_lock); 564 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); 565 566 /* 567 * Corrected errors will still be corrected, but 568 * make sure there's a log somewhere that indicates 569 * something is generating more than we can handle. 570 */ 571 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); 572 573 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); 574 575 /* lock already released, get out now */ 576 goto out; 577 } else { 578 cpe_history[index++] = now; 579 if (index == CPE_HISTORY_LENGTH) 580 index = 0; 581 } 582 } 583 spin_unlock(&cpe_history_lock); 584 out: 585 /* Get the CPE error record and log it */ 586 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); 587 588 local_irq_disable(); 589 590 return IRQ_HANDLED; 591 } 592 593 /* 594 * ia64_mca_register_cpev 595 * 596 * Register the corrected platform error vector with SAL. 597 * 598 * Inputs 599 * cpev Corrected Platform Error Vector number 600 * 601 * Outputs 602 * None 603 */ 604 void 605 ia64_mca_register_cpev (int cpev) 606 { 607 /* Register the CPE interrupt vector with SAL */ 608 struct ia64_sal_retval isrv; 609 610 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); 611 if (isrv.status) { 612 printk(KERN_ERR "Failed to register Corrected Platform " 613 "Error interrupt vector with SAL (status %ld)\n", isrv.status); 614 return; 615 } 616 617 IA64_MCA_DEBUG("%s: corrected platform error " 618 "vector %#x registered\n", __func__, cpev); 619 } 620 621 /* 622 * ia64_mca_cmc_vector_setup 623 * 624 * Setup the corrected machine check vector register in the processor. 625 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.) 626 * This function is invoked on a per-processor basis. 627 * 628 * Inputs 629 * None 630 * 631 * Outputs 632 * None 633 */ 634 void 635 ia64_mca_cmc_vector_setup (void) 636 { 637 cmcv_reg_t cmcv; 638 639 cmcv.cmcv_regval = 0; 640 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */ 641 cmcv.cmcv_vector = IA64_CMC_VECTOR; 642 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 643 644 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n", 645 __func__, smp_processor_id(), IA64_CMC_VECTOR); 646 647 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", 648 __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); 649 } 650 651 /* 652 * ia64_mca_cmc_vector_disable 653 * 654 * Mask the corrected machine check vector register in the processor. 655 * This function is invoked on a per-processor basis. 656 * 657 * Inputs 658 * dummy(unused) 659 * 660 * Outputs 661 * None 662 */ 663 static void 664 ia64_mca_cmc_vector_disable (void *dummy) 665 { 666 cmcv_reg_t cmcv; 667 668 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 669 670 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ 671 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 672 673 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n", 674 __func__, smp_processor_id(), cmcv.cmcv_vector); 675 } 676 677 /* 678 * ia64_mca_cmc_vector_enable 679 * 680 * Unmask the corrected machine check vector register in the processor. 681 * This function is invoked on a per-processor basis. 682 * 683 * Inputs 684 * dummy(unused) 685 * 686 * Outputs 687 * None 688 */ 689 static void 690 ia64_mca_cmc_vector_enable (void *dummy) 691 { 692 cmcv_reg_t cmcv; 693 694 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); 695 696 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ 697 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); 698 699 IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n", 700 __func__, smp_processor_id(), cmcv.cmcv_vector); 701 } 702 703 /* 704 * ia64_mca_cmc_vector_disable_keventd 705 * 706 * Called via keventd (smp_call_function() is not safe in interrupt context) to 707 * disable the cmc interrupt vector. 708 */ 709 static void 710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused) 711 { 712 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0); 713 } 714 715 /* 716 * ia64_mca_cmc_vector_enable_keventd 717 * 718 * Called via keventd (smp_call_function() is not safe in interrupt context) to 719 * enable the cmc interrupt vector. 720 */ 721 static void 722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused) 723 { 724 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0); 725 } 726 727 /* 728 * ia64_mca_wakeup 729 * 730 * Send an inter-cpu interrupt to wake-up a particular cpu. 731 * 732 * Inputs : cpuid 733 * Outputs : None 734 */ 735 static void 736 ia64_mca_wakeup(int cpu) 737 { 738 ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); 739 } 740 741 /* 742 * ia64_mca_wakeup_all 743 * 744 * Wakeup all the slave cpus which have rendez'ed previously. 745 * 746 * Inputs : None 747 * Outputs : None 748 */ 749 static void 750 ia64_mca_wakeup_all(void) 751 { 752 int cpu; 753 754 /* Clear the Rendez checkin flag for all cpus */ 755 for_each_online_cpu(cpu) { 756 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) 757 ia64_mca_wakeup(cpu); 758 } 759 760 } 761 762 /* 763 * ia64_mca_rendez_interrupt_handler 764 * 765 * This is handler used to put slave processors into spinloop 766 * while the monarch processor does the mca handling and later 767 * wake each slave up once the monarch is done. The state 768 * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed 769 * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates 770 * the cpu has come out of OS rendezvous. 771 * 772 * Inputs : None 773 * Outputs : None 774 */ 775 static irqreturn_t 776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg) 777 { 778 unsigned long flags; 779 int cpu = smp_processor_id(); 780 struct ia64_mca_notify_die nd = 781 { .sos = NULL, .monarch_cpu = &monarch_cpu }; 782 783 /* Mask all interrupts */ 784 local_irq_save(flags); 785 786 NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1); 787 788 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; 789 /* Register with the SAL monarch that the slave has 790 * reached SAL 791 */ 792 ia64_sal_mc_rendez(); 793 794 NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1); 795 796 /* Wait for the monarch cpu to exit. */ 797 while (monarch_cpu != -1) 798 cpu_relax(); /* spin until monarch leaves */ 799 800 NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1); 801 802 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 803 /* Enable all interrupts */ 804 local_irq_restore(flags); 805 return IRQ_HANDLED; 806 } 807 808 /* 809 * ia64_mca_wakeup_int_handler 810 * 811 * The interrupt handler for processing the inter-cpu interrupt to the 812 * slave cpu which was spinning in the rendez loop. 813 * Since this spinning is done by turning off the interrupts and 814 * polling on the wakeup-interrupt bit in the IRR, there is 815 * nothing useful to be done in the handler. 816 * 817 * Inputs : wakeup_irq (Wakeup-interrupt bit) 818 * arg (Interrupt handler specific argument) 819 * Outputs : None 820 * 821 */ 822 static irqreturn_t 823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg) 824 { 825 return IRQ_HANDLED; 826 } 827 828 /* Function pointer for extra MCA recovery */ 829 int (*ia64_mca_ucmc_extension) 830 (void*,struct ia64_sal_os_state*) 831 = NULL; 832 833 int 834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) 835 { 836 if (ia64_mca_ucmc_extension) 837 return 1; 838 839 ia64_mca_ucmc_extension = fn; 840 return 0; 841 } 842 843 void 844 ia64_unreg_MCA_extension(void) 845 { 846 if (ia64_mca_ucmc_extension) 847 ia64_mca_ucmc_extension = NULL; 848 } 849 850 EXPORT_SYMBOL(ia64_reg_MCA_extension); 851 EXPORT_SYMBOL(ia64_unreg_MCA_extension); 852 853 854 static inline void 855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat) 856 { 857 u64 fslot, tslot, nat; 858 *tr = *fr; 859 fslot = ((unsigned long)fr >> 3) & 63; 860 tslot = ((unsigned long)tr >> 3) & 63; 861 *tnat &= ~(1UL << tslot); 862 nat = (fnat >> fslot) & 1; 863 *tnat |= (nat << tslot); 864 } 865 866 /* Change the comm field on the MCA/INT task to include the pid that 867 * was interrupted, it makes for easier debugging. If that pid was 0 868 * (swapper or nested MCA/INIT) then use the start of the previous comm 869 * field suffixed with its cpu. 870 */ 871 872 static void 873 ia64_mca_modify_comm(const struct task_struct *previous_current) 874 { 875 char *p, comm[sizeof(current->comm)]; 876 if (previous_current->pid) 877 snprintf(comm, sizeof(comm), "%s %d", 878 current->comm, previous_current->pid); 879 else { 880 int l; 881 if ((p = strchr(previous_current->comm, ' '))) 882 l = p - previous_current->comm; 883 else 884 l = strlen(previous_current->comm); 885 snprintf(comm, sizeof(comm), "%s %*s %d", 886 current->comm, l, previous_current->comm, 887 task_thread_info(previous_current)->cpu); 888 } 889 memcpy(current->comm, comm, sizeof(current->comm)); 890 } 891 892 static void 893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos, 894 unsigned long *nat) 895 { 896 const pal_min_state_area_t *ms = sos->pal_min_state; 897 const u64 *bank; 898 899 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use 900 * pmsa_{xip,xpsr,xfs} 901 */ 902 if (ia64_psr(regs)->ic) { 903 regs->cr_iip = ms->pmsa_iip; 904 regs->cr_ipsr = ms->pmsa_ipsr; 905 regs->cr_ifs = ms->pmsa_ifs; 906 } else { 907 regs->cr_iip = ms->pmsa_xip; 908 regs->cr_ipsr = ms->pmsa_xpsr; 909 regs->cr_ifs = ms->pmsa_xfs; 910 911 sos->iip = ms->pmsa_iip; 912 sos->ipsr = ms->pmsa_ipsr; 913 sos->ifs = ms->pmsa_ifs; 914 } 915 regs->pr = ms->pmsa_pr; 916 regs->b0 = ms->pmsa_br0; 917 regs->ar_rsc = ms->pmsa_rsc; 918 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, ®s->r1, nat); 919 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, ®s->r2, nat); 920 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, ®s->r3, nat); 921 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, ®s->r8, nat); 922 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, ®s->r9, nat); 923 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, ®s->r10, nat); 924 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, ®s->r11, nat); 925 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, ®s->r12, nat); 926 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, ®s->r13, nat); 927 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, ®s->r14, nat); 928 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, ®s->r15, nat); 929 if (ia64_psr(regs)->bn) 930 bank = ms->pmsa_bank1_gr; 931 else 932 bank = ms->pmsa_bank0_gr; 933 copy_reg(&bank[16-16], ms->pmsa_nat_bits, ®s->r16, nat); 934 copy_reg(&bank[17-16], ms->pmsa_nat_bits, ®s->r17, nat); 935 copy_reg(&bank[18-16], ms->pmsa_nat_bits, ®s->r18, nat); 936 copy_reg(&bank[19-16], ms->pmsa_nat_bits, ®s->r19, nat); 937 copy_reg(&bank[20-16], ms->pmsa_nat_bits, ®s->r20, nat); 938 copy_reg(&bank[21-16], ms->pmsa_nat_bits, ®s->r21, nat); 939 copy_reg(&bank[22-16], ms->pmsa_nat_bits, ®s->r22, nat); 940 copy_reg(&bank[23-16], ms->pmsa_nat_bits, ®s->r23, nat); 941 copy_reg(&bank[24-16], ms->pmsa_nat_bits, ®s->r24, nat); 942 copy_reg(&bank[25-16], ms->pmsa_nat_bits, ®s->r25, nat); 943 copy_reg(&bank[26-16], ms->pmsa_nat_bits, ®s->r26, nat); 944 copy_reg(&bank[27-16], ms->pmsa_nat_bits, ®s->r27, nat); 945 copy_reg(&bank[28-16], ms->pmsa_nat_bits, ®s->r28, nat); 946 copy_reg(&bank[29-16], ms->pmsa_nat_bits, ®s->r29, nat); 947 copy_reg(&bank[30-16], ms->pmsa_nat_bits, ®s->r30, nat); 948 copy_reg(&bank[31-16], ms->pmsa_nat_bits, ®s->r31, nat); 949 } 950 951 /* On entry to this routine, we are running on the per cpu stack, see 952 * mca_asm.h. The original stack has not been touched by this event. Some of 953 * the original stack's registers will be in the RBS on this stack. This stack 954 * also contains a partial pt_regs and switch_stack, the rest of the data is in 955 * PAL minstate. 956 * 957 * The first thing to do is modify the original stack to look like a blocked 958 * task so we can run backtrace on the original task. Also mark the per cpu 959 * stack as current to ensure that we use the correct task state, it also means 960 * that we can do backtrace on the MCA/INIT handler code itself. 961 */ 962 963 static struct task_struct * 964 ia64_mca_modify_original_stack(struct pt_regs *regs, 965 const struct switch_stack *sw, 966 struct ia64_sal_os_state *sos, 967 const char *type) 968 { 969 char *p; 970 ia64_va va; 971 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ 972 const pal_min_state_area_t *ms = sos->pal_min_state; 973 struct task_struct *previous_current; 974 struct pt_regs *old_regs; 975 struct switch_stack *old_sw; 976 unsigned size = sizeof(struct pt_regs) + 977 sizeof(struct switch_stack) + 16; 978 unsigned long *old_bspstore, *old_bsp; 979 unsigned long *new_bspstore, *new_bsp; 980 unsigned long old_unat, old_rnat, new_rnat, nat; 981 u64 slots, loadrs = regs->loadrs; 982 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; 983 u64 ar_bspstore = regs->ar_bspstore; 984 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); 985 const char *msg; 986 int cpu = smp_processor_id(); 987 988 previous_current = curr_task(cpu); 989 ia64_set_curr_task(cpu, current); 990 if ((p = strchr(current->comm, ' '))) 991 *p = '\0'; 992 993 /* Best effort attempt to cope with MCA/INIT delivered while in 994 * physical mode. 995 */ 996 regs->cr_ipsr = ms->pmsa_ipsr; 997 if (ia64_psr(regs)->dt == 0) { 998 va.l = r12; 999 if (va.f.reg == 0) { 1000 va.f.reg = 7; 1001 r12 = va.l; 1002 } 1003 va.l = r13; 1004 if (va.f.reg == 0) { 1005 va.f.reg = 7; 1006 r13 = va.l; 1007 } 1008 } 1009 if (ia64_psr(regs)->rt == 0) { 1010 va.l = ar_bspstore; 1011 if (va.f.reg == 0) { 1012 va.f.reg = 7; 1013 ar_bspstore = va.l; 1014 } 1015 va.l = ar_bsp; 1016 if (va.f.reg == 0) { 1017 va.f.reg = 7; 1018 ar_bsp = va.l; 1019 } 1020 } 1021 1022 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers 1023 * have been copied to the old stack, the old stack may fail the 1024 * validation tests below. So ia64_old_stack() must restore the dirty 1025 * registers from the new stack. The old and new bspstore probably 1026 * have different alignments, so loadrs calculated on the old bsp 1027 * cannot be used to restore from the new bsp. Calculate a suitable 1028 * loadrs for the new stack and save it in the new pt_regs, where 1029 * ia64_old_stack() can get it. 1030 */ 1031 old_bspstore = (unsigned long *)ar_bspstore; 1032 old_bsp = (unsigned long *)ar_bsp; 1033 slots = ia64_rse_num_regs(old_bspstore, old_bsp); 1034 new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET); 1035 new_bsp = ia64_rse_skip_regs(new_bspstore, slots); 1036 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; 1037 1038 /* Verify the previous stack state before we change it */ 1039 if (user_mode(regs)) { 1040 msg = "occurred in user space"; 1041 /* previous_current is guaranteed to be valid when the task was 1042 * in user space, so ... 1043 */ 1044 ia64_mca_modify_comm(previous_current); 1045 goto no_mod; 1046 } 1047 1048 if (r13 != sos->prev_IA64_KR_CURRENT) { 1049 msg = "inconsistent previous current and r13"; 1050 goto no_mod; 1051 } 1052 1053 if (!mca_recover_range(ms->pmsa_iip)) { 1054 if ((r12 - r13) >= KERNEL_STACK_SIZE) { 1055 msg = "inconsistent r12 and r13"; 1056 goto no_mod; 1057 } 1058 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { 1059 msg = "inconsistent ar.bspstore and r13"; 1060 goto no_mod; 1061 } 1062 va.p = old_bspstore; 1063 if (va.f.reg < 5) { 1064 msg = "old_bspstore is in the wrong region"; 1065 goto no_mod; 1066 } 1067 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { 1068 msg = "inconsistent ar.bsp and r13"; 1069 goto no_mod; 1070 } 1071 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; 1072 if (ar_bspstore + size > r12) { 1073 msg = "no room for blocked state"; 1074 goto no_mod; 1075 } 1076 } 1077 1078 ia64_mca_modify_comm(previous_current); 1079 1080 /* Make the original task look blocked. First stack a struct pt_regs, 1081 * describing the state at the time of interrupt. mca_asm.S built a 1082 * partial pt_regs, copy it and fill in the blanks using minstate. 1083 */ 1084 p = (char *)r12 - sizeof(*regs); 1085 old_regs = (struct pt_regs *)p; 1086 memcpy(old_regs, regs, sizeof(*regs)); 1087 old_regs->loadrs = loadrs; 1088 old_unat = old_regs->ar_unat; 1089 finish_pt_regs(old_regs, sos, &old_unat); 1090 1091 /* Next stack a struct switch_stack. mca_asm.S built a partial 1092 * switch_stack, copy it and fill in the blanks using pt_regs and 1093 * minstate. 1094 * 1095 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, 1096 * ar.pfs is set to 0. 1097 * 1098 * unwind.c::unw_unwind() does special processing for interrupt frames. 1099 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate 1100 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not 1101 * that this is documented, of course. Set PRED_NON_SYSCALL in the 1102 * switch_stack on the original stack so it will unwind correctly when 1103 * unwind.c reads pt_regs. 1104 * 1105 * thread.ksp is updated to point to the synthesized switch_stack. 1106 */ 1107 p -= sizeof(struct switch_stack); 1108 old_sw = (struct switch_stack *)p; 1109 memcpy(old_sw, sw, sizeof(*sw)); 1110 old_sw->caller_unat = old_unat; 1111 old_sw->ar_fpsr = old_regs->ar_fpsr; 1112 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); 1113 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); 1114 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); 1115 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); 1116 old_sw->b0 = (u64)ia64_leave_kernel; 1117 old_sw->b1 = ms->pmsa_br1; 1118 old_sw->ar_pfs = 0; 1119 old_sw->ar_unat = old_unat; 1120 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); 1121 previous_current->thread.ksp = (u64)p - 16; 1122 1123 /* Finally copy the original stack's registers back to its RBS. 1124 * Registers from ar.bspstore through ar.bsp at the time of the event 1125 * are in the current RBS, copy them back to the original stack. The 1126 * copy must be done register by register because the original bspstore 1127 * and the current one have different alignments, so the saved RNAT 1128 * data occurs at different places. 1129 * 1130 * mca_asm does cover, so the old_bsp already includes all registers at 1131 * the time of MCA/INIT. It also does flushrs, so all registers before 1132 * this function have been written to backing store on the MCA/INIT 1133 * stack. 1134 */ 1135 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); 1136 old_rnat = regs->ar_rnat; 1137 while (slots--) { 1138 if (ia64_rse_is_rnat_slot(new_bspstore)) { 1139 new_rnat = ia64_get_rnat(new_bspstore++); 1140 } 1141 if (ia64_rse_is_rnat_slot(old_bspstore)) { 1142 *old_bspstore++ = old_rnat; 1143 old_rnat = 0; 1144 } 1145 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; 1146 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); 1147 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); 1148 *old_bspstore++ = *new_bspstore++; 1149 } 1150 old_sw->ar_bspstore = (unsigned long)old_bspstore; 1151 old_sw->ar_rnat = old_rnat; 1152 1153 sos->prev_task = previous_current; 1154 return previous_current; 1155 1156 no_mod: 1157 mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", 1158 smp_processor_id(), type, msg); 1159 old_unat = regs->ar_unat; 1160 finish_pt_regs(regs, sos, &old_unat); 1161 return previous_current; 1162 } 1163 1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all 1165 * slaves have entered rendezvous before the monarch leaves. If any cpu has 1166 * not entered rendezvous yet then wait a bit. The assumption is that any 1167 * slave that has not rendezvoused after a reasonable time is never going to do 1168 * so. In this context, slave includes cpus that respond to the MCA rendezvous 1169 * interrupt, as well as cpus that receive the INIT slave event. 1170 */ 1171 1172 static void 1173 ia64_wait_for_slaves(int monarch, const char *type) 1174 { 1175 int c, i , wait; 1176 1177 /* 1178 * wait 5 seconds total for slaves (arbitrary) 1179 */ 1180 for (i = 0; i < 5000; i++) { 1181 wait = 0; 1182 for_each_online_cpu(c) { 1183 if (c == monarch) 1184 continue; 1185 if (ia64_mc_info.imi_rendez_checkin[c] 1186 == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { 1187 udelay(1000); /* short wait */ 1188 wait = 1; 1189 break; 1190 } 1191 } 1192 if (!wait) 1193 goto all_in; 1194 } 1195 1196 /* 1197 * Maybe slave(s) dead. Print buffered messages immediately. 1198 */ 1199 ia64_mlogbuf_finish(0); 1200 mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); 1201 for_each_online_cpu(c) { 1202 if (c == monarch) 1203 continue; 1204 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) 1205 mprintk(" %d", c); 1206 } 1207 mprintk("\n"); 1208 return; 1209 1210 all_in: 1211 mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); 1212 return; 1213 } 1214 1215 /* mca_insert_tr 1216 * 1217 * Switch rid when TR reload and needed! 1218 * iord: 1: itr, 2: itr; 1219 * 1220 */ 1221 static void mca_insert_tr(u64 iord) 1222 { 1223 1224 int i; 1225 u64 old_rr; 1226 struct ia64_tr_entry *p; 1227 unsigned long psr; 1228 int cpu = smp_processor_id(); 1229 1230 if (!ia64_idtrs[cpu]) 1231 return; 1232 1233 psr = ia64_clear_ic(); 1234 for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) { 1235 p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX; 1236 if (p->pte & 0x1) { 1237 old_rr = ia64_get_rr(p->ifa); 1238 if (old_rr != p->rr) { 1239 ia64_set_rr(p->ifa, p->rr); 1240 ia64_srlz_d(); 1241 } 1242 ia64_ptr(iord, p->ifa, p->itir >> 2); 1243 ia64_srlz_i(); 1244 if (iord & 0x1) { 1245 ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2); 1246 ia64_srlz_i(); 1247 } 1248 if (iord & 0x2) { 1249 ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2); 1250 ia64_srlz_i(); 1251 } 1252 if (old_rr != p->rr) { 1253 ia64_set_rr(p->ifa, old_rr); 1254 ia64_srlz_d(); 1255 } 1256 } 1257 } 1258 ia64_set_psr(psr); 1259 } 1260 1261 /* 1262 * ia64_mca_handler 1263 * 1264 * This is uncorrectable machine check handler called from OS_MCA 1265 * dispatch code which is in turn called from SAL_CHECK(). 1266 * This is the place where the core of OS MCA handling is done. 1267 * Right now the logs are extracted and displayed in a well-defined 1268 * format. This handler code is supposed to be run only on the 1269 * monarch processor. Once the monarch is done with MCA handling 1270 * further MCA logging is enabled by clearing logs. 1271 * Monarch also has the duty of sending wakeup-IPIs to pull the 1272 * slave processors out of rendezvous spinloop. 1273 * 1274 * If multiple processors call into OS_MCA, the first will become 1275 * the monarch. Subsequent cpus will be recorded in the mca_cpu 1276 * bitmask. After the first monarch has processed its MCA, it 1277 * will wake up the next cpu in the mca_cpu bitmask and then go 1278 * into the rendezvous loop. When all processors have serviced 1279 * their MCA, the last monarch frees up the rest of the processors. 1280 */ 1281 void 1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, 1283 struct ia64_sal_os_state *sos) 1284 { 1285 int recover, cpu = smp_processor_id(); 1286 struct task_struct *previous_current; 1287 struct ia64_mca_notify_die nd = 1288 { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover }; 1289 static atomic_t mca_count; 1290 static cpumask_t mca_cpu; 1291 1292 if (atomic_add_return(1, &mca_count) == 1) { 1293 monarch_cpu = cpu; 1294 sos->monarch = 1; 1295 } else { 1296 cpumask_set_cpu(cpu, &mca_cpu); 1297 sos->monarch = 0; 1298 } 1299 mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d " 1300 "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch); 1301 1302 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); 1303 1304 NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1); 1305 1306 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA; 1307 if (sos->monarch) { 1308 ia64_wait_for_slaves(cpu, "MCA"); 1309 1310 /* Wakeup all the processors which are spinning in the 1311 * rendezvous loop. They will leave SAL, then spin in the OS 1312 * with interrupts disabled until this monarch cpu leaves the 1313 * MCA handler. That gets control back to the OS so we can 1314 * backtrace the other cpus, backtrace when spinning in SAL 1315 * does not work. 1316 */ 1317 ia64_mca_wakeup_all(); 1318 } else { 1319 while (cpumask_test_cpu(cpu, &mca_cpu)) 1320 cpu_relax(); /* spin until monarch wakes us */ 1321 } 1322 1323 NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1); 1324 1325 /* Get the MCA error record and log it */ 1326 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); 1327 1328 /* MCA error recovery */ 1329 recover = (ia64_mca_ucmc_extension 1330 && ia64_mca_ucmc_extension( 1331 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), 1332 sos)); 1333 1334 if (recover) { 1335 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); 1336 rh->severity = sal_log_severity_corrected; 1337 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); 1338 sos->os_status = IA64_MCA_CORRECTED; 1339 } else { 1340 /* Dump buffered message to console */ 1341 ia64_mlogbuf_finish(1); 1342 } 1343 1344 if (__this_cpu_read(ia64_mca_tr_reload)) { 1345 mca_insert_tr(0x1); /*Reload dynamic itrs*/ 1346 mca_insert_tr(0x2); /*Reload dynamic itrs*/ 1347 } 1348 1349 NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1); 1350 1351 if (atomic_dec_return(&mca_count) > 0) { 1352 int i; 1353 1354 /* wake up the next monarch cpu, 1355 * and put this cpu in the rendez loop. 1356 */ 1357 for_each_online_cpu(i) { 1358 if (cpumask_test_cpu(i, &mca_cpu)) { 1359 monarch_cpu = i; 1360 cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */ 1361 while (monarch_cpu != -1) 1362 cpu_relax(); /* spin until last cpu leaves */ 1363 ia64_set_curr_task(cpu, previous_current); 1364 ia64_mc_info.imi_rendez_checkin[cpu] 1365 = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1366 return; 1367 } 1368 } 1369 } 1370 ia64_set_curr_task(cpu, previous_current); 1371 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1372 monarch_cpu = -1; /* This frees the slaves and previous monarchs */ 1373 } 1374 1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd); 1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd); 1377 1378 /* 1379 * ia64_mca_cmc_int_handler 1380 * 1381 * This is corrected machine check interrupt handler. 1382 * Right now the logs are extracted and displayed in a well-defined 1383 * format. 1384 * 1385 * Inputs 1386 * interrupt number 1387 * client data arg ptr 1388 * 1389 * Outputs 1390 * None 1391 */ 1392 static irqreturn_t 1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg) 1394 { 1395 static unsigned long cmc_history[CMC_HISTORY_LENGTH]; 1396 static int index; 1397 static DEFINE_SPINLOCK(cmc_history_lock); 1398 1399 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", 1400 __func__, cmc_irq, smp_processor_id()); 1401 1402 /* SAL spec states this should run w/ interrupts enabled */ 1403 local_irq_enable(); 1404 1405 spin_lock(&cmc_history_lock); 1406 if (!cmc_polling_enabled) { 1407 int i, count = 1; /* we know 1 happened now */ 1408 unsigned long now = jiffies; 1409 1410 for (i = 0; i < CMC_HISTORY_LENGTH; i++) { 1411 if (now - cmc_history[i] <= HZ) 1412 count++; 1413 } 1414 1415 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); 1416 if (count >= CMC_HISTORY_LENGTH) { 1417 1418 cmc_polling_enabled = 1; 1419 spin_unlock(&cmc_history_lock); 1420 /* If we're being hit with CMC interrupts, we won't 1421 * ever execute the schedule_work() below. Need to 1422 * disable CMC interrupts on this processor now. 1423 */ 1424 ia64_mca_cmc_vector_disable(NULL); 1425 schedule_work(&cmc_disable_work); 1426 1427 /* 1428 * Corrected errors will still be corrected, but 1429 * make sure there's a log somewhere that indicates 1430 * something is generating more than we can handle. 1431 */ 1432 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); 1433 1434 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1435 1436 /* lock already released, get out now */ 1437 goto out; 1438 } else { 1439 cmc_history[index++] = now; 1440 if (index == CMC_HISTORY_LENGTH) 1441 index = 0; 1442 } 1443 } 1444 spin_unlock(&cmc_history_lock); 1445 out: 1446 /* Get the CMC error record and log it */ 1447 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); 1448 1449 local_irq_disable(); 1450 1451 return IRQ_HANDLED; 1452 } 1453 1454 /* 1455 * ia64_mca_cmc_int_caller 1456 * 1457 * Triggered by sw interrupt from CMC polling routine. Calls 1458 * real interrupt handler and either triggers a sw interrupt 1459 * on the next cpu or does cleanup at the end. 1460 * 1461 * Inputs 1462 * interrupt number 1463 * client data arg ptr 1464 * Outputs 1465 * handled 1466 */ 1467 static irqreturn_t 1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg) 1469 { 1470 static int start_count = -1; 1471 unsigned int cpuid; 1472 1473 cpuid = smp_processor_id(); 1474 1475 /* If first cpu, update count */ 1476 if (start_count == -1) 1477 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); 1478 1479 ia64_mca_cmc_int_handler(cmc_irq, arg); 1480 1481 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1482 1483 if (cpuid < nr_cpu_ids) { 1484 ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); 1485 } else { 1486 /* If no log record, switch out of polling mode */ 1487 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { 1488 1489 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); 1490 schedule_work(&cmc_enable_work); 1491 cmc_polling_enabled = 0; 1492 1493 } else { 1494 1495 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); 1496 } 1497 1498 start_count = -1; 1499 } 1500 1501 return IRQ_HANDLED; 1502 } 1503 1504 /* 1505 * ia64_mca_cmc_poll 1506 * 1507 * Poll for Corrected Machine Checks (CMCs) 1508 * 1509 * Inputs : dummy(unused) 1510 * Outputs : None 1511 * 1512 */ 1513 static void 1514 ia64_mca_cmc_poll (struct timer_list *unused) 1515 { 1516 /* Trigger a CMC interrupt cascade */ 1517 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR, 1518 IA64_IPI_DM_INT, 0); 1519 } 1520 1521 /* 1522 * ia64_mca_cpe_int_caller 1523 * 1524 * Triggered by sw interrupt from CPE polling routine. Calls 1525 * real interrupt handler and either triggers a sw interrupt 1526 * on the next cpu or does cleanup at the end. 1527 * 1528 * Inputs 1529 * interrupt number 1530 * client data arg ptr 1531 * Outputs 1532 * handled 1533 */ 1534 static irqreturn_t 1535 ia64_mca_cpe_int_caller(int cpe_irq, void *arg) 1536 { 1537 static int start_count = -1; 1538 static int poll_time = MIN_CPE_POLL_INTERVAL; 1539 unsigned int cpuid; 1540 1541 cpuid = smp_processor_id(); 1542 1543 /* If first cpu, update count */ 1544 if (start_count == -1) 1545 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); 1546 1547 ia64_mca_cpe_int_handler(cpe_irq, arg); 1548 1549 cpuid = cpumask_next(cpuid+1, cpu_online_mask); 1550 1551 if (cpuid < NR_CPUS) { 1552 ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); 1553 } else { 1554 /* 1555 * If a log was recorded, increase our polling frequency, 1556 * otherwise, backoff or return to interrupt mode. 1557 */ 1558 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { 1559 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); 1560 } else if (cpe_vector < 0) { 1561 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); 1562 } else { 1563 poll_time = MIN_CPE_POLL_INTERVAL; 1564 1565 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); 1566 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); 1567 cpe_poll_enabled = 0; 1568 } 1569 1570 if (cpe_poll_enabled) 1571 mod_timer(&cpe_poll_timer, jiffies + poll_time); 1572 start_count = -1; 1573 } 1574 1575 return IRQ_HANDLED; 1576 } 1577 1578 /* 1579 * ia64_mca_cpe_poll 1580 * 1581 * Poll for Corrected Platform Errors (CPEs), trigger interrupt 1582 * on first cpu, from there it will trickle through all the cpus. 1583 * 1584 * Inputs : dummy(unused) 1585 * Outputs : None 1586 * 1587 */ 1588 static void 1589 ia64_mca_cpe_poll (struct timer_list *unused) 1590 { 1591 /* Trigger a CPE interrupt cascade */ 1592 ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR, 1593 IA64_IPI_DM_INT, 0); 1594 } 1595 1596 static int 1597 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) 1598 { 1599 int c; 1600 struct task_struct *g, *t; 1601 if (val != DIE_INIT_MONARCH_PROCESS) 1602 return NOTIFY_DONE; 1603 #ifdef CONFIG_KEXEC 1604 if (atomic_read(&kdump_in_progress)) 1605 return NOTIFY_DONE; 1606 #endif 1607 1608 /* 1609 * FIXME: mlogbuf will brim over with INIT stack dumps. 1610 * To enable show_stack from INIT, we use oops_in_progress which should 1611 * be used in real oops. This would cause something wrong after INIT. 1612 */ 1613 BREAK_LOGLEVEL(console_loglevel); 1614 ia64_mlogbuf_dump_from_init(); 1615 1616 printk(KERN_ERR "Processes interrupted by INIT -"); 1617 for_each_online_cpu(c) { 1618 struct ia64_sal_os_state *s; 1619 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); 1620 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); 1621 g = s->prev_task; 1622 if (g) { 1623 if (g->pid) 1624 printk(" %d", g->pid); 1625 else 1626 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); 1627 } 1628 } 1629 printk("\n\n"); 1630 if (read_trylock(&tasklist_lock)) { 1631 do_each_thread (g, t) { 1632 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); 1633 show_stack(t, NULL); 1634 } while_each_thread (g, t); 1635 read_unlock(&tasklist_lock); 1636 } 1637 /* FIXME: This will not restore zapped printk locks. */ 1638 RESTORE_LOGLEVEL(console_loglevel); 1639 return NOTIFY_DONE; 1640 } 1641 1642 /* 1643 * C portion of the OS INIT handler 1644 * 1645 * Called from ia64_os_init_dispatch 1646 * 1647 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for 1648 * this event. This code is used for both monarch and slave INIT events, see 1649 * sos->monarch. 1650 * 1651 * All INIT events switch to the INIT stack and change the previous process to 1652 * blocked status. If one of the INIT events is the monarch then we are 1653 * probably processing the nmi button/command. Use the monarch cpu to dump all 1654 * the processes. The slave INIT events all spin until the monarch cpu 1655 * returns. We can also get INIT slave events for MCA, in which case the MCA 1656 * process is the monarch. 1657 */ 1658 1659 void 1660 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, 1661 struct ia64_sal_os_state *sos) 1662 { 1663 static atomic_t slaves; 1664 static atomic_t monarchs; 1665 struct task_struct *previous_current; 1666 int cpu = smp_processor_id(); 1667 struct ia64_mca_notify_die nd = 1668 { .sos = sos, .monarch_cpu = &monarch_cpu }; 1669 1670 NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0); 1671 1672 mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", 1673 sos->proc_state_param, cpu, sos->monarch); 1674 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); 1675 1676 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); 1677 sos->os_status = IA64_INIT_RESUME; 1678 1679 /* FIXME: Workaround for broken proms that drive all INIT events as 1680 * slaves. The last slave that enters is promoted to be a monarch. 1681 * Remove this code in September 2006, that gives platforms a year to 1682 * fix their proms and get their customers updated. 1683 */ 1684 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { 1685 mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", 1686 __func__, cpu); 1687 atomic_dec(&slaves); 1688 sos->monarch = 1; 1689 } 1690 1691 /* FIXME: Workaround for broken proms that drive all INIT events as 1692 * monarchs. Second and subsequent monarchs are demoted to slaves. 1693 * Remove this code in September 2006, that gives platforms a year to 1694 * fix their proms and get their customers updated. 1695 */ 1696 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { 1697 mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", 1698 __func__, cpu); 1699 atomic_dec(&monarchs); 1700 sos->monarch = 0; 1701 } 1702 1703 if (!sos->monarch) { 1704 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; 1705 1706 #ifdef CONFIG_KEXEC 1707 while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress)) 1708 udelay(1000); 1709 #else 1710 while (monarch_cpu == -1) 1711 cpu_relax(); /* spin until monarch enters */ 1712 #endif 1713 1714 NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1); 1715 NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1); 1716 1717 #ifdef CONFIG_KEXEC 1718 while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress)) 1719 udelay(1000); 1720 #else 1721 while (monarch_cpu != -1) 1722 cpu_relax(); /* spin until monarch leaves */ 1723 #endif 1724 1725 NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1); 1726 1727 mprintk("Slave on cpu %d returning to normal service.\n", cpu); 1728 ia64_set_curr_task(cpu, previous_current); 1729 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1730 atomic_dec(&slaves); 1731 return; 1732 } 1733 1734 monarch_cpu = cpu; 1735 NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1); 1736 1737 /* 1738 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be 1739 * generated via the BMC's command-line interface, but since the console is on the 1740 * same serial line, the user will need some time to switch out of the BMC before 1741 * the dump begins. 1742 */ 1743 mprintk("Delaying for 5 seconds...\n"); 1744 udelay(5*1000000); 1745 ia64_wait_for_slaves(cpu, "INIT"); 1746 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through 1747 * to default_monarch_init_process() above and just print all the 1748 * tasks. 1749 */ 1750 NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1); 1751 NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1); 1752 1753 mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); 1754 atomic_dec(&monarchs); 1755 ia64_set_curr_task(cpu, previous_current); 1756 monarch_cpu = -1; 1757 return; 1758 } 1759 1760 static int __init 1761 ia64_mca_disable_cpe_polling(char *str) 1762 { 1763 cpe_poll_enabled = 0; 1764 return 1; 1765 } 1766 1767 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); 1768 1769 static struct irqaction cmci_irqaction = { 1770 .handler = ia64_mca_cmc_int_handler, 1771 .name = "cmc_hndlr" 1772 }; 1773 1774 static struct irqaction cmcp_irqaction = { 1775 .handler = ia64_mca_cmc_int_caller, 1776 .name = "cmc_poll" 1777 }; 1778 1779 static struct irqaction mca_rdzv_irqaction = { 1780 .handler = ia64_mca_rendez_int_handler, 1781 .name = "mca_rdzv" 1782 }; 1783 1784 static struct irqaction mca_wkup_irqaction = { 1785 .handler = ia64_mca_wakeup_int_handler, 1786 .name = "mca_wkup" 1787 }; 1788 1789 static struct irqaction mca_cpe_irqaction = { 1790 .handler = ia64_mca_cpe_int_handler, 1791 .name = "cpe_hndlr" 1792 }; 1793 1794 static struct irqaction mca_cpep_irqaction = { 1795 .handler = ia64_mca_cpe_int_caller, 1796 .name = "cpe_poll" 1797 }; 1798 1799 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on 1800 * these stacks can never sleep, they cannot return from the kernel to user 1801 * space, they do not appear in a normal ps listing. So there is no need to 1802 * format most of the fields. 1803 */ 1804 1805 static void 1806 format_mca_init_stack(void *mca_data, unsigned long offset, 1807 const char *type, int cpu) 1808 { 1809 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); 1810 struct thread_info *ti; 1811 memset(p, 0, KERNEL_STACK_SIZE); 1812 ti = task_thread_info(p); 1813 ti->flags = _TIF_MCA_INIT; 1814 ti->preempt_count = 1; 1815 ti->task = p; 1816 ti->cpu = cpu; 1817 p->stack = ti; 1818 p->state = TASK_UNINTERRUPTIBLE; 1819 cpumask_set_cpu(cpu, &p->cpus_mask); 1820 INIT_LIST_HEAD(&p->tasks); 1821 p->parent = p->real_parent = p->group_leader = p; 1822 INIT_LIST_HEAD(&p->children); 1823 INIT_LIST_HEAD(&p->sibling); 1824 strncpy(p->comm, type, sizeof(p->comm)-1); 1825 } 1826 1827 /* Caller prevents this from being called after init */ 1828 static void * __ref mca_bootmem(void) 1829 { 1830 return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE); 1831 } 1832 1833 /* Do per-CPU MCA-related initialization. */ 1834 void 1835 ia64_mca_cpu_init(void *cpu_data) 1836 { 1837 void *pal_vaddr; 1838 void *data; 1839 long sz = sizeof(struct ia64_mca_cpu); 1840 int cpu = smp_processor_id(); 1841 static int first_time = 1; 1842 1843 /* 1844 * Structure will already be allocated if cpu has been online, 1845 * then offlined. 1846 */ 1847 if (__per_cpu_mca[cpu]) { 1848 data = __va(__per_cpu_mca[cpu]); 1849 } else { 1850 if (first_time) { 1851 data = mca_bootmem(); 1852 first_time = 0; 1853 } else 1854 data = (void *)__get_free_pages(GFP_KERNEL, 1855 get_order(sz)); 1856 if (!data) 1857 panic("Could not allocate MCA memory for cpu %d\n", 1858 cpu); 1859 } 1860 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack), 1861 "MCA", cpu); 1862 format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack), 1863 "INIT", cpu); 1864 __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data))); 1865 1866 /* 1867 * Stash away a copy of the PTE needed to map the per-CPU page. 1868 * We may need it during MCA recovery. 1869 */ 1870 __this_cpu_write(ia64_mca_per_cpu_pte, 1871 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL))); 1872 1873 /* 1874 * Also, stash away a copy of the PAL address and the PTE 1875 * needed to map it. 1876 */ 1877 pal_vaddr = efi_get_pal_addr(); 1878 if (!pal_vaddr) 1879 return; 1880 __this_cpu_write(ia64_mca_pal_base, 1881 GRANULEROUNDDOWN((unsigned long) pal_vaddr)); 1882 __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr), 1883 PAGE_KERNEL))); 1884 } 1885 1886 static int ia64_mca_cpu_online(unsigned int cpu) 1887 { 1888 unsigned long flags; 1889 1890 local_irq_save(flags); 1891 if (!cmc_polling_enabled) 1892 ia64_mca_cmc_vector_enable(NULL); 1893 local_irq_restore(flags); 1894 return 0; 1895 } 1896 1897 /* 1898 * ia64_mca_init 1899 * 1900 * Do all the system level mca specific initialization. 1901 * 1902 * 1. Register spinloop and wakeup request interrupt vectors 1903 * 1904 * 2. Register OS_MCA handler entry point 1905 * 1906 * 3. Register OS_INIT handler entry point 1907 * 1908 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. 1909 * 1910 * Note that this initialization is done very early before some kernel 1911 * services are available. 1912 * 1913 * Inputs : None 1914 * 1915 * Outputs : None 1916 */ 1917 void __init 1918 ia64_mca_init(void) 1919 { 1920 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; 1921 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; 1922 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; 1923 int i; 1924 long rc; 1925 struct ia64_sal_retval isrv; 1926 unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */ 1927 static struct notifier_block default_init_monarch_nb = { 1928 .notifier_call = default_monarch_init_process, 1929 .priority = 0/* we need to notified last */ 1930 }; 1931 1932 IA64_MCA_DEBUG("%s: begin\n", __func__); 1933 1934 /* Clear the Rendez checkin flag for all cpus */ 1935 for(i = 0 ; i < NR_CPUS; i++) 1936 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; 1937 1938 /* 1939 * Register the rendezvous spinloop and wakeup mechanism with SAL 1940 */ 1941 1942 /* Register the rendezvous interrupt vector with SAL */ 1943 while (1) { 1944 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, 1945 SAL_MC_PARAM_MECHANISM_INT, 1946 IA64_MCA_RENDEZ_VECTOR, 1947 timeout, 1948 SAL_MC_PARAM_RZ_ALWAYS); 1949 rc = isrv.status; 1950 if (rc == 0) 1951 break; 1952 if (rc == -2) { 1953 printk(KERN_INFO "Increasing MCA rendezvous timeout from " 1954 "%ld to %ld milliseconds\n", timeout, isrv.v0); 1955 timeout = isrv.v0; 1956 NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0); 1957 continue; 1958 } 1959 printk(KERN_ERR "Failed to register rendezvous interrupt " 1960 "with SAL (status %ld)\n", rc); 1961 return; 1962 } 1963 1964 /* Register the wakeup interrupt vector with SAL */ 1965 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, 1966 SAL_MC_PARAM_MECHANISM_INT, 1967 IA64_MCA_WAKEUP_VECTOR, 1968 0, 0); 1969 rc = isrv.status; 1970 if (rc) { 1971 printk(KERN_ERR "Failed to register wakeup interrupt with SAL " 1972 "(status %ld)\n", rc); 1973 return; 1974 } 1975 1976 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__); 1977 1978 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp); 1979 /* 1980 * XXX - disable SAL checksum by setting size to 0; should be 1981 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); 1982 */ 1983 ia64_mc_info.imi_mca_handler_size = 0; 1984 1985 /* Register the os mca handler with SAL */ 1986 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 1987 ia64_mc_info.imi_mca_handler, 1988 ia64_tpa(mca_hldlr_ptr->gp), 1989 ia64_mc_info.imi_mca_handler_size, 1990 0, 0, 0))) 1991 { 1992 printk(KERN_ERR "Failed to register OS MCA handler with SAL " 1993 "(status %ld)\n", rc); 1994 return; 1995 } 1996 1997 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__, 1998 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); 1999 2000 /* 2001 * XXX - disable SAL checksum by setting size to 0, should be 2002 * size of the actual init handler in mca_asm.S. 2003 */ 2004 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); 2005 ia64_mc_info.imi_monarch_init_handler_size = 0; 2006 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); 2007 ia64_mc_info.imi_slave_init_handler_size = 0; 2008 2009 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__, 2010 ia64_mc_info.imi_monarch_init_handler); 2011 2012 /* Register the os init handler with SAL */ 2013 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 2014 ia64_mc_info.imi_monarch_init_handler, 2015 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2016 ia64_mc_info.imi_monarch_init_handler_size, 2017 ia64_mc_info.imi_slave_init_handler, 2018 ia64_tpa(ia64_getreg(_IA64_REG_GP)), 2019 ia64_mc_info.imi_slave_init_handler_size))) 2020 { 2021 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " 2022 "(status %ld)\n", rc); 2023 return; 2024 } 2025 if (register_die_notifier(&default_init_monarch_nb)) { 2026 printk(KERN_ERR "Failed to register default monarch INIT process\n"); 2027 return; 2028 } 2029 2030 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__); 2031 2032 /* Initialize the areas set aside by the OS to buffer the 2033 * platform/processor error states for MCA/INIT/CMC 2034 * handling. 2035 */ 2036 ia64_log_init(SAL_INFO_TYPE_MCA); 2037 ia64_log_init(SAL_INFO_TYPE_INIT); 2038 ia64_log_init(SAL_INFO_TYPE_CMC); 2039 ia64_log_init(SAL_INFO_TYPE_CPE); 2040 2041 mca_init = 1; 2042 printk(KERN_INFO "MCA related initialization done\n"); 2043 } 2044 2045 2046 /* 2047 * These pieces cannot be done in ia64_mca_init() because it is called before 2048 * early_irq_init() which would wipe out our percpu irq registrations. But we 2049 * cannot leave them until ia64_mca_late_init() because by then all the other 2050 * processors have been brought online and have set their own CMC vectors to 2051 * point at a non-existant action. Called from arch_early_irq_init(). 2052 */ 2053 void __init ia64_mca_irq_init(void) 2054 { 2055 /* 2056 * Configure the CMCI/P vector and handler. Interrupts for CMC are 2057 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). 2058 */ 2059 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); 2060 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); 2061 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */ 2062 2063 /* Setup the MCA rendezvous interrupt vector */ 2064 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); 2065 2066 /* Setup the MCA wakeup interrupt vector */ 2067 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); 2068 2069 /* Setup the CPEI/P handler */ 2070 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); 2071 } 2072 2073 /* 2074 * ia64_mca_late_init 2075 * 2076 * Opportunity to setup things that require initialization later 2077 * than ia64_mca_init. Setup a timer to poll for CPEs if the 2078 * platform doesn't support an interrupt driven mechanism. 2079 * 2080 * Inputs : None 2081 * Outputs : Status 2082 */ 2083 static int __init 2084 ia64_mca_late_init(void) 2085 { 2086 if (!mca_init) 2087 return 0; 2088 2089 /* Setup the CMCI/P vector and handler */ 2090 timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0); 2091 2092 /* Unmask/enable the vector */ 2093 cmc_polling_enabled = 0; 2094 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online", 2095 ia64_mca_cpu_online, NULL); 2096 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__); 2097 2098 /* Setup the CPEI/P vector and handler */ 2099 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); 2100 timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0); 2101 2102 { 2103 unsigned int irq; 2104 2105 if (cpe_vector >= 0) { 2106 /* If platform supports CPEI, enable the irq. */ 2107 irq = local_vector_to_irq(cpe_vector); 2108 if (irq > 0) { 2109 cpe_poll_enabled = 0; 2110 irq_set_status_flags(irq, IRQ_PER_CPU); 2111 setup_irq(irq, &mca_cpe_irqaction); 2112 ia64_cpe_irq = irq; 2113 ia64_mca_register_cpev(cpe_vector); 2114 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", 2115 __func__); 2116 return 0; 2117 } 2118 printk(KERN_ERR "%s: Failed to find irq for CPE " 2119 "interrupt handler, vector %d\n", 2120 __func__, cpe_vector); 2121 } 2122 /* If platform doesn't support CPEI, get the timer going. */ 2123 if (cpe_poll_enabled) { 2124 ia64_mca_cpe_poll(0UL); 2125 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__); 2126 } 2127 } 2128 2129 return 0; 2130 } 2131 2132 device_initcall(ia64_mca_late_init); 2133